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Control of Diseases Epidemic Spreading
through Metapopulation Models

M. Afshar® and M. R. Razvan™

Abstract: We study a system of ordinary differential equationswhich describesthe metapopulation SIR model. The
main target isto control the epidemic spreading using the structure of connections between cities. For this purpose,
weformulate optimal control strategy that the control representsadrug treatment and Prevention strategies . Some
methods are given in numerical example section such as control through spectral radius of movement matrix or
optimal control through travelling between cities. Existence results for the optimal control are studied.
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1. INTRODUCTION

Differential and dynamical models is applied to analysis and to make decision in biological models [1, 2].
Optimal control theory is a branch of differential equations that can be used in restraining the spread of
infectious diseases. The study by Kirschner et al. [3] used optimal control theory to establish the optimal
treatment strategy for the managing of antiretroviral drug in individuals who were HIV positive. Geometric
optimal control theory is applied to epidemic model in[4]. Inthat paper, ageneral SIR-mode with vaccination
and treatment is considered as an optimal control problem over afixed time and it is shown that the optimal
vaccination schedule can be singular, but that treatment schedules are not. Optimal control techniques is
applied to study optimal strategies for restraining the spread of malaria [6]. Fister and Donnelly [7] also
used optimal control theory to determine the conditions for the elimination of tumor cells in an individuals
under treatment for Cancer.

The structure of apopulation or group plays an important role in the dynamics of a disease transmission
[8, 9, 10]. Epidemiological models are almost multigroup models. Groups can be classified into geographical
groups such as cities, countries and communities, behavioral groups like different patterns of contact and
high risk groups or epidemiological groups like vertical transmission and co-infection of multiple origins
of the disease agent[11].

One of the important models in epidemiology is metapopulation model. Consider a human disease that
is spread in a large country with a small number of potentialy large cities. Suppose that the movements
between cities are fast, and the propagation of an epidemic takes place only at the destination location. In
this setting, travel of individuals between cities must play some role in the spreading of the disease. Based
on continuous time model, Arino and van den Driessche investigated on role of cities in the epidemic
spreading [12]. Arino et al. studied a metapopulation malaria model using SI and SIRS models for the
vectors and hosts[13]. Multigroup models can also be used to investigate infectious diseases with multiple
hosts such as West-Nile virus and vector borne diseases. For a survey of multigroup models, we refer to
[11]. For aclassof multigroup SIR epidemic modelswith varying subpopulation sizes, Guo et al. established
that the global dynamics are completely determined by the basic reproduction number R . Basic reproduction
number, local analysis and global analysis of Metapopulation SIR model have been presented in [14].
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We develop optimal control formulation of Metapopulation SIR model with three cities. The model
and optimal control formulation are introduced in the next section.The basic reproduction ratio will be
computed in section 3. We present the existence of optimal control resultsin section 4. The optimal control
is characterized in terms of the adjoints and states by Pontryagin Maximum Principle (PMP) in section 5.
The control strategies are considered. Numerical examples for optimal control formulation are presented in
section 6. In section 7 the structure of movement matrix and it’s impact on epidmemic spreading is
investigated and these results are illustrated with numerical examples.

2. THE MODEL

Our metapopulation model is, formulated by dividing the population of size N(t) into three distinct cities.
We study the transmission dynamics in cities with an SIR(susceptible-infected-recovered) model. For

k =1,2,3; the k-th city is divided into three compartments. the susceptibles, infectious, and recovered,
whose numbers of individuals at timet are denoted by S, (t); 1, (t) and R, (t); respectively. For 1<i;j <n;

the disease transmission coefficient between compartmentsS and | is denoted by £, j ; so that the new
infection occurred in the k-th group is given by ZT: BiS 1. The matrix B = (5, ) is the contact matrix,

where S; = 0: Within the k-th group, it isassumed that natural death occursin S, I, and R, compartments

withrate constantsd,’, d, andd,* respectively. Individualsin!, have another death dueto disease with rate

congtant ¢,. The inflow of susceptible individuals into the groups is given by a constant A,. Suppose that
individuals in I, recover with arate constant v,; and once recovered they remain immuned for the disease.
Based on these assumptions, the following system of differential equations can be expressed (for i = 1, 2,
3):

