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ABSTRACT

Tensegrity mechanisms are novel type of mechanisms with amazing characteristics which make them an alternative

to conventional mechanism for certain type of applications, such as pick and place application. In this paper, a

spatial tensegrity mechanism is considered and its kinematics is studied in details. Due to the presence of compliant

limbs, kinematic analysis is a challenging task. In this research, static equations are derived by minimizing the

potential energy. In a special case, where gravitational and external forces aren’t considered, an analytical solution

for forward and inverse kinematics is obtained and some numerical examples are reported.
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1. INTRODUCTION

The word “tensegrity” which is a conjunction of the two words tension and integrity was introduced by R.

B. Fuller [1]. With a general definition, tensegrity structures consist of some ties and struts which are in

purely axial loads while ties are in tension and struts are in compression [2]. A detail review of tensegrity

structures is given by Hernandez and Mirats-Tur [3].

In recent years, some researchers use the idea of tensegrity structures and proposed some new type of

robots which are called tensegrity mechanism. This object can be achieved by adding some appropriate

actuators in a system [4]. A number of advantages can be mentioned for tensegrity mechanism such as low

mass, rapid movement and high resistance to weight ratio [5]. As a result, tensegrity mechanism can be

considered as an optimum alternative for conventional robots.

The triangular tensegrity prism [6], which is consist of three struts and nine cables , is considered as the

simplest form of spatial tensegrity systems. Since now some types of tensegrity prism have been proposed

from triangular tensegrity prism.

Tran [7] used T-3 tensegrity prism and proposed a parallel device. Three of the side ties consist of non-

elastic cables in series with elastic members. The length of noncompliant struts can be varied to control the

shape of tensegrity mechanism.

Marshal [8] developed the mechanism by replacing top and bottom ties with platforms and struts with

prismatic actuators. Length of each compliant member can be adjusted. Arsenault and Gosselin [9] introduced

a spatial three degrees of freedom tensegrity mechanism. It contains nine tensile and three compressive

components. Three of tensile components are cables and the remaining six tensile components are springs.

The compressive components are replaced with prismatic actuators that are used to change the shape of the

mechanism. Furthermore, Arsenault and Gosselin [10-11] studied two planar tensegrity mechanisms, and

analyzed them.
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Shekarforoush [12] developed a 6-DOF tensegrity mechanism. It has six limbs connecting the moving

platform to the fix base. Three of them are similar limbs consisting of a cylinder and a piston and the

remaining are active compliant limbs. The mobility of the mechanism is achieved by three prismatic actuators

and by adjusting the lengths of the active compliant components.

In recent years, some underactuated tensegrity mechanism are developed. Arsenault and Gosselin [13]

proposed a new spatial mechanism. They have solved the direct and inverse problem of the mechanism and

in a special case an analytical solution is proposed. Also, a realistic tensegrity based robot composed of 3-

bar is presented by Mirats-Tur [14]. Furthermore, Ji etal [15] had studied the stiffness and dynamics of a

planar class-2 tensegrity mechanism.

In this research, a particular mechanism from the family of triangular tensegrity prism is investigated.

The three lateral ties in the conventional tensegrity prism T-3 are replaced by springs and the struts are

replaced by hydraulic actuators. The length of three actuators can be modified to position the center of the

platform in the cartesian space.

The main implication emerging from this research is to study the kinematic of an underactuated tensegrity

mechanism. In contrast with conventional mechanisms, for the purpose of kinematic analysis, static equation

must be incorporated which make the static analysis a complicated task. In this paper the kinematic of the

considered mechanism is solved for the first time and in a special case, analytical solution is presented. An

appropriate law for actuator forces is obtained in such a way that the mechanism follows a desired trajectory

in its workspace.

2. GEOMETRY OF THE MECHANISM

A diagram of the mechanism discussed in this paper is shown in Fig. 1. The upper triangle is connected to

the fixed base by six limbs. Three of the limbs, connecting nod pairs b
i
 p

i+1
 are made up of a cylinder and a

piston that are connected together by a prismatic joint (henceforth, i = 1, 2, 3 with i + 1 = 1 if i = 3). The

movement of the moving platform is achieved by actuating these prismatic joints. The length of each

hydraulic actuator is showed with I
pi
.

