
4747Design and Implementation of Scheduler for Virtual File Systems in Shared Memory Multi-Core processor...

Abstract : Virtual file system (VFS) has a major concept in file transferring and data maintains in the scheduling
time for Multi-Core processor run in the parallel shared memory for transferring from one core to another core
for managing the Time & Power consumption across the systems in OS. the implementation and opinion of the
Virtual file system(VFS) concepts in Shared secured file system based on Linux Kernel . A incredible amount
of Data has saved on file servers while running process or sleeping process. Scheduling the system of
implemented and evaluates a system concept of disk simulator of file manager in the multi-core processor
using ARM-FL2440. In-kernel file systems to a large number of inner operating System interface and threads
are improved. Processing the initial file system development, dependencies mainly make problems porting a
file system to different OS’s or level across OS version of the file system operation base on generate public
key for all users, to shares and saves file using common thread to thread in the same core. Implemented time
and power efficiency using Linux Kernel 2.6 File system in ARM processor.

Keywords : Scheduler, Shared Memory, Virtual File System (VFS), Multi-core,ARM-FL2440, Xilinx vivado.

1. INTRODUCTION AND MOTIVATION

The Virtual File system (VFS) is an idea over the files shearing in Multi-Core processor of scheduling in the
OS. It maintains the all scheme related to the file system and allows for client application to access changed types
of file systems in a uniform way to provide a common interface between the many file systems. the High performance
computing (HPC) applications are involved in the Virtual File Systems To achieve good performance when handling
large amounts of data. These systems Shares files through data - though an operation called data striping- among
multiple data servers, which can be accessed in parallel for performance. Because of the historic gap between
processing and data access speeds, there is an active research field aiming to improve the parallel I/O techniques
across the OS scheduler. In-kernel the virtual file system interface of implementations also depend on a large
number of internal OS interfaces and large data. For pattern, a file system developer must know the memory
allocation, caching, threading, locking/pre-emption, networking (for Shared file systems), and device access (for
local file systems) interfaces. While VFS interfaces vary slightly across OS’s, the former OS inside is greatly vary,
linearly making of file systems excruciating and effort- intensive. In numerous cases, the porting cost is unfair, and
file system developers simply OS’s that pose too large a problem. The kernel keeps track of files using in-core
inodes (“index nodes”), usually derived by the low-level file system from on-disk inodes. A file may have several
names, and there is a layer of dentries (“directory entries”) that represent pathnames, speeding up the lookup
operation. Several processes may have the same file open for reading or writing, and file structures contain the
required information such as the current file position. Access to a file system starts by mounting it. This operation

* Research Scholar, ECE Department, Dr.M.G.R.Educational and Research Institute University, Chennai

** Prof & Head, ECE department, Dr.M.G.R.Educational and Research Institute University, Chennai E-Mail: siva6677@gmail.com

Design and Implementation of SchedulerDesign and Implementation of SchedulerDesign and Implementation of SchedulerDesign and Implementation of SchedulerDesign and Implementation of Scheduler
fffffor or or or or VVVVViririririrtual File Systems in Shartual File Systems in Shartual File Systems in Shartual File Systems in Shartual File Systems in Shared Memored Memored Memored Memored Memoryyyyy
Multi-Core processor Using Multi-Core processor Using Multi-Core processor Using Multi-Core processor Using Multi-Core processor Using ARM-FL2440ARM-FL2440ARM-FL2440ARM-FL2440ARM-FL2440
*Venkata Siva Prasad Ch. *Dr .Ravi S. **Dr. S.Radha Rammohan

IJCTA, 9(10), 2016, pp. 4747-4754
© International Science Press

4748 Venkata Siva Prasad Ch. , Ravi S. and S.Radha Rammohan

takes a file system type (like ext2, vfat, iso9660, nfs) and a device and produces the in-core superblock that
contains the information required for operations on the file system; a third ingredient.

2. VIRTUAL FILE SYSTEM (VFS)

The VFS must handle all the file systems are mounted at any given time, that maintains given data has been
transferred between the threads, it describe the complete (virtual) file system and the real, mounted, file systems
are in running state. The conditions of the VFS interface strength be change inconsistently from one thread to next
thread, that concrete file system support be recompiled, the probably modified before recompilation, to allow it to
work with a new change of the operating system (OS) and the supplier of the operating between the both system
and threads of the changes, so that concrete file system support built for a given release of the operating system
would work with potential versions of the OS. These VFS has shown below fig 1.