S :Ai_diSS_Zﬁijalj

I.i :iﬁijslj_(dil +& + 7))l

| ) ®
R =yl —d'R

or in other word:

= Al_ dls% _ﬂllall _ﬁlzal 2 —,31351|3
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S = A~ d7S, = ByS =SS, — BuSls
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The following parameters appear in our model:

B; - transmission coefficient between Sandl;

d?,d;,d?: natural death ratesof S;| ; R inthe k-th group, respectively;
A, . inflow of susceptible individuals into the k-th group;

7, . recovery rate of infectious individuals in the k-th group;

&, . disease-caused death rate in the k-th group.

All parameter values are assumed to be nonnegativeand d,d, ,d*, A, > 0. Using the same parameters

and class names as in the model (1), we suggested the following ODEs system (3) describing the model
with controls.

S _(dls+ul)%_ﬁllall_ﬁlzalz(l_vlz)_1313%|3(1_V13)

|.1 = S+ LSl (1-Vi) + £:S15(1-Vy5) - (d1|+51+71+vl)|1

Rl =uS +pl - d R +wl;

Sz = Az - (dzs +u2)52 _:Hzlszll(l_va) _:Bzzszlz —,323SZ|3(1—V23)

Ihz = S (1-Vy) + Sl + BrS)l5(1-Vys) — (dzl +&,+ 7+ V),

Rz =U,S, 7,1, — AR+, (3)
&J _(dss+u3)53,_:Hslssll(l_vﬂ)_ﬁszsslz(l_vsz)_ﬁsassls

|.3 = Sl (1-Vay) + B Sil (1= V) + B Sl 4 (dsl, +&3+y3+V,) 5

Rs =UsS;+ 7l - d Ry + Vsl 4

The control functions u(t), v, and vij(t) have to be bounded on [0, 1] and Lebesgue integrable functions.
u (t),i =1,2,3 measure the time dependent efforts on the preventive strategy (such as vaccination) of
susceptibleindividualsin S, to reduce the number of individualsthat may be infectious. The control functions
v, measures the time dependent efforts on the limitation strategy of immigration of susceptible individuals
from city i to . v(t) measures the time dependent efforts on the treatment of infected individualsin city i to
reduce the number of infected individuals. This control will have an impact on the output flow of people
from the The objective functional to be minimized is:

J(ul’u2’u3’vl’v2’v3’V12’V13’V21’V23’V31’V32) = (4)
T T
[[9(1,U)dt=[ AIf+BIZ+CIJ+Duf + Euj + Fuj +Gvj + KV,

2 2 2 2 2 2 2
+ Lv,, + Nv,, + Ovg, + Pvg, + Qv + 2v, + W dt.

Here, A B,C,D,E,F,G,K,L,N,O,P are adjustment parameters. They are converting the dimension
from population number into cost expended over a finite time period of T years. We seek an optimal
control

(ul’u2’ US’Vl ’VZ’VS’V12’V13’V21’V23’V31’V32)
such that

'J(ul’u2’u3’vl’V2’V3’VlZ’VlS’VZl’VZS’VSl’VSZ) =
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min{J(U) | (U, Uy, Us, Vi, Vy, Vg, Vip, Vg, Vor s Vg, Vg, Vap) €U}
where
U ={(Uy, Uy, U, Vi, V5, Vg, Vip, Vigy Vg, Vg Vg, Vi ) | Uy, Vv measerable}l and{O0<u;,v,v; <1, te[0,T]} is
the control set.