The remanding limbs, joining node pairs b
i 
p

i 
are similar springs whose lengths are l

si
. Without lose of

generality, it is assumed that springs have zero free length [16]. Also, as shown in the next sections, the

strings are subjected to tension and the shape of triangle p
1
 p

2 
p

3 
does not alter. Thus, it is feasible to replace

it with a triangular plate.

Figure 1: Schematic of the spatial mechanism
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The degree of freedom of a spatial mechanism can be predicted using Kutzbachs’ equation. In this

equation, the value of J
i
 is the number of DOF joints and L is number of links.

1 2 3 4 56 1 5 4 3 2 M ( L ) J J J J J       (1)

The mechanism has 8 rigid bodies L = 8, three prismatic joint with 1 degree of freedom J  = 1, three

universal joints with 2 degrees of freedom and three spherical joints with 3 degrees of freedom. Substituting

these values in Eq. 3 it can be shown that the mechanism has six degrees of freedom. Nevertheless, three

hydraulic actuators set the geometric center of triangle p
1
 p

2 
p

3 
in a given position, in the workspace of the

mechanism. For this reason, it is noted that the mechanism has three degrees of freedom. In this paper, the

input vector, l = [l
p1

, l
p2

, l
p3

] actuate coordinates of the centroid of upper triangle r = [x, y, z]T, which is

controllable or output vector. Also, the orientation of moving platform can be expressed by three Euler

angles , and , which are considered as uncontrollable variables.

For the analysis of the mechanism, a reference frame O(X
b
, Y

b
, Z

b
) with origin O is attached at the

geometric center of b
1
b

2
b

3
 where X

b
-axis directed toward node b

1 
and Z

b
-axis perpendicular to plane defined

by points b
1
, b

2
 and b

3
, see Fig, 3. Moreover, a moving coordinate system p(X

t
, Y

t
, Z

t
) is located at the

centroid of p
1
 p

2 
p

3
. As shown in Fig. 3, X

t
 and Y

t 
axes lie in the plane containing the nodes p

i
, also Y

t
-axis

pointing to the center point of p
1 
p

2
.

Let  cos( ), sin( ),0
T

bi i iD D r  be the position vector of nods b
i
 in the reference coordinate system.

Also, the vector  cos( 6), sin( 6),0
T

pi i id d     U  is the position of nods p
i 
with respect to the geometric

center of moving plate in the mobile reference frame. As shown in Fig. 2, the base and moving plate are

equilateral triangles with Ob
i
 = D and pp

i
 = d, respectively. Also, in these vectors 

i
, is considered as

1 2 30, 2 3, 4 3       (2)

In order to determine the orientation of hydraulic actuators, the unit vectors, s
pi
 are defined. This vector

can be obtained as

1( )pi pi bi pil s r r (3)

Similarly, for three compliant limbs, s
pi
 is a unit vector pointing from b

i
 to p

i
.

Figure 2: Tensegrity mechanism: (a) base and (b) moving plate.
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( )si pi bi sil s r r (4)

Also, the position vector of nodes p
i
 in the reference frame can be written as

pi pi r r AU (5)

In the above relation, for a 3-2-1 sequence of Euler angles, the transformation matrix from moving

frame to the reference frame is

c c s c c s s s s c s c

s c c c s s s c s s s c

s c s c c

           

           

    

   
 

    
  

A
(6)

3. STATIC ANALYSIS

3.1. Static analysis – general case

In this section, a relation between inputs and outputs variables is obtained. For this purpose, in addition to

kinematic relations, the static equations must be incorporated because of the presence of spring in the

structure of the mechanism.

