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1. INTRODUCTION

In recent years, the oscillation or asymptotic behavior of second-order difference equations was the subject
of investigation by many authors (see for example 1, 2, 4-11).

In this article, we are concerned with a class of second-order nonlinear delay difference equations of the form

( ( )( ( ( ) ( ) ( ))) ) ( ) ( )p k u k c k u k q k u k� �� �� � � � � �� � � � = 0, [0, ), (0, )k� � � �� (1)

where ��  denotes the generalized forward difference operator ( ) = ( ) ( )u k u k u k� � �� �  for any real valued
function  u(k), � > 0 and � > 0 are quotients of odd positive integers, �,��  are fixed nonnegative integer, 0 ( ) < 1c k� ,
p(k), and q(k) are any two real valued functions such that ( ) > 0, ( ) 0,p k q k �  and q(k)  has a positive real valued
function, and for some  k0 > 0,
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When ( ) = 0,c k  equation (1) reduces to the following equation

( ( )( ( )) ) ( ) ( )p k u k q k u k� � �� � � �� � � = 0, [ , ).k �� �� (4)

We say that equation (1) or equation (4) is strictly superlinear if  � > 1 ;  strictly sublinear if 0 < � < 1 ; and
linear if  � = 1.

In the superlinear case, when = > 1,� �  and =1�  the oscillation of the solution of equation (1) was discussed
in11 under the condition (2). But when > 1� � � , the oscillation is not known.

In the sublinear case, when 0 < <1, > 1,� �  and =1�  some authors studied the equation (4) under the
condition (2) or (3), see the article9. But it is necessary to point out that their proof under the condition (3) is wrong,
so the corresponding theorem does not hold.
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The objectives of this article are:

1. In the superlinear case, when > 1,� � �  we establish the oscillation criteria for equation (1) under the
condition (2), which improve and include several oscillation criteria in11.

2. In the sublinear case, when 0 < <1, > 1,� � we correct and generalized the Theorem 2.3 and its proof in9,
precisely, we obtain a new oscillation or asymptotic criteria for equation (4) under the condition (3).

2. MAIN RESULTS

First, we consider the case, where (2) holds and in the superlinear case where >1.� � �
Theorem 2.1.  Assume that (2) holds. Furthermore, assume that there exists a positive real valued functions

( ), (0)k k� ��  such that for some positive number M,
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� �
� = �� ���

where Q( ) = ( )(1 ( ))k q k c k ��� � � . Then, every solution of equation (1) oscillates.

Proof. Suppose that, on the contrary, u(k)  is an eventually nonoscillatory solution of equation (1). Without

loss of generality, we may assume that u(k) is an eventually positive solution of equation (1) such that ( ) > 0u k �� �
for all k > k0.

Set w(k) = ( ) ( ) ( ).u k c k u k� ��� (6)

By assumption, we have w(k) > 0 for k  � k0 and from (1) it follows that

( ( ) ( ( )) )p k w k �� �� � = ( ) ( ) 0,q k u k� �� � �� (7)

for k � k0, and so  ( )( ( ))p k w k ���  is an eventually nonincreasing real valued function. We show that

( )( ( ))p k w k ���  is eventually positive. Indeed ( )( ( ))p k w k ��� is either eventually positive or negative. We first

show that ( )( ( )) > 0p k w k ���   for k � k0. In fact, if there exists a real k1 � k0  such that 1 1( )( ( ( ))) = < 0p k w k c��� ,

then 1 1( ) ( ( )) ( ) ( ( )) =p k w k p k w k c� �� � �� �   for  k � k1, that is, ( ( )) ,
( )

c
w k

p k
�� ��  and hence
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 which contradicts the fact that w(k)  >  0 for k � k0. Hence

( )( ( ))p k w k ���  is eventually positive. Therefore, we have

( ) > 0, ( )w k w k�� � 00, ( ( )( ( )) ) 0, .p k w k k k�� � � �� � (8)

Then, from (8) and (6) we have ( ) (1 ( )) ( )u k c k w k� �  and this implies that for 1 0= ,k k k �� � �
( ) (1 ( )) ( ),u k c k w k� � �� � � � �� � �  and by (7),

( ( )( ( )) ( ) ( )p k w k Q k w k� � �� � � �� � � � 10, .k k� (9)

Define the sequence z(k)  by z(k) =
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Now, by the inequality (see3)
u� – v� � (u – v)�� ����

for all u � v and � � 1. we have

( )w k� �� �� � = ( ( 1) ) ( ) ( ( ( 1) ) ( ))w k w k w k w k� � �� � � �� � � � � � � � �� � � �

= ( ( )) .w k ��� �� � (13)

Then ( )z k�� � 2

( ) ( ) ( )( ( )) ( ( ))
( ) ( ) ( ) .