3. BASIC REPRODUCTION NUMBER

The global behavior of the metapopulation model depends on the basic reproduction number, i.e., an average
number of secondary cases produced by a single infective individual, who is introduced into an entirely
susceptible population. System (1) has an infection-free equilibrium in which the susceptible components
are positive and the infective components equals to zero. According to definition of R, for R >1, initial
infection will spread, and the disease will disappear if R, < 1. Denote this infection-free equilibrium by

Ai
E=(S,0,0,%,0,0,5,0,0) where S = s - Analyzing the local stability of this point gives the epidemic

threshold condition, R,. E islocally asymptotically stable if R < 1, and unstable if R > 1. Thanks to [14]
basic reproductive ratio isgiven by R, = po(M,) where

5 S
MO:(—dl J J |
i YETY ).

Here M, called movement matrix and p denotes the spectral radius of matrix. We investigate the effect
of different prevention strategies on the spread of infectious diseases within a population. The majority of
existing papers fall into one of two groups. In the first group, prevention strategies are modeled by a
constant parameter and the goal is to understand how changing the value of the parameter changes the
dynamics of the system. Often the aim is to determine the best parameter value for a given performance
measure. In this manner we can compute basic reproductive ratio,

' (1-v.)S°
R0=p[ £;(1-v,)S J ©

diI te )tV

A.

d®+u

where S’ =

In the second group, prevention strategies are allowed to vary as a function of time and the goal isto
determine the best function for a given performance measure. We will investigate this point of view in the
following.

4. DERIVING THE OPTIMAL SOLUTION

In this section, we derive the optimal control system for minimizing the functional 4 subject to 1. In order
to derive the necessary conditions for this optimal control, we use Pontryagin's Maximum Principle [18].
The Hamiltonian is defined as follows:
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H =AI7+BIZ+CI2+Du/+Eu +Fu; +
GV}, + KV + Lvz + N5, + OVZ + PVZ, + QW + Zv2 + W2 +
Yl(Al - (dls + ul)sl - ﬁllsll 1 ,Blzsil 2(1_ V12) - ,Blssll 3(1_ Vls)) +
Yz(lﬁllsll 1 + :Blzsll 2(1_ V12) + :Blssll 3(1_\/13) - (dll + & + 71 + Vl) l 1) +
YS(UlSl +7l - leR1 +V1|1) +
Y4(/\2 - (dzs + uz)sz - ﬁlezll(l_ V21) _,Bzzszl 2 ,stszl 3(1_ st)) +
Yo (BnSol1(1-Voy) + B S, 5 + S, 5 (1- V) — (dzI +e,+y,tV)l,) +
V(S + 7,0, AER, +1,0,) + ©)
Y7 (As - (dss + U3)S3 - 1831%| 1(1_ V31) - ﬁsz%l 2(1_ Vsz) - ﬁsa%l 3) +
Y5 (B Sl (1-Vyy) + B, S5l (1-Vy, ) + B3 Ssl 5 — (del, tegtystVa)lg)+
YQ(USSE. + 75l 5 _d§R3. +V3|3)-

Suppose that (U;, Uy, Uy, Vi, V,, Vs, Viy, Vs, Vay , Vagy Vag, Vap) 1S @N Optimal control with corresponding states

(S,1,,R,S,,1,,R,,S;, 15, R,) . To characterize the optimal control, the Hamiltonian and adjoint equations
areconstructed.

Theorem 4.1 There exists an optimal control (u,,U,,Us,V, ,V,, Vs, Vi, Vig, Vyy , Vags Vg, Vap) - AN
corresponding solution(S,1,,R ,S,,1,,R,,S,,15,R,), that minimizesJ over [0,T]. Furthermore, there
exists adjoint functions(Y,,Y,,Y,,Y,,Y;, Y, Y;, Y, Yy) such that

Y.1= Yl(dls+u1+1811|1+1812|2(1_V12)+1313|3(1_V13))
=Y, (Bl i+ Bl (1) + Byl 5(1-Vy3)) = Yo,
Y.2 = —2A1 +Y(BuS) - Yo (BuS - (dll +ea+y,+V))

=Y, (7/1 + V1) +Y, (182182 (1- V21)) -Ys (132182 (1- V21))
+ Y7 (183183) (1_ V31)) - Ys (183183) (1_ V31))

Y, = Y,d/*

Y.4 = Y, (A3 +U, + Byl (1=Vyy) + Bl + Bral 5 (1= Vis))
Y5 (Bl 1(1=Vo1) + Bl + Bosl s (1-V,5)) = YU,

Ys = _ZBlz +Y1(1812§(1_V12))_Yz(ﬂlza(l_vlz))