In what follow, static equilibrium conditions by considering external forces are obtained by minimizing

potential energy of the mechanism. For obtaining static equilibrium conditions, the length of spring limbs,

are considered as the independent generalized coordinates. Using these variables, while gravitational forces

are neglected, the potential energy of the mechanism is obtained as

3
2

1

1

2
si

i

V kl


  (7)

Taking partial derivative of V, the equilibrium conditions for the tensegrity mechanism are obtained

si i

si

V
kl Q

l


 


(8)

In the above equation, the generalized forces due to the external forces, Q
i
 can be obtained as

3

1

1

3 3

pi si
i

i si

Q
l


   




r s
F F (9)

In the above equation, the external force,  1 2 3, ,
T

F F FF  is applied at the geometric center of moving

plate. In sequence, by evaluating the value of s
si
 and l

si
 in term of controllable and non-controllable variables,

the static equations are rewritten

2 2 2 2 2 ( )(c s s s c )x y z d D xD d x D            

3 c c ( ) (s s s c c 3 s s )d x D yd            

2

1

3
(c s 3 s ) s c c c

2
zd d Q          (10)

2 2 2 2 2 (2 )(s c c s s )x y z d D d x D           

23 2 (s s s c c ) 2 c sxD yd yd zd Q            (11)
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2 2 2 2 2 ( )(c s s 3 c c )
2

D
x y z d D xD d x            

3
s s ( ) (s s s c c 3 s c )

2 2

D
d x yd yD             

2

3

3
(c s 3 s ) s c s (3s c c c 3 s s s )

2 4 2

zd Dd
d Q                   (12)

where

1 1

1 3
[ c ( c s s )]

3 2 2 2

D d d
Q F x c s c            

2

1 3 3
[ ( s s )]

3 2 2 2

D d d
F y s c c c s          

3

1 3
[ s ]

3 2 2

d d
F z s c    (13)

2 1

1 3
[ c ( c s s )]

3 2 2

d d
Q F x D c s c            

2

1 3
[ ( s s )]

3 2 2

d d
F y s c c c s         

3

1 3
[ s ]

3 2 2

d d
F z s c    (14)

3 1

1
[ ( )]

3 2

D
Q F x d s c c s s         

2

1 3
[ ( )]

3 2

D
F y d c c s s s       

3

1
[ s ]

3
F z dc  (15)

The above equations contain output and uncontrollable variables. For the inverse kinematic analysis,

the output variables are considered known and the input variables and the length of springs are to be

determined. The conditions expressed by Equations (10)-(12) are a system of three nonlinear equations in

three unknowns. The uncontrollable variables can be obtained by numerical methods. In the next step, the

input variables can be calculated as

1 1( ) ( ) 1,  2,  3
ip pi bi pi bil i     r r r r (16)

By using the above equation, the lengths of hydraulic actuators can be calculated as follow

2 2 2 2 2 2 (s c 3 c c )x y z d D xD xd           

(s s s c c 3 s ) (c s 3 s )yd c zd             

2

1( c 3 c c c s s ) pDd s l         (17)
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2 2 2 2 2x y z d D xD     

3
s s ( c s ) s s

2 2 2

d d
x y z d z c        

2

2

3
( ) ( c s )

2 2
p

d
dc xs xc c y x l          (18)

2 2 2 2 2 ( s s s c 3 c c )x y z d D xd c            

3 (s s s c c 3 s )xD Dy yd c          

3 1
(c s 3 s ) ( s s s s s

2 2
zd Dd c           

2

3

3 3 3 1
c c c )

2 2 2 2
pc s c s c l            (19)

For the forward kinematic analysis, the input variables are given and the output variable and the lengths

of springs are to be determined. The forward kinematic analysis of the introduced mechanism is more

challenging in comparison with conventional mechanism. If the lengths of hydraulic actuators are given,

the configuration of the mechanism cannot be specified. Therefore, geometric equations and static equations

must be considered simultaneously. In this case, the static conditions expressed by Equations (10)-(12) are

three equations in six unknowns.

The static equilibrium equations and the three geometric equations, Equations (17)-(19), yield a system

of nonlinear equations which can be solved for the forward kinematic analysis.

3.2. Static analysis–special case

The obtained equilibrium equations, in the previous section, are highly nonlinear and must be solved by

numerical methods. In this section, in a special case that gravitational and external forces are neglected, an

analytical solution for the static analysis of the mechanism is presented.

By considering translatory motion for moving platform, the equilibrium equations for nods p
i
 are written.