( ) ( ( ( 1) ))

k k p k w k w k
k Q k z k

k w k

� �

�

� � �
�

� �
� � � � � �

� � � �
� � �
� � �� � �

�
� �

(14)

By (8), we have
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Now, from the fact that ( )( ( ))p k w k ���  is a positive and nonincreasing real valued function, there exists a

2 1>k k  sufficiently large such that ( )( ( )) 1/ ,p k w k M�� ��  holds for some positive constant M  and 2>k k . AndAnd
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This implies that
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Summing (19) from k2 to k, we obtain
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for all large k, and this is contrary to (5). The proof is completed.
In the following theorem, we provide another sufficient condition for oscillation of equation (1). This result is

discrete analogy of Philos-type condition for oscillation of second-order differential equations.

Theorem 2.2 Assume that (2) holds. Let ( ), (0)k k� ��  be a positive real valued function. Further, we

assume that there exists a double function {H( , ) : 0}m k m k� �  such that ( ) {H( , ) : 0}i m k m k� �  for 0,m�
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then every solution of equation (1) oscillates.
Proof.  We proceed as in Theorem 2.1. Assume that equation (1) has a nonoscillatory solution, say

( ) > 0u k �� �  for all 0.k k�  From the proof of Theorem 2.1, we obtain (18) for all 2.k k�  From (18) we have
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Therefore, we have
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The remainder procedure of the proof is fairly routine and is similar to that of the Theorem 2.2 in9 when = 1� ,
so we omit it.

Remark 2.3. By choosing the sequence H(m, k) in appropriate manners, we can derive several oscillation
criteria for equation (1). For example, set

H( , )m k = ( )( ) , (1), 0,m k m k� �� � � �� �

we have the following result.
Theorem 2.4.  Assume that (2) holds. Furthermore, assume that there exists a positive real valued function
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Then, every solution of equation (1) oscillates.

Remark 2.5. When = 1� �� , equation (1) reduces to the difference equation
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which is the same as Theorem 2.1 in11 when = 1� . So our Theorem 2.4 extend and include several oscillation
criteria in[11] when = 1� .

Next, we consider the case where (3) holds and the sublinear case where 0 < < 1, > 1.� �

Theorem 2.6. Assume that (3) holds and ( ) 0.p k� ��  Furthermore, assume that there exists a positive real
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for some  k0 > 0,  then every solution of equation (4) oscillates or ( ) = 0.lim
k

u k
��

Proof.  Suppose that, on the contrary, u(k)  is an eventually positive solution of (4) such that ( ) > 0u k �� �

for all 0.k k�  We shall consider only this case because the substitution ( ) = ( ),v k u k�  transforms equation (4)
into an equation of the same form. From equation (4) we have

( ( )( ( )) )p k u k �� �� � = 0( ) ( ) 0, ,q k u k k k� �� � � ��

and so ( )( ( ))p k u k ���  is an eventually nonincreasing function, and then there exist two possible cases of

( )( ( )) ,p k u k ���  that is ( )( ( ))p k u k ���  is eventually nonnegative or eventually negative, from this there exist two

possible cases of ( ).u k��

In the case, where ( )u k��  is eventually nonnegative, we may follow the proof of Theorem 2.1 in9 and obtain
a contradiction.

If ( )u k��  is eventually negative, then ( ) = 0.lim
k

u k b
��

�  We assert that b = 0. If  not then

( ) > 0u k b� ��� ��  as ,k��  and hence there exists 1 0k k�  such that ( ) .u k b� ��� ��  Therefore, we have
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Summing the above inequality from k1  to k – 1, we obtain
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Condition (24)  implies that u(k)  is eventually negative, which is a contradiction. The proof is completed.
Remark 2.7. From Theorem 2.6, we obtain
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r s k
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by parts the last term in the right-hand side of (28). Hence, when = 1�  Theorem 2.6 actually corrects the
correspondence Theorem 2.3 and its proof in9, and it is essentially new.
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