+Y,(82S,) — Y5 (B80S, - (dzl +E,+ 7, V,)) = Yo (7, +Vs)
+ Y7 (1832%(1_ Vsz)) _Ys (1832%(1_ Vsz))

Ye = YedzR

Y? = Y7 (dss +Us +1831|1(1_V31)+:832|2(1_V32)+1833|3) (7)
=Y (Bl 1(1=Vy) + Bal 5 (1-V3,) + Bl 5) — Yo,

Y.s = —2Cl 3t Yl(ﬂlsa(l_ V13)) _Yz (18133(1_\/13))

+Y,(BS,(1-Va3)) = Y5 (BosS, (1-Vis)) + Y (835S;)
—Ye(BS; — (dsl, +&3+73+Vs)) = Yo(r5+Vs)
Y, = Y, a5
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with transversality conditions Y, (T) = 0,i =1,2,3,4. The following characterization holds

u, = mln{max{( 2Y 2)S o1 (v = min{max{%p},l}
. (Y, -Y,)S, o Ys—=Y)I,
u, = mm{max{T 0}, 1}:iv, = mln{max{—ZZ ,0},1}

u, =min{max{—~—2"=

( Y)Ss, ¥ i (Ys_Yg)Is
oF ,0},1} (v, —mln{max{T,O},l}.

and

* — i (Yz_Yl)ﬁlzslz
v, = min{max{ G ,0},1}

_Yl)ﬁlsals 0} 1}
2K T
(YS_Y4)132152|1 0} 1}

2L Y

] — (YS_Y4)1323%|3
V,, = min{max{ N ,0},1}

(Ys_Y7)(333183|1 0} 1}

V, =min{max{ (Y,

V,, = min{max{

Vv, = min{max{

V,, =min{ max{

Proof. Applying Pontryagin Maximum Principle, we obtain

, __oH _
Y=g MM=0

evaluated at the optimal control and corresponding states, which results in the stated adjoint system (7).
Similar progress can be done for Y,,...,Y;. By considering the optimality conditions for Hamiltonian,

oH _oH _oH
au - E - E ~— ¥ and solving them, the characterization of optimal control functions can be derived.

To illustrate the characterization of u, we have

ﬁ_ZD (YlSl_YSSl):Oju;:M_
oy, 2D

By standard control arguments involving the bounds on the controls, we conclude

2D T
w={ 0 ir (O 2;)51 <0,

if w>l
2D

1
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* . Y - Y
|n compact notation, we have U; = min{ max{% ,0},1} . Therest of the control functions can be

found by a similar method.

5. NUMERICAL RESULTS

In this section, we investigate numerically an optimal policy and prevention strategies of our model. The
state and adjoint system of differential equations together with the control characterization above form the
optimal control system to be solved numerically. As we know the state equations have initial conditions,
while the adjoint equations have final time condition and we cannot solve the optimality system directly by
sweeping forward in time method. Thus forward-backward sweep method (thanks to Lenhart and
Workman[2]), is used. For the control function, an initial estimate is made. Then the state system is solved
forward in time from the dynamics using a Runge Kutta method of the fourth order(RK4). Resultsfor state
values are placed in the right-hand sides of the adjoint differential equations. Then the adjoint system is
solved backward in time with given final conditions, again employing a RK4 method. Both state and
adjoint values are used to update the control using the characterization, and then the process is repeated.
This iterative process terminates when current state, adjoint, and control values converge sufficiently.

5.1. Example(1): Minimum cost static control

Now we will use the MATLAB program to ascertain how each control parameter affectsthe solution. This
example illustrates how constant parameter control could change the future of epidemic spreading. Let us
enter the following values in the model system (1):

Parameters and values

B; =130 | 1<i,j<3 | A=B=1 | u, =01
d’=1/10 | d/ =1/10 | C=D= u, =0.1
di =1/10 | d!=1/10 | E=F=1 | uy;=0.1
d; =1/10 | d{=1/10 | G=K =1 v, =0
df=1/10 | &=1/3 | L=0=1 v, =
df=1/10 | & =13 | P=0=1 v, =0
df=1/10 | &=1/3 | W=Z=1 | T=1000
5,(0)=0.95|1,(0)=0.05| R, (0)=0

S,(0)=1.4 | I,(0)=0.1 | R,(0)=0

S,(0)=12 | 1,(00=0.8 | R,(0)=0

¥, =1/2 A =1 v, =V3=0

7, =1/2 | A,=3/2 |v,=v,,=0

Yy, =1/2 Ay=2 v, =v, =

According to (3) the reproduction number for this example equalsto R, =1.6071 and there exists an
asymptotically stable endemic equilibrium point
(6.2222,0.4048,2.0238,9.3333,0.6071,3.0357,12.4444,0.8095,4.0476)

that

system

tends

to this

point.