Fig. 1. A Logical Diagram of the Virtual File System.

A. The Linux Virtual File System/ File Systems Supported By Linux VFS

The virtual file system consists of very simple disk simulator and file manager. The disk simulator consist of
disk initialization, disk read and disk write. The maximum number of blocks it supports is 100 and maximum block
size is 50 bytes.

• Provides an concept among the application data and the file system of implementations.
• Provides support for many different kinds and types of file systems
• The Disk-based system, and extraordinary file systems
• Disk based file systems like ext3, VFAT Network file system(NFS)

4749Design and Implementation of Scheduler for Virtual File Systems in Shared Memory Multi-Core processor...

3. SCHEDULER IN VIRTUAL FILE SYSTEM (SVFS)

The scheduler has based run virtual file in the multi-core processor has sharing from one location of the file to
another location those distributed location files have been separated through the threads and Scheduling of physical
memory base file systems, it’s usually calls RAM disk .these are serve a comparatively large chunk of physical
memory for private use in file system. Applies the analytical approach of core process in the file sharing of the
threads has run parallel in the virtual file sharing those modules has run to prove the implementation of the Virtual
File System (VFS) within this Linux kernel, program verification .

Number of Virtual shares in the Multi-core processor threads
X = [k/Ma] 1

XA = [X × EA/Esum 2
The Listed Equations of 1 and 2 given threshold ‘k’ is resolute by specifying section with the original file size

to make share size after division by IDA regular.
For illustration, the new file size is 2 MB, and threshold is to be k =5 so share size can be set to 100 KB. for

that a result, even if someone collects shares of comparable size because threshold k was last test determined and
saved in memory, the remaining file is determined by X, where the number of division of the file X is calculated from
an Eq.1 using with Ma. though, X is a accepted digit. The listed number of shares stored in each network is
determined by the relative rate of the assessment value, E, in this case, XA, which indicates the number of shares
circulated to Network A is calculated from Eq.2. However, XA is a natural number. like above given example the
multi-core process has separated the cores along with number of threads and execute the file transfer virtually as
shown in fig-2..

Fig. 2. Flowchart of SVFS.

4750 Venkata Siva Prasad Ch. , Ravi S. and S.Radha Rammohan

4. HARDWARE DETAILS

The real system used in our experiments was design for Virtual File Systems (VFS) has run in the ARM-
Fl2440 of ARM Ltd. It is designed by solid 32- bits instruction set than its original 64-bits ARM instruction shows
that ARM 9 is compressible and a further 10-15% code size decrease the coding operation expected to using our
proposed new algorithm for the Code Compressed with minimum time period of ARM9 Processor as in fig-3.the
developed OpenMP software implementation of the architecture is proposed a software prototype based on
ARM922T processor with multi-thread protocol, run across the Xilinx Software which runs on the ARM. Dual-
core of FL2440 board, the components board contains the CPU-Samsung and the microcontroller of S3C2440A,
developed RAM: 64MB SDRAM, Serial Ports:One 5-wire serial ports, baud rate of 115200bps of a hard disk.,
Flash: 4MB NOR Flash,256MB Nand Flash, The operating system used was Ubuntu Linux kernel 2:6 – Dual
Kernel. File process approach or shared file (independent files have 2GB each, the shared file has 2GB per client);
request size: 32KB (smaller than the stripe size) or 1MB (larger than the stripe size times the number of server.

Row 0

Row 31

Row 63

Col 0 Col 31 Col 63

Core 1 Core 2

Core 3 Core 4

Fig. 3. Linux Dumped in ARM-9 with output File.

5. DESIGN AND IMPLEMENTATION

The newly up to date design of the OS virtual memory in the existing physical memory possessions of RAM
and disk file systems, these Physical memory as treat as a cache of ‘pages’ contain a data access as memory
‘objects’. the memory bits and pieces are installed through Linux file systems in the ARM board, implemented main
regular file of unknown memory using the processors Virtual memory and swap space uses unidentified memory in
the page cache to store and maintain file data. since the system does not separate the virtual file data from one
location to other location of the cache files can be written to swap/virtual transfer from one core to another core in
separated thread space. The control information is maintain a physical memory allocated to kernel to evaluate a
number of performance optimizations of programming VFS and evaluate the prototype’s performance in the thread

Fig. 4.

sharing to from one core to another core in the multi-core processor. The performance overhead sources extenuating
approaches are discussed in detail in below fig 4, has the role of Multi-Core processors, given their significant role

4751Design and Implementation of Scheduler for Virtual File Systems in Shared Memory Multi-Core processor...

in making the algorithm in the scheduler for shared memory in virtual file system. Multi-Core processors enable fast
virtual memory performance by increasing the thread count in the each core for that have to be implemented in the
Linux Kernel software exclusively, by simultaneously executing the VFS is an indirection layer which handle the file
oriented system calls and calls the necessary functions in the physical file system code to do the I/O. Here has
shown in the fig-5 the total multi-core processor has running in the four cores if multiple 64 bit processor those
running in the shared virtual files has explained below.

