
I J C T A, 9(18) 2016, pp. 8859-8867
© International Science Press

* Department of Computer Science and Engineering, Krishna Institute of Engineering and Technology, Ghaziabad, India, E-mails:
Priyankagaur84@yahoo.co.in; Ravi247663@gmail.com

A Critical Review on Test Case Prioritization
and Optimization using Soft Computing
Techniques
Priyanka Gaur* and Ravi Shankar Singhal*

ABSTRACT

Software testing plays a crucial role in software quality assurance. It is a core phase of software development life
cycle at the same time it is very expensive and time consuming process too. It becomes very inefficient for a tester
to re-execute large number of test cases again and again for small changes. Hence, test case prioritization and
optimization techniques are used to schedule the test cases and select the optimum subset of relevant test cases from
pool of test suit. This paper gives the insight into existing test case optimization and prioritization techniques such
as Greedy algorithm, Genetic Algorithm, Ant Colony Optimization, Bee Colony Optimization and Hybridization of
these algorithms. We focus on the limitations of existing techniques to make it clear that which technique is more
suitable for test case optimization and prioritization by a comparative review of these algorithms.

Key-words: test case prioritization techniques, regression testing.

I. INTRODUCTION

In this competitive, demanding and growing world of business, the key factor for achieving success is
maximization of Quality with minimization of Time and Cost. Customer satisfaction is taken as a crucial
parameter for quality measurement [1, 7]. Software testing is an important and necessary step that plays a
crucial role in software development life cycle as it is done to give assurance about the quality of software.
Testing is a process of identifying and uncovers the errors before delivering the software to the end user.
Software testing contains three main steps: selection of test inputs, execution of inputs on the software
under test and result evaluation [2]. Testing is a grueling, strenuous, time consuming and expensive process.
Software testing aims to design minimum number of test cases which can reveals as many faults as it can
[3]. We can conclude that software testing is basically an inspection or investigation process for providing
quality assurance of software. Testing is necessary as it assure that application will not result in any kind of
failure because the process of correcting it will become very expensive in the later stage.

1.1. Regression Testing

Regression test is a black box testing technique that tests the system to guarantee that it is working as per
the requirement even after the modifications [8, 9]. The most appropriate test case order is the one that
uncover errors at the early stage but the location of errors are not known in advance that’s why test case
prioritization techniques depends on some available substitutes or expedient for prioritization criteria[10].
It is difficult and inefficient to execute test cases again and again even for small change occurring in the
software [11]. Regression testing is important as alteration in any software can cause more harm to it.

Techniques for performing regression testing [12]:

8860 Aditya Sankar Sengupta, A. K. Chakraborty and B. K. Bhattacharyya

Retest all: this is the expensive and time consuming method as it involves re-executing of all the test
cases. It is not applicable for minor changes in the system.

Regression test selection: this involves re-execution of a selected part of test suits.

Prioritization of test cases: this includes priority based selection of test cases which will as a result
reduce the regression test suit.

1.2. Test Case

Test cases are those statements, clauses or terms which checks that whether software is working correctly
or not. Most of the companies usually save the test suits for re-executing it. Large numbers of test cases are
build for testing any application thus testing is a time consuming process. For previous version of application
several test cases are developed which can be used to test the new version of application but if we apply
these test cases for latest version than it will take significant amount of time therefore a tester should select
the appropriate test cases and arrange them in proper order for execution [4]. For example, executing
complete test suits for a product having 20,000 lines of code can take more than six weeks [1].The selection
and order of test cases are based on different projects goals and performance criteria. Rothermer et al. (1999)
summarized and classified the testing objectives into following types in test case prioritization [5, 29].

Increase the rate of defect detection- tendency of identifying defect at early stage.

Increase the rate of detection of high-risk defects-tendency of identifying more critical defect at early
stage.

Increase the rate of regression errors discovered- the tendency of identifying defects at early stage,
whenever code changes.

