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Abstract: Consider a connected graph G  with finite number of vertices and edges 
whose vertices are assigned with whole numbers represents the number of pebbles 
on each vertex. Pebbling step and pebbling number of a connected graph  G  are 
playing a vital role. In this paper, we discuss and give an overview of mathematical 
modeling and simulation of graph pebbling on undirected graphs as well as directed 
graphs with available literature of what arrangement of directed graphs allow 
for pebbling to be meaningful. We also discuss the pebbling numbers of various 
orientations of directed graphs such as directed wheel graphs, directed complete 
graphs , directed demonic graphs etc. In this continuation, we discuss the importance 
of demonic directed graphs with  that the sharp upper bound and lower bound of the 
pebbling numbers of the directed graphs is the same as that of the undirected graphs. 
These are the impetus of interdisciplinary exploration in context of mathematical 
modeling and simulation for certification of graph isomorphism and decyclization 
of graphs. We also propose the condition for two strongly connected digraphs are 
having equal pebbling numbers [3, 4].
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1. INTRODUCTION

A graph G = (V, E) is an well-ordered pair of sets, where V  is non-empty set of 

vertices and  E  is a set of pairs of elements of V . The cardinality of vertex set of a 

graph is the order [8]. The graph is said to be not directed graph if the elements of E  
are unordered pairs and not an undirected graph if they are ordered pairs. Consider 

a graphG , Assign whole numbers to the vertices of G . If the vertex v  is related 

with the integer label m , we say that m  pebbles are placed on v . If the sum of all 

the integers’ labels on G is n, we say n pebbles are distributed onG .

1.1.  Pebbling Step   
A pebbling step is defined as an activity of subtracting two pebbles from the label 
of a vertex and adding one pebble to the label of an adjacent vertex. 
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1.2 Pebbling Number (𝑓𝑓(𝐺𝐺)) 
The pebbling number of a graph G  is the maximum value of the pebbling numbers 
of all the vertices inG . For an example, (𝑓𝑓(𝐺𝐺)) = 4  in figure 1.1.  

4

( a ) ( b )

0 3 1 2 or
more

(c)  

Figure 1.1: A graph with distribution of four pebbles 

1.3 Strong Graph   

A directed graph is strong or strongly connected if every two vertices are mutually 
reachable   [3, 6, 8]. Pebbling on a directed graph is possible only if every vertex 
can be reached from any other vertex. Therefore, a directed graph must be strong 
in order to do any pebbling. A vertex that is only adjacent to other vertices is a 
Source. A vertex that is only adjacent from other vertices is Sink.  

In this paper, we propose the condition for two strongly connected digraphs 
are having equal pebbling numbers. These are the motivation of multiple 
explorations in view of mathematical modeling and simulation for invariance of 
graph isomorphism and decyclization of graphs. 

2. PEBBLING ON GRAPHS 
2.1 Pebbling on Undirected Graphs 

There is a expanding literature on pebbling on undirected graphs [9, 10]. Let G  
be any undirected graph and vu, , and w  be vertices of G . A demonic graph or 
class zero is a graph, whose pebbling number is equal to its number of vertices. If  
u  is a distance d   from v , and )12( d pebbles are placed on u , and these are 
all the pebbles on the graph, then no pebble can be moved to v .  We know that  

)(max{)( GVGf   , }2d , where  )(GV  is the  number of the vertices of G , 

and d  is the diameter of the graph G  and  )(Gf  ≤ ( )2V G -1. We can say that there 
is a range of values that the pebbling number of not directed graph  G , with order 
p , takes on:  12)(  pGfp .  

2.2 Pebbling on Directed Graphs 
Consider a finite connected graph G  whose vertices contains whole 
numbers represents the number of pebbles on each vertex. Consider an 
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digraph DG , with pebbles placed on few of its vertices. Suppose that, for 
any arc ),( vu  ofG , we are allowed to change the distribution of pebbles by 
removing two pebbles from u  and adding one pebble on v . Then for a 
vertex u  of  DG  , if n  exists such that, however n  pebbles are placed on   

DG   , one pebble can always be sent to u  , we let ),( DGuf  be the smallest  

such n . For not an undirected graph, 12)(  p
DGfp , where p  is the 

number of vertices of DG  [9,12,18].  

2.2.1 Cycle Graphs, nC  

The only two strongly connected orientations on a cycle graph nC  are the 
following in figure 1.2: 

v1 v2 v3 v4 vn v1 v2 v3 v4 vn

Cn Cn
1

(a) (b)  

Figure 1.2: Cycle Graphs with different orientations 

Theorem 1 The pebbling number of undirected cycles, k
kCf 2)( 2  and

1
3

22)(
1

12 
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










k

kCf .   [11] 

Theorem 2   Let nC  be a cycle graph of order n , with a strong orientation.  