By using

constant

parameter

control

u=u=u;=01v,=Vv,=v,=0,V, =V;3=V,, =V, =V, =V,, =0 one can compute the basic
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reproductive number by (5) and obtainR, =.8036 The system tends to disease-free equilibrium
point (5,0,5,7.5,0,7.5,10,0,10) and outbreak does not occur. Here the objective functional

.
J= jOAIf +BIZ +ClI2 + DU + EUZ + FU; + GV, + KV, + LvZ + N2,
+OV;, + PVZ, +QVZ +WVS + Zvidt

.
will reducetoJ = IO Al7 +BIZ+ClZdt if no control is used and in constant parameter control will reduce
to

.
J(u,,u,,Uy) :jo AlZ +BIZ +Cl + Du/ + Eu + FuZdt.

The final cost is J =1175.8 when we have no control on processes and J = 30.6442 for constant
parameter control strategy. Despite the control of outbreak, it seemsthat the cost increases greatly. One can

solve the smple optimization problem to find the best (ul,u,,u,,Vv;,.....,V4,Vs,) . This gives

Minimum static controls

ul=0.044 u2 = 0.056 u3 = 0.066
vl =0.006 v2 =0.009 v3=0.012
v12 = 0.002 v13 = 0.002 v21=0.002
v23 = 0.003 v31=0.002 v32 = 0.003

and J=10.5903. Figure(1) shows the minimum cost static controls.

10 1
s withoud coniral
I 8 ~ 08 = = = with stafic control S
e L — g 08 <=« = - with minimized static contral 'g
e LU o
@ D 04 3
g * 8
3 witout control “E 02 g
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— without coniral T T T T T T T T T T T T
% (4] = = = with static contral o BH
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%. ' '9 %‘ 4 L,
L ettt
8 5 g 05 8 1
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ﬁ 10 '___ L ;-___'____'___—___'__ o = == = wiih static contrcl ® 6
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0 0
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Time(years, months,days) Time(years, months,days) Time(years. months,days)

Figure 1: Minimum cost static controls and its effect on epidemic spreading
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5.2. Example(2): Optimal control policy

Here, we consider the previous example with optimal control approach that control functions u, v, v, can
be continuous functionswith respect to thetime. Let us enter thefollowing vaues asan adjustment parameters
in optimal control method in the previous example:

A=B=C=D=E=F=G=K=L=0=P=Q=W=2Z=1 T=1000
As we observe, the model system tends to endemic equilibrium. Figures (2) and (3) shows an optimal
schedule and related control functions

(U, Uy, Uz, Vy,, Vs, V.

Zl’v

23’V

31’V32’V1’V2’V3)

for T = 1000. Final cost for optimal control is J = 4.4627 and the final cost without control strategy is
J, = 1175.8. The optimal control strategy tries to hold costs in a practical level and it depends on our
adjusting objective functional J and coefficients A, B, C,

6. TRAVELLING BETWEEN CITIESAND ITSEFFECT ON THE EPIDEMIC SPREADING

In this section we try to depict the impact of movement matrix on the epidemic spreading in the
metapopulation model. In the second section the basic reproduction number was computed by spectral
radius of movement matrix. The spectral radius of movement matrix changes by removing edges. The
decrease of the spectral radius, an important characterizer of metapopulation dynamics, by removing edges
isinvestigated in [21]. In that paper, the minimization of the spectral radius by removing m edges is shown
to be an NP-complete problem, which suggests considering heuristic strategies. Several greedy strategies
are compared, and several bounds on the decrease of the spectral radius are derived. Here we face the small
scale and we can study the minimization of the spectral radius (consequently minimization of the basic
reproduction number) by simple computing. Next examples show these.

