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Abstract: In this paper, a novel technique for the optimization of error energy in the training of neural networks has

been proposed. This new technique is a variation of adaptive gradient based optimization; which is applicable in non-

linear situations. Neural Networks along with this new adaptive optimization technique have been employed to

implement the predictive models for insurance data. The goal of the study is to minimize the error gradient during

training of neural network in a faster way and convergence of the new algorithm is compared with existing first and

second order algorithms.
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1. INTRODUCTION

Researchers have shown renewed interest in artificial neural networks (ANNs) over the last few decades, mainly

because of invent and developments of novel training methods, which are capable of dealing with large-scale

learning problems. Also, ANNs are flexible and non-parametric modeling tools, which can model any complex

function mapping with higher accuracy [1, 2].

Neural networks can be trained to store, recognize, estimate and adapt to new patterns without having any

initial hypothesis of the function it receives and works well in real life situations usually involving complex non-

linear relationships present among the data. They are capable of approximating any non-linear function without

any prior information about the relationships present among data. The powerful characteristics of learning and

adapting to real life situations have made ANNs superior to the traditional techniques used in the past. They have

been widely applied in solving complex problems in the fields of engineering, biological modeling, prediction

modeling, decision modeling, control systems, manufacturing, business problems, health and medicine, ocean

and space exploration etc. [3-5].
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Much research has been carried out to develop a variety of training methods; which are used to train

different types of neural networks. From the optimization literature, we know that there are many first and

second order iterative methods that can minimize the error function during training of the network, like steepest

descent [6], Newton’s method, Levenberg Marquardt method, conjugate gradient, scaled conjugate gradient etc.

[7, 8] These techniques vary according to how they adjust their estimates of the parameter value to minimize the

error function. But the main idea remains the same is to achieve the faster rate of convergence while trying to

find the point of minimum error [9]. Techniques mentioned above follow a numerical optimization procedure to

compute the best values for step size in iterations to reach towards the point of minimum error. Besides the

above-mentioned methods, heuristics based adaptive learning rate adaptation and momentum methods are also

well-known training techniques for neural networks [4, 10]. The fundamental reasons that justify the importance

of adaptive learning rate methods are that the value of the learning rate should be sufficiently large to allow a fast

learning process, but should be small enough to guarantee convergence towards minimum gradient. The other

reason is that the trial and error search for the best initial values for the parameters can be avoided because the

learning rate adaption is able to quickly adapt from any initial values to the proper values [9,11].

The main objective of this work is to suggest a novel technique, which is better than existing adaptive

gradient based techniques in terms of convergence and can reach the point of minimum of error gradient in

lesser time during training of neural network. Here, we have proposed a new variation of adaptive gradient based

training algorithm and we have called this algorithm as a normalized adaptive algorithm. Also, to verify the

speed improvement of the novel technique, we have compared the convergence of this method with popular

existing first order and second order training techniques. We have applied and tested this new technique and

existing techniques to develop prediction models in MATLAB [12] to predict the customer’s behavior on insurance

data set taken from a live data warehouse. The experimental observations and comparisons have been presented

in Sec. III.

2. A REVIEW OF EXISTING ADAPTIVE GRADIENT-BASED METHODS

AND PROPOSED ALGORITHM

There are two important reasons that validate the study of adaptive methods. One is that the amount of weight

update that can be acceptable is to maximally adapt to the shape of the error surface at each particular situation

and second is that the learning rate should be controlled and varied in such a manner that it should be large

enough to allow for a fast learning, but small enough to guarantee the convergence towards the desired solution.

[13, 14] In this section, we briefly review existing learning rate and/or momentum based adaptive techniques

with their main characteristics.

2.1. Gradient descent with adaptive learning rate (GDA)

GDA keeps varying the learning rate in each of iteration and tries to keep the step size large to increase the speed

of convergence and tries to adapt the error surface by keeping the learning stable. Instead of keeping the step size

fixed, it is varied according to the complexity of the error surface. If the new error exceeds the old error by a set

threshold value, then newly calculated weights are rejected. In the case of rejection of the new weight vector, we

reduce the rate of learning by multiplying the current value with a fractional value which is slightly less than 1.

If there is some decrement in error then newly calculated weight vector is retained and the learning rate is

increased by multiplying with a fractional value slightly greater than 1 to enhance learning [15].