                       Then  12)(  n
nCf . [11] 

2.2.2 Alternating Wheel Graphs, nW  

The figure 1.3 is an example of alternating wheel graph. 
v1 v2

v3

v4v5

v6
c

v1 v2

v3

v4v5

v6

c

W = G5 D1 W = G5 D2
1

(a) (b)  
Figure 1.3: Alternating wheel graphs with different orientations 
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In figure 1.3(a) In figure 1.3(b) 

1),( 21 vvd  1),( 16 vvd  

3),( 31 vvd  3),( 26 vvd  

4),( 41 vvd  4),( 36 vvd  

3),( 51 vvd  3),( 46 vvd  

1),( 61 vvd  1),( 56 vvd  

Table 1.1 

 It is clear from the table 1.1; the diameter of an alternating wheel is four.   

Theorem 3 If nW  is an alternating wheel graph. Then for 6n , nWf n 10)(
.  
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Figure 1.4: Demonstration of Pebbles on Alternating Wheel Graph 

2.2.3 Alternating Complete Graphs, 12 nK  

An alternating complete graph, 12 nK , is a directed graph with an odd number of 
vertices, },...,,{ 210 nvvv where iv is adjacent to jv  if and only if  

12mod)(  nji is odd. 
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Theorem 4  For an alternating complete graphs, for 2n , 
12)( 12  nKf n .  

v2 n v1

v0

v2v2n -1  

v2 n v1

v0

v2v2n -1   

(a) (b) 
Figure 1.5: Alternating complete graphs with different orientations 

3. EQUALITY OF PEBBLING NUMBERS ON DIRECTED GRAPHS 
3.1 Main Theorem  

Statement: The pebbling numbers of two strong directed graphs 
1DG  and 

2DG  
with the same number of vertices and edges with different directions are equal if 
the following conditions are satisfied 

1. Their corresponding adjacency matrices are symmetrical to each other. 

2. Their corresponding  matrices 1K  and 2K   defined by 

3. nXXXK  ...21
1 , nYYYK  ...21

2 , have no zero entry. 
X  and Y  are the adjacency matrices corresponding to 

1DG  and 
2DG    

respectively. 

Proof: We know that if X  is the adjacency matrix of a digraph G , then TX  
is the transpose matrix  which is the adjacency  matrix of a digraph RG  acquired 
by reversing the direction of every edge in G . By using this property, the first 
condition is obvious. 
For proving the second condition, we will use Principal of Mathematical 
Induction. 

 Basis of Induction: The condition is trivially true for 1,n  2, 3,.. 



124	 Jitendra Binwal and Aakanksha Baber

 
 

 Induction Hypothesis: We assume that the second condition holds for 
1 nr . 

 Induction Step: We will prove the second condition for  nr  . 
For proving induction step, we use method of contradiction. 
If we assume that  

nXXXK  ...21
1 , has at least one zero entry then digraph will 

be disconnected.  
But digraph is connected, and it will give contradiction that digraph is 
connected. 

Then ),( ji  entry in 1K  =  




1

1

n

r

rX  nX            (3.1.1) 

The sum in equation (3.1.1) contains all non-zero entries. 

3.2 Illustration  By Examples: 
Cycle Graphs with order 5 and different orientations (In Figure 1.2) 
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It is clear that, 16)()( 1
55  CfCf . 

 And, using MATLAB, we have 

54321 vvvvv  
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4.  CONCLUDING REMARKS 

In this paper, we find , if 
1DG  and 

2DG  are strong directed graphs with the same 

number of vertices and edges with different orientations,  then  )()(
21 DD GfGf   

by considering the pebbling numbers of various orientations of directed wheel 
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graphs, directed complete graphs and cycle graphs. In this direction, we have 
proposed that, “The pebbling numbers of two strongly connected directed graphs 

1DG  and 
2DG  with the same set of vertices and edges with different orientations 

are equal if  their corresponding adjacency matrices are symmetrical to each other 
and their corresponding  matrices 1K  and 2K  defined by 

nXXXK  ...21
1 ,  nYYYK  ...21

2 ,  have no zero entry. X  and 
Y  are the adjacency matrices corresponding to 

1DG  and 
2DG    respectively.” The 

motivation of equality of pebbling number on directed graph arise from 
transporting devices from starting positions to final positions that allow them to 
record the entire graph. One should not neglect the chance of graph pebbling will 
have powerful impact.   For example, we can think of the loss of a pebble during a 
pebbling steps ads as a loss of information, fuel or electrical charge. 
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