Increase the rate of the code coverage- large amount of code should be covered.

Increase the confidence in the reliability of the system- tester should have confidence in the reliability
at faster rate.

1.3. Test Case Optimization-

Three main phases of software testing are: selection of test inputs, processing of the inputs on the software
which has to be tested and comparison of the result. Software testing is a continuous activity which is
performed during the development process of the software so that the errors that are making software to run
in different way can be detected. Test suits once developed are updated and reused frequently even when
software is modified as a result some of the test cases become antiquated and redundant. It is necessary to
optimize the available test suites due to time constraint for re-executing the large test suites. Therefore, test
case prioritization, test case selection and test suit minimization are used for the optimization of test suites [2].

1.4. Test Case Prioritization

The primary goal of test case prioritization is to have a higher fault detection rate so that confidence can be
achieved in terms of reliability of the system [13, 9, 14, and 15]. While performing test case selection and

Figure 1: Regression Testing Techniques

Modeling of Super-Capacitor Discharge Characteristic using Power Supply 8861

prioritization some key problems are identified in software testing with respect to adequacy criteria and
influence of test cases on software quality. Adequacy criteria are the prototype that determine whether
software is tested adequately [2]. Two basic advantages of test case prioritization are[6]:

Large numbers of bugs are found under resource constraint condition.

Time limit expend for fixation of bugs.

Basically test case prioritization is scheduling the test cases such that the highest priority test cases are
executing before the lower priority test cases and test case optimization means selecting the best subset of
test cases from the large number of pr-defined test cases. Test cases selected should be in such a way that it
should meet the following conditions like code coverage should be maximum, large number of requirement
should be covered and fault detection rate should be high[2].

Test case prioritization problem is defined as follow(S) [13, 9, 14]

Given: test suites T, PT refers to the number of ways chosen, f is a function whose value depends on
permutation of these T to some real numbers.

Problem: we have to find T’ such that T’ E PT for all T, (T’EPT) where (T! =T’)and f (T’)>=f (T).

Basically there are two categories in which test case prioritization is divided [4]:

Figure 2: Test case Prioritization Categories

Considering a program P having a test suits T, in general specific test case prioritization knowledge of
modified program is not required for calculating the prioritized test suits T’ whereas in version specific test
case prioritization the knowledge of modified program is needed for calculating prioritized test suits T’.

II. RELATED WORK

A tabular representation of existing approaches for test case prioritization and optimization is represented
below

Table 1
Test Case Prioritization Approaches

Author Approach used Features Limitations Conclusion

G.V.Uma Genetic Defined various concrete not efficient for Better rate of fault detection and
algorithm prioritization factors to identify complex code reduces the execution time.

more severe faults at
earlier stage.

Arup Bbhinav Greedy Prioritized the test cases for Limited component Implemented in dynamic
Acharya approach testing component coverage environment and was found

dependency. very efficient.

contd. table 1

8862 Aditya Sankar Sengupta, A. K. Chakraborty and B. K. Bhattacharyya

Author Approach used Features Limitations Conclusion

Eldon Y.Li ACO Higher-risk test cases are Not effective for Improvement in execution
identified to improve the large program time and budget.

performance.

Praveen Variable Improve the testing Intractable for medium With the help of critical path,
Ranjan length genetic efficiency by selecting size software testing efficiency is improved.
Srivastava algorithm the most critical path

Suman Genetic Dynamically test cases More defected code may Introduced cyclic crossover
algorithm are prioritized based on cover at last to make testing process

code coverage effective and efficient.

Bharti Suri/ Hybrid Hybrid of BCO and Less efficient for complex Introduced HBG-TCS tool
IshaMangal approach genetic algorithm to projects and the proposed hybrid

reduce the testing time approach were much faster
and cost than ACO.

R. Krishna GA Prioritize the test case to Fixed for short testing Using structure based
Moorthi increase the rate of fault time constraints criteria; APFD metric

detection. was generated that proves
the effectiveness of the

proposed algorithm.