_ 8 08 - - = with control 4 T T e ee———— e s =
2 I without control -'é ali == with control
2 s === = 3 08 @ without control
e B 04 2 2k
: go g 2|
a 4 — - — - with control £o02 o)
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2 0
0 200 400 600 800 1000 0 200 400 600 80O 1000 0 200 400 600 800 1000
Time(years, months,days) Time{years. months.days) Time(years, months,days)
14 15 8
12 = - = . with control T T T T T ——= —
o = = with trol
o o 1 e withiout contral % t with conir
o 10y, 2 S 4l without control
A L o AN
bt 8 g !
a 6 D05
3 = « = - with confrol c o 2
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Y
2 0
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20 2
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0
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Figure 2: Optimal control strategy. obviously optimal control causes the model system not to tend to endemic
equilibrium point and this process occur s with the minimum cost
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Figure 3: Control function. These functions show control strategy at each moment

6.1. Example(1): Control through spectral radius of movement matrix

Consider the second example in the numerical results section again. The basic reproduction number was
R,=1.6071. By eliminating g edge, v, value will be changed to 1 in the model. This meansthat theij entry
of movement matrix reducesto zero and consequently the spectral radius of movement matrix (or the basic
reproduction number of model) decreases. The next figure and table show the connection graph of cities
and removed edges and their effect on the basic reproduction number. It resembles that this model can be
applied to the real models.

Figure 4: Movement graph
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Removed edge R, Removed edge R,
e, 14777 €,,6, 1.4009
e, 1.4286 €., €, 1.3409
e, 1.4777 €::€, 1.1884
e, 1.3165 €,,68, 1.2311
e, 1.4286 €565 0.8929
e, 1.3165 €,,65 1.2500

R,

6.2. Example(2): Optimal control through travelling between cities

By removing e, and e, (this means that we exert limitation on trips from city 1 to city 2 and from city
2to city 3) the basic reproduction number decreasesto lessthan one and consequently the epidemic spreading
does not occur. Another practical way to decrease the basic reproduction number isto reducethe rate of the
trips. For instance, when epidemic spreading begins, we exert limitation on the tripsthat leads to reduce the
rate of trips reduce to 1/3. Then in the above example the basic reproduction number reduced to

=0.9344.

Consider the second example in numerical results section again with optimal control approach that control
functions v, can be continuous functions with respect to the time. The optimal strategy is shown in figures

below.
10
0 . =+ = - with control
o n without control
2 3
= P ——————————————————
]
Q 7
3
w8
5
[} 200 400 G600 800 1000
Time(years, months,days)
15
a |
o |
= s 1 o #2555
2 v
o 10
8
3 = = - with control
0
without control
5
o} 200 400 600 800 1000
Time(years, months,days)
20
\ = = with control
@ 18, ——— without control
2 16t
o “l - —
o 1
o 144"
1%]
3
® 12
10
o} 200 400 G600 800 1000

Time(years, months,days)

1
= - = 'with conirol
5 08 without conirol
goe
3]
2 04
= TP
0.2},
0
0 200 400 600 80O 10
Time(years. months.days)
y Yy
1.5
= = with conirol
g 3 without control
e}
8 o5
=i | |
I
0
4] 200 400 600 800 10
Time(years. months.days)
2
=« = - with control
g 15 = withoui control
o
4] 1
2
£ os P
I
0
0 200 400 600 80O

Time(years, months.days)

1000

3
B2
4]
>
8 1M
a - - = with conirol
! without control
a
o} 200 400 600 800 1000
Time(years, months,days)
4
% 3
]
%2 e e
o 1 ! =« = with control
! = without control
Q
0 200 400 600 800 1000
Time(years, months,days)
6
[}
T4
2
g I‘-\ ........................ -
o 2 = - = with control
! without control
a
0 200 400 600 800 1000

Time(years, months,days)

Figure 5: Optimal control on metapopulation model. Here we only use v the limitation strategy of immigration of
susceptible individuals from city i to j, as a control function
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Figure 6: Control functionsin movment control model

Aswe observe, optimal control in this example persistson v, and v,,. This is agree with the results on
previous example. Note that by adjusting the parameter, we will find more appropriate results.