In a variation of this technique suggested in Ref. 16, Silva and Almeida proposed the changes in learning

rate can be achieved by multiplying the current learning rate by constant fraction values. Momentum term can

also be included in the technique for regulating the learning rate but is kept constant and non-adaptive in this

method. Backtracking is done to revert back to points of lesser errors achieved during previous iterations if a

continuous increase in the error is observed.
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2.2. Gradient descent with adaptive momentum (GDM)

This method is sensitive not only to the error gradient but also tries to boost the training speed by varying

learning rate according to the latest trends in the error surface. Due to the presence of the momentum term the

algorithm is not trapped inside small irregularities present on the gradient surface. In the absence of momentum

term, training can come to an end in a small narrow local minimum, and momentum supports the algorithm to

slide through such a local minimum. Momentum constant decides the amount of influence of preceding iterations

on the current iterations and therefore it can be called to approximate the second order algorithms [17, 18].

The improved delta rule including the momentum term for GDM can be written as shown below in eqn. 1.

[10]
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The momentum parameter tries to enhance learning rate in smooth areas of the error surface and slows

down the search in irregular areas of the error surface. A fixed value for momentum parameter must be avoided

because it causes unnecessary acceleration when the current error gradient is in opposite direction to the preceding

searches and ultimately retards convergence. If the acceleration due to momentum term remains uncontrolled

then it can disturb learning or move down the slope and we will never reach the desired point of minimum error.

Therefore, it is absolutely necessary that the momentum term must be adjusted adaptively instead of keeping it

as a fixed value [4, 11].

2.3. Gradient descent with adaptive learning and momentum (GDX)

The method combines adaptive learning rate with adaptive momentum discussed above. [19 - 21] Here, the

network training function updates weights and bias values taking into consideration both the factors i.e. according

to an adaptive learning rate and gradient descent momentum. Adaptive learning helps to move towards minimum

error by varying the learning step size and adaptive momentum acts like a low pass filter, to ignore small

features on the error surface.

2.4. Other heuristic based adaptive techniques

In addition to adaptive techniques discussed above, other heuristic-based adaptive methods do exist but are not

in much use. Methods like adaptation with angle between gradient direction in consecutive iterations, adaptation

with the sign of the local gradient in successive iterations, Adaptation according to the evolution of the error,

prediction based adaptation, search for zero-points of the error function instead of zero-points of its derivative,

adaptation based upon peak values for the learning rate etc. are some valid variations for optimizing better

learning.

In angled based adaptation, we consider vector directions of the previous weight update and the present

gradient descent and the value of the angle between them in successive iterations can give information about the

properties of the error surface. Same direction of these two vectors indicates stability of the search procedure

and therefore the value of the learning rate can be increased. But a noticeable difference between their directions

denotes the presence of an irregular error surface and in this situation, the learning rate should be decreased.

2.5. Proposed normalized adaptive algorithm based on normalized difference of error

gradients in successive epochs

In the simple gradient method, new weight vector can be computed from weight vector in previous iterations as

shown in eqn. 2 [22], where learning rate parameter is kept fixed in the starting.
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In the simple adaptive gradient method, learning rate parameter of eqn. 2 is varied by multiplying with

small fractional values (1.05 for increment and typically 0.7 for decrement) [12], which are fixed in the beginning

for increasing or decreasing the step size, depending upon we are moving in the right direction or moving away

from minimization of gradient values. But still there are no bounds for the new learning rates and this can create

a problem in successive epochs.

In the proposed method, an adaptive factor based upon the change of learning rate is computed proportional

to the difference between the gradients during successive epochs. In addition, the difference in the performance

values between successive epochs is normalized to avoid a negative effect on the convergence of the algorithm.

To avoid very high or very low values of the performance difference for successive epochs, the difference is

normalized to set a lower and upper bound on the values. In our case, it has been set between -50% and 50 % of

the initial learning rate.

In case the learning rate adaption tries to go beyond the set limits then it gets normalized to lower or upper

bound depending upon the direction of adaptation. Therefore, new learning parameter can now vary from -0.5 to

1.5 depending upon the value of performance difference. If required, the lower bound and upper bound values

can be varied to get a narrower or a broader span for the new learning rate according to situation, but this should

be avoided so that learning rate should not fall very low resulting in poor speed of convergence and also not to

go very high to avoid the oscillations during convergence and never reaching the point of minimum error.

Calculation of new learning rate during the algorithm is done with the help of the new formula given below in

eqn. 3.
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The modifications have been done keeping in view the goal of speeding up the convergence and in turn

reducing the number of objective function evaluations required to reach the point of minimum error. The new

algorithm has been implemented and tested in MATLAB [12] with a function name ‘normadaptiveversion0001’.