Thus k =1 i.e. 1st Thread represents core 1 of size M1 x M2

Where M1
(1) is Row 0 to Row 31and M2

(1) is Col 0 to Col 31.
For k = 2; M1

(2) is Row 0 to Row 31 and M2
(2) is Col 32 to Col 63.

For k = 3; M1
(3) is Row 32 to Row 63 and M2

(3) is Col0 to Col 31.
For k = 4; M1

(4) is Row 32 to Row 63 and M2
(4) is Col 32 to Col 63.

In each of the individual cores, ‘p’ threads are formed and the thread positions are randomized.
For illustration-1:

If p = 8, then in k =1 core, the threads will be of size
1 2

() ()M Mk k
p p

For p = 1; the 1st thread will be M1
(1) = Row 0 to Row 31 and M2

(1) =Col 0 to Col 3
For p = 2; the 2nd thread in 1st partition will be of size M21

(1) = Row 0 to Row 31 and M22
(1) = Col 4 to Col 7

For p=3; the 3rd thread in 1st partition will be of size M31
(1) = Row 0 to Row 31 and

 M32
(1) = Col 8 to Col 11 and so on (refer figure 4)Row 31

Row 31

K= Core 1

 P=1

P=8

Row

 Col Col Col

(A)

 P=1

 P=8

Row

Row 31

 Col Col Col

K= Core 2

(B)

Row 63

P=1

P=8

Row 32

 K= Core 3

Col 31

Col

Col

Row 63

P=1

P=8

Row 32

 K= Core 3

Col 31

Col

Col (C) (D)

Fig. 5. Cores of Threads Shared In VFS Process.

Once the initial ordering of Threads is complete, their positions are randomized and this position table is virtual
files shared between the one thread to one thread of authenticated users. The Thread positions and number of
Virtual files are shared in form in the fig-6.

4752 Venkata Siva Prasad Ch. , Ravi S. and S.Radha Rammohan

For illuseration 2 :
the represent ‘8’ Threads taken in 4 Cores the data 3640 is sent,
where number of Threads = 36 ——(1) and
(number of Threads)+(number of Cores) = 40 ——(2)
From equations (1) and (2) the unknowns are determined.
the virtual file transfer is done using multiple threads, implemented in Verilog (Xilinx platform). Within a partition,

the search is done sequentially, while across the partitions, it is concurrent.

 P1 P2
 A B

 P3 P4 C
 D

Thread(P1) Thread(P2)

Thread(P4) Thread(P3)

Fig. 6. Parallel Data Search.

6. EXPERIMENTAL RESULTS AND DISCUSSION

The Shared memory of thread in a given row, each column operation in table-1 is controlled concurrently. The
row operations occur sequentially as illustrated in the timing diagram and the verilog implementation results are
shown in fig- 7 and the openMP of processing threads of core1 to core 2 has shown in fig- 8.

Table 1. The Timing Relations

Time Tasks handled

t1 Thread1
(P1),Thread1

(P2), ……….Thread1
(PM)

t2 Thread2
(P1),Thread2

(P2), ……….Thread2
(PM)

tN ThreadN
(P1),ThreadN

(P2),……….ThreadN
(PM)

Fig. 7. Verilog Implementation Result.

4753Design and Implementation of Scheduler for Virtual File Systems in Shared Memory Multi-Core processor...

Fig. 8. LINUX Kernel Executed Core 1 to Core 2.

7. CONCLUSIONS AND FUTURE ENHANCEMENT

 In this paper the implementation of Virtual File System (VFS) developed in Multi-core processor scheduler
of Shared memory in the large data base from one location (Client) to other Location (server). The VFS running
state application based on the speed and gain performance, public key safety for Many users in system interface
the industrial and software related fields, shares and saves file from using common thread 1 to thread ‘n’ in the same
core for that thread system has been designed in the each core, and efficiently uses that and can reduce the Time
delay and Performance issues in the large data transfer at a time as it is implemented using Linux Kernel 2.6 Virtual
File system in ARM-9 processor and run across the verilog file systems had checked in software through across
hardware module. In Future those Virtual File System has Implemented in the Large industry Levels and Retail
Market and bank servers and Medical suppliers for Easily and Secure Transformation.