E.Ashraf Novel Clustering of effective Tested on limited data APCC metric was used to
factor set show that proposed

algorithm was more
efficient.

Ashima Singh GA Uses an intelligent dynamic No cluster based CMP metric proves the
approach that will prioritization effectiveness of the

prioritize the test cases approach algorithm developed.
on the basis of priorities.

Above table summarizes the existing work that identifies the various test case prioritization and
optimization techniques. Large number of authors have proposed various different types of techniques for
ordering test suits that results in high fault detection rate, time saving, cost minimization and quality assurance.

In [10], the author have developed requirement based system level test case prioritization technique
that uses set of some concrete or abstract prioritization factors (PF) for detecting or revealing the most
severe faults at early stage and improves the quality of software using genetic algorithm.

In [11], the author have used greedy approach to developed a method for prioritizing test cases for
testing component dependency in component based software development (CBSD) environment. This
technique was found very effective when applied for component developed in java.

In [5], the author has defined a process of test case prioritization using ant colony algorithm for optimizing
defect detection rate and regression test performance. It proves that maximum defects are discovered with
minimum number of test cases.

In [3], the author have defined a variable length genetic algorithm for optimizing the efficiency of
software testing by selecting most critical cluster path that is those parts which contain large amount of
error. So that number of test cases is not needed to run in complete program.

In [30], the author has introduced a new genetic algorithm that prioritizes test cases dynamically based
on complete code coverage. Main aim is to reduce the number of test cases. In the end analysis was also
done on the basis of process cost and test cost.

Modeling of Super-Capacitor Discharge Characteristic using Power Supply 8863

In [18], the author have proposed a hybrid approach of bee colony and genetic algorithm for reduction
of number of test cases and developed a tool HBG-TCS to implement the proposed approach. This proposed
technique showed large amount of reduction in test suits and the tool presented above run much faster than
ACO technique.

 In [21], the author has proposed a new technique based on genetic algorithm that increases the rate of
fault detection. Basically, this paper is based on time constrained that is it says if time taken for execution
of test cases is known in advance than test cases will be efficiently prioritized.

In [24], the author has proposed a technique based on genetic algorithm that generates test case from
UML state diagram that is algorithm based on heuristic technique is presented. This technique is reducing
the effort of generating test cases.

In [28], the author has proposed a value based algorithm based on SIX factors that are priority of
customer, requirement change, and complexity of implementation, requirement traceability execution time
and fault impact. The result shows that proposed value based algorithm generate better results than existing
one that select random values.

In [27], the author has presented an approach that provides sequence and reduction of test cases by
using intelligent dynamic approach. They have also analysed the effect of genetic algorithm that how fast it
find the faults. Effectiveness of Sequenced test cases was evaluated using CMP cumulative mutation
probability.

In [25], the author has proposed a genetic algorithm that will perform test case prioritization with in a
time constrained environment. This algorithm automates the process of test case prioritization. He also
proposed a hybrid algorithm based on particle swarm optimization and genetic algorithm. Effectiveness
was measured using APFD/APCC, efficiency, saving, reduction. Particle swarm optimization is blended
with a crossover operator of genetic algorithm.

In [4], the author has presented different strategies of test case prioritization for web application. They
used factors for prioritization like test lengths, frequency of appearance of request sequences, coverage of
parameter value and their interaction.

III. TEST CASE PRIORITIZATION TECHNIQUES:

3.1. Greedy Algorithm [16]

The principle on which greedy algorithm works is that the highest weight element is taken first than the
second highest weight element followed by third highest weight element and this continues till the suboptimal
and complete solution is not produced.

Let’s take an example, based on statement coverage in table 1:

Table 1

Statement
Test case 1 2 3 4 5 6 7 8

ABCD XXX XXX XXX X X XX XXX XXX

In the above example, maximum statements are covered by test case A (i.e., six statements) therefore,
test case A will be selected first. Test case B will be selected next as it covers five statements. Now, equal
number of statements are covered by test cases C and D therefore, greedy algorithm will produce the test
case sequence as A, B, C, D or A, B, D, C.