3. EXPERIMENTAL OBSERVATIONS AND RESULTS

3.1. Model optimization and stopping criterion

Selected training methods of first and second order along with the proposed method have been employed to train

and test the neural networks based prediction models and datasets have been taken from a live insurance data

warehouse. Training datasets have been divided into training, validation, and testing sets. Stopping criteria have

been used to decide for stopping the training process as these criteria determine whether the network has been

optimally trained toward required target of minimum gradient or the methods tend to diverge from the training

path.

Training performance of these algorithms in terms of Mean Squared Error (MSE) and error gradient

graphs have been plotted and observed to analyze their convergence and behavior to achieve the set

target values of error gradient. A large number of simulations for predictive models with different

configurations of neural networks have been tested in MATLAB [12]; while employing all the above

said algorithms.
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Table  1

Experiment results of employing different gradient-based learning algorithms

of the first and second order including adaptive algorithms and the proposed algorithm

TrainingAlgorithm Training Min. Neurons Final Training Training Starting Final

Function gradient in hidden epochs time per- gradient gradient

layer formance value value

Conjugate gradient traincgp 0.0001 15 135 0:07:24 0.0390 0.6760 6.96e-05

Scaled conjugate gradient trainscg 0.0001 15 119 0:04:41 0.0375 0.447 8.04e-05

Steepest (gradient) descent traingd 0.0001 15 103 0:19:06 0.0581 0.447 0.0421

Gradient descent with traingda 0.0001 15 103 0:14:59 0.0428 0.447 0.0473

adaptive learning rate

Gradient descent with momentum traingdm 0.0001 15 103 0:14:24 0.0584 0.447 0.0427

Normalized adaptive norm 0.0001 15 284 0:08:16 0.0158 0.235 8.37e-05

 adaptive

3.2. Results

After an experimental investigation, the best results obtained for different algorithms including newly developed

normalized variation have been presented in Table 1 shown above. Graphs in figures 1 and 2 illustrate respective

performance and convergence behaviors of the selected methods. Figures 1(a) to 1(f) demonstrate graphs for

variations in mean square error (MSE) versus numbers of epochs during the training of network with these

algorithms. Figures 2(a) to 2(f) represent error gradient graphs during the training process. Convergence of

different algorithms is tested for error gradient target of 0.0001. It has been clearly observed that second order

methods are able to accomplish the target value of error gradient of the order of 10 -4 like CGM found the

(a) (b)

(c) (d)
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(e) (f)

Figure 1: Training performance graph with (a) Conjugate gradient learning (b) Scaled

conjugate gradient learning (c) Simple gradient descent learning

(d) Gradient descent adaptive learning (e) Gradient descent adaptive momentum

(f) Normalized adaptive learning algorithm

(a) (b)

(c) (d)

solution in 135 epochs and SCGM converged in 119 epochs. On the other hand, steepest decent and existing

adaptive methods are not able to achieve the solution even in 1000 epochs but the proposed normalized adaptive

algorithm is able to converge in 284 epochs.

Figure 1(f) shown above shows the graph for mean square error versus training epochs for the newly

suggested method and it converges in 284 epochs for the set target of error gradient, which could not be achieved

with older adaptive techniques. It has been observed that the performance of the proposed algorithm is better

than existing adaptive methods but it is found below second order algorithms.
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4. CONCLUSION

In this paper, we have suggested a novel adaptive gradient based technique and achieved the enhanced convergence

speed of the new adaptive learning method. Performance and gradient curves for the new method have been

investigated and compared with existing first and second order methods. Convergence behavior of proposed

adaptive method in terms of speed and accuracy has been observed. From the results obtained, it is concluded

that normalized adaptive method is much better than existing gradient based techniques but still, its performance

is found less than second order techniques.

Simple gradient and adaptive techniques have not been able to converge towards set error gradient target of

the order of 10-4 even in 1000 epochs. But, the suggested normalized adaptive method has achieved the solution

for the set target value of minimum gradient. On the other hand, second order techniques have been able to reach

an accuracy level of 10-4 and 10-5 and have proved much better in terms training time and convergence. Simple

gradient method (GDM) with constant learning rate and the adaptive methods (GDA, GDM) have shown poor

convergence, but the suggested normalized adaptive method falls in between existing first order and second

order methods, in terms of convergence towards the minimum error gradient. Second order methods like conjugate

and scaled conjugate gradient methods (CGM, SCGM) have shown faster convergence. From the experimental

outcomes, we can conclude that normalized adaptive algorithm is a better approach than previously existing

adaptive methods.
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