Figure (3) show the forces acting on node p
i
. The summation of the forces in the ith joint is derived as follow

1 1 1 1( ) 1,  2,  3i pi si si i i i if k l T T i       s s e e 0 (20)

In the above equation, the force in the ith hydraulic actuator is f
i
. The force due to springs is ( )si sik l s .

The sign for elastic forces are negative since, the force produced by spring is in the opposite direction of the

unit vector s
si
. Also, T

i
 is the tension force in cable jointing node pairs p

i
 p

i+1
 and e

i
 is the unit vector pointing

from p
i
 to p

i+1
. This unit vector can be obtained as

1 3( ) 2 s
ii p pi d 

 e r r (21)

The above equation can be expanded in the X, Y and Z direction.

1 1 16 6( c ) ( c c )
i i i i

i

i

p

f
x dc D K x d D

l
             

2 11 6 1 6 6 3c ( ) c c / 2s 0
i i ii i i iT T T T           

      (22)
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1 1 16 6( s s ) ( s s )
i i i i

i

i

p

f
y d D K y d D

l
             

2 11 6 1 6 6 3s ( ) s s / 2s 0
i i ii i i iT T T T           

      (23)

i pif kl (24)

The nonhomogeneous system of Equations, (22)-(24) can be written in the matrix form as

Ax b (25)

where

2d cos 6 0 d cos 6

0 0 d(1 sin 6)

2d cos 6 d cos 6 0

0 d(1 sin 6) 0

0 d cos 6 d cos 6

0 d(1 sin 6) d(1 sin 6)

    
 

  
 
  

  
   

  
 

     

A

(26)

and

1 cos 3

sin 3

1 cos 3
2KDd sin

sin 33

0

2sin 3

   
 
 
 
  

  
  
 
 

  

b

(27)

Figure 3: Forces at nodes
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 1 2 3

T
T T Tx (28)

The rank of matrix and the rank of augmented matrix (A, b) are identical and are three. So, the equations

are consistent and the solution is unique. By performing finite sequences of elementary row operations, the

above system of equations can be rewritten as

1

2

3

0 0 1 sin sin
6 3

2cos cos 0 2 sin 1 cos
6 6 3 3

0 1 sin 0 sin
6 3

T

T KD

T

 

   

 

   
     

    
     
    
     

     
      

(29)

The above relation shows that in a special case that gravitational and external forces are not considered;

the forces in hydraulic actuators can be calculated, for any set of output variables to pose the mechanism in

equilibrium. In this case, an expression for the relations between input and output variables can be obtained as

2 2 2 2 2 2 3
ipl x y z d D dD      

1 16 62 ( c s ) 2 ( c s )
i i i i

d x y D x y          (30)

4. SIMULATION AND RESULTS

In this section, some numerical examples are presented. The size of the upper and bottom triangle are

d = 0.2 m and D = 0.5 m, respectively. The spring constant which is identical for all limbs is determined by

k = 100 N/m. By using the static equations obtained in the previous section, movement of the mechanism in

a quasi-static regime is studied. In the first simulation, the assumed trajectory for the center of mass of the

mechanism is considered as

 0.1sin(2 ) 0.2cos(2 ),0.1cos(2 ) 0.2sin(2 ),0.4
T

t t t t     r (31)

The actuator forces are calculated from Eqs. (24) and (30) and they are plotted in Figure (4). In the next

example, the trajectory is selected as

 0,0.1cos(2 ),0.7
T

tr (32)

Similarly, the actuators forces are plotted in Figure (5). It is worth mentioning that one of the most

challenging problems in designing tensegrity mechanisms is the assumption of tension in cables. In the

proposed mechanism, the upper cables are in tension in the workspace of the mechanism. Also, tension

forces are depends on the geometry of the mechanism.

5. CONCLUSIONS

Tensegrity concept has opened the doors to new technology for designing and construction novel mechanism.

Tensegrity mechanisms are deformable and have a very high resistance to weight coefficient. Also, by

using cables and springs in the structure of these robots the inertia of moving parts are reduced.

In parallel tensegrity mechanism, each actuator can affect all degrees of freedom. Thus, shape change

and movement of the mechanism can be achieved with small number of actuators. In this regard, an

underactuated tensegrity mechanism with three hydraulic actuators is studied. Kinematic and static analysis

is done to find how to change the lengths of actuators to generate any arbitrary movement in the workspace

of the mechanism.
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For given length of actuators, external forces cause change in the structure of tensegrity mechanism.