8864 Aditya Sankar Sengupta, A. K. Chakraborty and B. K. Bhattacharyya

3.2. Additional Greedy Algorithm [16]

It has the different strategy from greedy algorithm that it iteratively chooses the highest weight element of
the problem from that part which was not considered by previously chosen elements.

For example, consider table 1 with four test cases and eight statements, test case A is selected as it
covers maximum number of statements. Now we can see that test case A has not covered statement 4 and
5 therefore instead of selecting test case B we will select test case C or D as the cover the uncovered
statements 4 and 5. Therefore, the sequence of test case will be either A, C, D, B or A, D, C, B.

3.3.2. Optimal Algorithms [16]

It is refer as K-optimal greedy approach that usually selects the K elements that covers the largest part of
the problem.

For example, in table 1 we can see that test cases C and D if taken together than they will cover all the
statements (i.e. 1 to 8) which in result covering the maximum number of statements. Therefore, the test
case sequence produced by 2-optimal approach will be C, D, A, B.

3.4. Ant Colony Optimization

It was proposed by Dorrigo in 1992, it is based on the food searching process of ants. Whenever ant’s
searches for food, they leave pheromone on the travelled path and the shortest path will be identified by the
evaporating process of pheromone and by the team work of ants. Initially ant choose their path randomly
even when fork in the road come in between. Evaporation of pheromone is in different evaporation rate
depending upon the length of paths that result in different residual pheromone. Therefore the longer path
will leads to the less residual pheromone because of high evaporation of pheromone [5]. From source to
destination path various edges are chosen by ants to construct an optimal path so the next edge that an ant
choose is given as: [17]

[()] .[()]

[()] .[()]edge
ij

e e

edge e e

� �

� �

� �
� �

� �� � � (1)

Where e is the nodes visited, e’ is the nodes not visited, á and â are the pheromone rates (fixed as 1), is the
amount of pheromone laid and � is favorable edge to move.

3.5. Genetic Algorithm

It was invented by John Holland in 1960. It is based on the guesses and improving them through evaluation
process, “survival of the fittest”. It uses the concept of fitness function to choose the strongest amongst all.
Fitness value of an individual is determined as [13,19]:

Fitness=2*(pos-1)/ (nind-1) (2)

Where, pos refers to position of individual and nind refers to population size

Method involves the following [10]:

Initialization: initial population is generated from many individual solutions. Size of population depends
upon problem nature that contains thousands of possible solution.

Selection: during each generation, a proportion of population is selected to form a new generation.
With the help of fitness function the better solution is selected.

Crossover: it is done by exchanging the segments between pair of chromosome that is by switching
substring of one chromosome with another chromosome.

Modeling of Super-Capacitor Discharge Characteristic using Power Supply 8865

Mutation: it alters an individual in the population by swapping the strings.

The optimal solution is searched on the basis of desired population. Initialization of test cases is done
depending upon the problem. Fitness function will be use to select the suitable population of problem after
that operation like crossover and mutation will be applied and finally solution is checked that weather it is
optimized or not. Flow chart for the same is given below [10, 26]:

Figure 3: Flow Chart Representation of Genetic Algorithm

Table 2
Comparison table

Algorithms Approach Advantage Drawback

Greedy algorithm Incrementally selects the Simple and inexpensive Provides Local optimal
highest weighted element. solution

Additional greedy Iteratively chooses the Very Effective and It requires coverage
algorithm highest weighted element cheaper in information to be updated

from the part that was implementation and for the remaining test case.
not considered earlier. execution.

2-optimal algorithm Selects the elements Fast and Effective in Gives suboptimal results.
together that cover the terms of performance.

largest part of the
problem.