7. CONCLUSION

This paper has presented mathematical and epidemiological results about the control of disease spreading
in metapopulation model. This was designed to examine the following questions:

* How do the structure of movement matrix can affect the dynamics of disease spreading?

»  Which conditions on the rate of control parameter can ensure the eradication of disease, or at least
minimize its incidence?

* What is the mathematical and numerical consequence of considering such model?

*  What is the optimal treatment and prevention strategy?

A deterministic mathematical model for the transmission dynamics of disease in metapopulation model
has been built to answer these questions. An important result of this analysis is that the cost-effective
balance of prevention and treatment methods can control a disease outbreak. Strategies of optimal control
can affect the reducing of death toll and severity of an outbreak. Optimal control theory in our model is a
starting point for more elaborate models.
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9. APPENDIX

9.1. Existence of an optimal control

The existence of the optimal control can be proved by using a theorem and it’s corollary by Fleming and
Rishel ([15], Th. 4.1, p. 68-69).

Theorem 8.1: Consider the control problemwith systemequations (1), Thereexists (u; ,u,,u;,u,) € U
suchthat J(u;,U,,Us,u,) = min{J(u,,U,,us,u,) | (u,,u,,u,,u,) eU}.

Proof. Let

ul
u2
s .
| 1 v
1
V3
X=[1,| U=

R, e
S3 V13
V21

I 3
V23
R3 V31

and f (t, X,U) theright hand sight of the (3). So
f(t,X,U) =

Al_(dls+u1)%_:311%|1_ﬁ12%|2(1_\/12)_,313%'3(1_\/13)
,31151|1+,31251|z(1—V12)+,31351|3(1—V13)—(d1' +51+71+V1)|1
u1%+71|1_d1RR1+V1|1
Az - (dzs + uz)% _1321%|1(1_V21) - ﬁzz%l 2 ﬁzs%l 3(1_\/23)
BnS11(1=Vyy) + B Sl + B Syl 5(1— Vo) — (dzl +&,+ 7, + V),
uz%"‘?/zlz_dzRRz"'Vzlz
A3—(d3s+U3)S3)—,33153|1(1—V31)—ﬁ32%|2(1—v32)—ﬁ%%|3
:lessll(l_vsl)+133253,|2(1_V32)+ﬁ3355|3_(d3|, +egtystVa)lg
u3%+73|3_d;R3+V3|3

To use an existence results, we must check the following conditions:
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1. fisclass C! and there exist constant C such that
« |f(t,00)<C
o | f (X U)KC@+|U)
e |f @t X,U)KC

2. Let F bethe class of feasible pairs (X, U). The set F with corresponding control in admissible control
set is non-empty.

3. f(t,X,U)=a(t, X)+b(t, X)U
4. The control set is closed, compact and convex.

5. Theintegrand of the objective functional is convex in control set. The boundedness of solutions of the
system (1) for the finite time interval is used to prove the existence of an optimal control pair. For this,
let

N(t) = SO +1,(0) + R(t) + S,(t) + 1,(t) + Ry(t) + S5(t) + I5(t) + Ry(t) and

3
d_T:A1+Az+A3_Z(diSS| +(d! +&)1,+d R) <A + A, + A,

i=1
that shows the boundednessof S, 1,,R for i =1,2,3.

Let check these conditions. Obvioudly fisC*and | f (t,0,0)|=0<C. It iseasy to check that the entries of
f(t,0,0), f, (t,X,U) and f,(t,X,U) areintermsof S,I;,R for i =1,2,3 and some constant parameters.
Fromthe boundednessof S,1;,R for i =1,2,3, the| f(t,0,0)],] f, (t, X,U) | and| f, (t, X,U) | are bounded
and we conclude that there exist a constantC such that| f (t,0,0)|< C,| f, (t, X,U) KC(1+|U |

and| f, (t, X,U) [ C which completes the condition 1. To verify the condition 2, we refer to theorem 2.7