8. REFERENCE

1. H. Sparenberg; A. Schmitt; R. Scheler; S. Foessel; K.Brandenburg,2011,”Virtual file system for scalable media formats:
Architecture proposal for managing and handling scalable media files”Electronic Media Technology (CEMT), 2011
14th ITG Conference on, Pages: 1 – 5.

2. E. Sha; X. Chen; Q. Zhuge; L. Shi; W. Jiang,2016,”A new design of in memory file system based on file virtual address
frame work”,IEEE Transactions on Computers ,Issue: 99,Pages: 1.

3. R. V. Arumugam; Q. Xu; H. Shi; Q. Cai; Y. Wen, 2014, “Virt Cache: Managing Virtual Disk Performance Variation in
Distributed File Systems for the Cloud” Cloud Computing Technology and Science (Cloud Com), IEEE 6th International
Conference on ,Pages: 210 – 217.

4754 Venkata Siva Prasad Ch. , Ravi S. and S.Radha Rammohan

4. Leibo Liu, Wenping Zhu,Shouyi Yin, 2014, “ An uneven-dual-core processor based mobile platform for facilitating the
collaboration among various embedded electronic devices Consumer Electronics”, IEEE Transactions on,Volume:
60, Issue: 1,Pages: 137 – 145.

5. Heiko Sparenberg , Alexander Schmitt; Robert Scheler; Siegfried Foessel, Karlheinz Brandenburg, “Virtual file system for
scalable media formats: Architecture proposal for managing and handling scalable media files” Electronic Media
Technology (CEMT), 14th ITG Conference on 2011,Pages: 1 – 5.

6. Choonhan Youn; Chaitan Baru; Anthony Mrse; Joseph M. O’Connor, “NMR cyber infrastructure: Web-
based virtual file system for managing distributed NMR data Gateway Computing” Environments Workshop (GCE),
2010 ,Pages: 1 – 6.

7. Yifeng Zhu; Hong Jiang; Xiao Qin; D. Feng; D. R. Swanson , “Improved read performance in a cost-effective, fault-
tolerant parallel virtual file system (CEFT-PVFS)”Cluster Computing and the Grid, 2003. Proceedings. CC Grid. 3rd
IEEE/ACM International Symposium on 2003,Pages: 730 – 735.

8. Kheng Kok Mar ,2011, “Secured Virtual Diffused File System for the cloud “ Internet Technology and Secured
Transactions (ICITST), 2011 International Conference for ,Pages: 116 – 121.

9. Jiang, K.; Thorsen, O.; Peters, A.; Smith, B.; Sosa, C.P,2008. “An Efficient Parallel Implementation of the Hidden Markov
Methods for Genomic Sequence-Search on a Massively Parallel System Parallel and Distributed Systems “, IEEE
Transactions onYear: 2008, Volume: 19, Issue: 1

10. S. Tezuka, R. Uda, A. Inoue, and Y. Matsushita. “ A Secure Virtual File Server with P2P Connection to a Large-Scale
Network”. The IASTED International Conference on Networks and Communication Systems, No.527-138.

11. R. J. Figueiredo; N. H. Kapadia; J. A. B. Fortes ,” The PUNCH virtual file system: seamless access to decentralized
storage services in a computational grid High Performance Distributed Computing, Proceedings. 10th IEEE International
Symposium on 2011,Pg: 334 – 344.

12. S. Chaki, E. M. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav,2004,”Efficient verification of sequential and
concurrent C programs. FMSD”, 25(2-3): pg :129– 166.

13. Ming zhao, jian zhang and renato j. Figueiredo,2006 springer science distributed file system virtualization techniques
supporting on-demand virtual machine environments for grid computing, cluster computing 9, 45–56.

14. Xianhong Xu, Simon Jones,Code , September 2003, “Compression for the Embedded ARM/THUMB Processor”, IEEE
International Workshop on Intelligent Data Acquisition and Advanced Computing Systems.

15. http://www.cse.unsw.edu.au/~neilb/oss/linux-commentary/vfs-1.html.

16. http://www.itcentrs.lv/linux/docs/Linux_Kernel_Internals/Linux-Kernel-Internals-3.html.