Ant colony optimization With help of pheromone It runs continually even Difficult to analyze
algorithm value ant chooses the after any dynamical theoretically

optimal path from source change in the graph.
to destination

Genetic algorithm Individuals are selected Finds the solution in Not significant for small
from the population reasonable computation programs.
based on the fitness cost

function and then they
combine and mutate to
offer a new generation.

8866 Aditya Sankar Sengupta, A. K. Chakraborty and B. K. Bhattacharyya

3.6. Bee Colony Optimization

It is an optimization technique where food positions are modified with time by artificial bees. The colony
comprises of three types of bees [18, 20]:

Employed bees: they hunt for their food source and after returning performs dance in the area

Escort bees: The employee bees after finding the abandoned food becomes escort and find the new
source of food.

Onlooker’s bees: depending upon the dance of employed bees they decide their food source. [23]

The below table shows the comparison among all the algorithm describes above: [16]

IV. CONCLUSION

One of the key issues in software testing is test data generation that is selection of optimal subset of test
cases from the pool of test suit. Properly generated optimal test cases helps in the reduction of cost, time
and maintenance with maximum assurance about the quality and high rate of fault detection. Large number
of test case prioritization and optimization techniques has been developed with the objective of increasing
the fault detection rate, maximum code and customer requirement coverage and minimum efforts for testing
an application. However the above presented critical review of developed techniques have done a great
contribution for achieving these objectives but still the problem like not obtaining efficient/ effective result
in the case of complex and large size of software is faced sometime. Therefore, techniques like genetic
algorithm, ant colony optimization, bee colony optimization or hybrid of these techniques may be well
suited for test case prioritization and optimization.

REFERENCES

[1] Amit Kumar, Karambir Singh,”‘A Literature Survey on test case prioritization” COMPUSOFT, An international journal
of advanced computer technology, 3 (5), May-2014 (Volume-III, Issue-V) Research Scholar, CSE Department, UIET
Kurukshetra University Asst. Prof., CSE Department, UIET Kurukshetra University.

[2] Arun Sharma,manoj kumar,rajesh kumar,wsea.,”Optimization of test cases using soft computing techniques: a critical
review” transaction on information science and application.

[3] Srivastava, Praveen Ranjan, and Tai-hoon Kim, “Application of genetic algorithm in software testing.” International
Journal of software Engineering and its Applications 3.4 (2009): 87-96.

[4] Sampath, Sreedevi, et al., “Prioritizing user-session-based test cases for web applications testing.” Software Testing,
Verification, and Validation, 2008 1st International Conference on. IEEE, 2008.

[5] Shen, Chien-Li, and Eldon Y. Li, “APPLY ANT COLONY ALGORITHM TO TEST CASE PRIORITIZATION.”

[6] Ms sunita, Ms mamta gulia, “study of regression test selection technique” 2014 international journal of advance research
in computer science and software engineering.

[7] J. Karlsson and K. Ryan, “A Cost-Value Approach for Prioritizing Requirements,” IEEE Software, vol. 14, no. 5, pp. 67-
74, Sep-Oct 1997.

[8] A.Ansari, K. Devadkar and Dr. Prachi Gharpure,”optimization of test suits-test case in regression test,”IEEE 2013.

[9] G. Rothermel. R.H. Untch. C. Chu. and MJ.Harrold. “PrioritizingTest Cases for Regression Testing,” IEEE Trans. Software
Eng., vol. 27, no. 10, pp. 929-948, Oct. 2001.

[10] S.Raju and G.V.Uma,” Factors Oriented Test Case Prioritization Technique in Regression Testing using Genetic Algorithm,”
European Journal of Scientific Research.

[11] Arup acharya R. Kavitha and Dr. N. Suresh Kumar, “Model Based Test Case Prioritization for TestingComponent
Dependency in CBSD Using UML Sequence Diagram,” International Journal ofAdvanced Computer Science and
Applications, Vol. 1, No. 6, pp.108-113, Dec 2010.