Thus, kinematic and static equations must be considered simultaneously. In this research, static equilibrium

conditions are obtained by minimizing the potential energy in the presence of external forces and forward

and inverse kinematic is studied. Then, it was illustrated that for translatory motion of moving plate the

static equations can be satisfied while gravitational and external forces are not considered. In this special

case, a simple relation between input and output variables is obtained.

REFERENCES

[1] R. Fuller, Synergetics, The Geometry of Thinking, MacMillan Publishing Co., New York, 1975.

[2] J. Duffy, J. Rooney, B. Knight and C. Crane III C, “A review of a family of self-deploying tensegrity structures with

elastic ties,”Shock and Vibration Digest, vol. 32(2), pp. 100–106, 2000.

[3] S. Hernàndez and J.M. Mirats-Tur, “Tensegrity frameworks: Static analysis review,”Journal of Mechanism and Machine

Theory, vol. 43 (7), pp. 859-881, 2008.

Figure 4: Forces in the actuators (Example 1)

Figure 5: Forces in the actuators (Example 2)



404 Rasool Jahromy

[4] M. Shibata, F. Saijyo and S. Hirai S , “Crawling by Body Deformation of Tensegrity Structure Robots,”Robotics and

Automation, ICRA ’09. IEEE International Conference , 2009.

[5] R. Motro, “Tensegrity systems: the state of the art,”International Journal of Space Structures,vol. 7 (2), pp. 75–83, 1992.

[6] B. Knight, Y. Zhang J. Duffy and C. Crane, “On the Line Geometry of a Class of Tensegrity Structures,”Sir Robert Stawell

Ball 2000 Symposium, University of Cambridge, UK, 2000.

[7] T. Tran, “Reverse displacement analysis for tensegrity structures,”MS Thesis, Center for Intelligent Machine and Robotics,

Department of Mechanical and Aerospace Engineering, University of Florida , 2002.

[8] M.Q. Marshall, “Analysis of tensegrity-based parallel platform devices,”MS Thesis, Center for Intelligent Machine and

Robotics, Department of Mechanical and Aerospace Engineering, University of Florida , 2003.

[9] M. Arsenault and C. Gosselin,”Kinematic and static analysis of 3-PUPS spatial tensegrity mechanism,” Mechanism and

Machine Theory, vol. 44, pp. 162-179, 2008.

[10] M. Arsenault and C. Gosselin, “Development and analysis of a planar 1-DOF tensegrity mechanism,”Proceedings of the

2004 Canadian Society of Mechanical Engineering (CSME) Forum , 2004.

[11] M. Arsenault and C. Gosselin,”Kinematic, static and dynamic analysis of a planar 2-DoF tensegrity mechanism,”Mechanism

and Machine Theory, vol. 41 (9), pp. 1072-1089, 2006.

[12] S. M. M. Shekarforoush, M. Eghtesad and M. Farid, “Kinematic and static analyses of statically balanced spatial tensegrity

mechanism with active compliant components,”J Intell Robot Syst, vol. 71(3-4), pp. 287-302, 2013.

[13] M. Arsenault and C. Gosselin, “Kinematic, Static, and dynamic analysis of a spatial three-Degree-of-Freedom tensegrity

mechanism,” ASME. J. Mech. Des, vol. 128(5), pp. 1061-1069, 2005.

[14] J.M Mirats-Tur and J. Camps, “A Three-DOF actuated robot,”IEEE robotics & automation magazine, vol. 18(3), pp.

96-103, 2011.

[15] Z. Ji, T. Li and M. Lin, “Stiffnessanddynamicanalysis ofaplanarclass-2 tensegrity mechanism,” Transactions of the Canadian

Society for Mechanical Engineering, vol. 39(1), pp. 37-52, 2015.

[16] D. Streit and B. Gilmore, “Perfect spring equilibrators for rotatable bodies, Journal of Mechanisms,” Transmissions, and

Automation in Design,Vol. 111 (4), pp. 451–458, 1989.