[12] “A Review on Various Techniques for Regression Testing and Test Case Prioritization” International Journal of Computer
Applications (0975 – 8887) Volume 116 – No. 16, April 2015.

[13] N Sharma, G.N. Purohit and Sujata,”test case prioritization techniques an empirical study”, IEEE 2014.

Modeling of Super-Capacitor Discharge Characteristic using Power Supply 8867

[14] S. Elbaum. A. Malishevsky. and G.Rothermel , “Test case prioritization: A family of empirical studies”. IEEE Transactions
on Software Engineering, February 2002.

[15] Yu. Yuen Tak. and Man Fai Lau, “Fault-based test suite prioritization for specification-based testing” Information and
Software Technology, vol. 54, no. 2, pp. 179-202, 20 12.

[16] Zheng Li :”search algorithm for regressioin test case prioritization”.

[17] Nandhini Elanthiraiyan\Chamundeswari Arumugam 2 ,” Parallelized ACO Algorithm for Regression Testing Prioritization
in Hadoop Framework” 2014 IEEE International Conference on Advanced Communication Control and Computing
Technologies (lCACCCT).

[18] Bharti suri and isha mangal,”Analyzing Test Case Selection using Proposed Hybrid Technique based on BCO and Genetic
Algorithm and a Comparison with ACO”,Volume 2, Issue 4, April 2012 International Journal of Advanced Research in
Computer Science and Software Engineering.

[19] Sangeeta Sabharwal, Ritu Sibal and Chayanika Sharma,” Applying Genetic Algorithm for Prioritization of Test Case
Scenarios Derived from UML Diagrams”, IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2,
May 2011.

[20] Dr. Arvinder Kaur et al,” A BEE COLONY OPTIMIZATION ALGORITHM FOR CODE COVERAGE TEST SUITE
PRIORITIZATION”, International Journal of Engineering Science and Technology (IJEST).

[21] R. Krishnamoorthi1 and S.A.Sahaaya Arul Mary2,” Regression Test Suite Prioritization using Genetic Algorithms”
International Journal of Hybrid Information TechnologyVol.2, No.3, July, 2009.

[22] Dr.arvinder kaur and shubra goyal,”A GENETIC ALGORITHM FOR REGRESSION TEST CASE PRIORITIZATION
USING CODE COVERAGE”, International Journal on Computer Science and Engineering (IJCSE).

[23] Dr. arvindour kaur and shivangi goyal.”A Bee Colony Optimization Algorithm for Fault Coverage Based Regression Test
Suite Prioritization”, International Journal of Advanced Science and Technology Vol. 29, April, 2011.

[24] Chartchai Doungsa-ard, Keshav Dahal, Alamgir Hossain, and Taratip Suwannasart”An Automatic Test Data Generation
from UML State Diagram using Genetic Algorithm”.

[25] Dr. Arvind kuamr and divya bhatt,” Particle Swarm Optimization with Cross-Over Operator for Prioritization in Regression
Testing:”, International Journal of Computer Applications (0975 – 8887) Volume 27– No.10, August 2011.

[26] Arvinder kaur and shubra goel,” A Genetic Algorithm for Fault based Regression Test Case Prioritization,” International
Journal of Computer Applications (0975 – 8887) Volume 32– No.8, October 2011 30.

[27] Ashiam singh and Kamal pralkash,” Fault Based Analysis to Perform Test Case Prioritization in Regression Testing”,
International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 9, September
2012.

[28] E.Ashraf,” Value based Regression Test Case Prioritization”, Proceedings of the World Congress on Engineering and
Computer Science 2012 Vol I WCECS 2012, October 24-26, 2012, San Francisco, USA.

[29] Anca Deak, Tor Stalhane,”organization of testing activities in Norwegian software companies”, IEEE sixth international
conference on software testing 2013.

[30] Suman, Seema,”a genetic algorithm for regression test sequence optimization”, international journal of advance research
in computer and communication engineering 2012.