(page37) [16] which is dueto E. Picard and E. Lindelof. With the bounds above, it follows that the partial
derivative of the state system is bounded which implies the state systemis lipschitz continuous with respect
to state variables. We may now establish the condition 2 through the Picard-Lindelof theorem. For condition
3, we have

Al_dlssi_ﬂllsll_ﬂlzglz _ﬂ1381|3
ﬂ1181|1+ﬂ12§|2+ﬂ13§|3_(d1| +ea+r)h
71'1_d1RR1
A2—dzssz—ﬂ2182|1—ﬂ2282|2—ﬂ2382|3
a(t, X) = ﬂ2182|1+ﬂ2282|2+ﬂ2382|3_(d£ +e,+7,),
72'2_d2RR2
Aa_dasss,_ﬂalssll_ﬂﬁsslz_ﬂaassla
ﬂ31$3)|1+ﬂ3283)|2+ﬂ3385|3—(d3[ +tegt7s)l,
73'3_d3|?R3+V3|3

and b(t, X) =
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—S1 0 0 0 0 0 ﬂu%lz ﬂ1351|3 0 0
0 0

0 0 0 _|1 0 0 _ﬂlzslz _ﬂ1351|3 0 0
0 0

S 0 o I, 0 o0 0 0 0 0
0 0

0 -S 0 0 0 o0 0 0 BaSl BxS,
0 0

0 0 0 o -1, O 0 0 —BaSl, - BrSl,
0 0

0 S, 0 0 I, O 0 0 0 0
0 0

0 0 -5 0 0 0 0 0 0 0
ﬂ3153|1 ﬂszsslz

0 0 0 0 0 -l 0 0 0 0
_ﬂslszll _ﬂ3253|2

0 0 s, 0 0 I, 0 0 0 0
0 0

The control set is [0, 1]* which is closed, compact and convex that is verified the condition 4. Finally

to verify the condition 5, it is clear that theintegrand of the objective functional is convex on control set and

g(t, X,U) = Al +BIZ +CI; + DU} + EU + FuZ + GV, + KV, + LVvZ, + Nv5,
+LvZ + NVZ, +OVZ + PvZ, + Q7 + 2v2 +WAZ >

DU/ + EUZ + FuZ + GV5, + KV, + L2, + NVZ, ++Lv5, + NVZ, +OVZ + PVZ, + QW + Zv2 + WA >

min(D,E,F,G,K,L,M,N,O,P,QW)(UF +Uj +Us +Vi, +Vig + Vo + Vo5 +V3 +Vop +Vgy +V V) +V; +V5)

which

completes the proof.

(1]

(2]
(3]

[4]
(5]
(6]
[7]
(8]

References

Matt J. Kedling, P. Rohani Modeling Infectious Diseasesin Humans and Animals,published by Princeton University Press
(2008).
S. Lenhart, J. T. Workman, Optimal control applied to biological models, Chapman and Hall, L ondon, 2007.

D. Kirschner, S. Lenhart, S. SerBin. Optimal control of the chemotherapy of HIV, Journal of Mathematical Biology, 1997,
35: 775-792.

U. Ledzewicz, H. Schaettler, On optimal singular controls for a general SR-model with vaccination and treatment,
Discrete and Continuous Dynamical Systems, Series B, 2011, AIMS Proceedings, 2011, pp. 981-990.

E. Jung, S.lenhart, Z. Feng,Optimal control of treatmentsin a two-starin tuberculosis model, Discrete and continious
dynamical systems-seriesB, Volume 2, Number 4, November 2002.

B. A. Folashade, N. Marcus, K.O. Okasun, A pplication of optimal control to the epidemiology of malaria, Electronic
Journal of Differential Equations, Vol. 2012 (2012), No. 81, pp. 1-22.

K. Fister, J. Donndly, Immunotherapy: An optimal control theory approach, Mathematical Biosciences and Engineering,
2005, 499-510.

Cadtillo-Chavez, C., Cooke, K.L., Huang, W., Levin, S.A. , On the role of long incubation periodsin the dynamics of
acquired immunodeficiency syndrome (AIDS). Part 2: Multiple group models. In: Castillo-Chavez, C. (ed.) Mathematical
and Satistical Approachesto AIDSEpidemiology, (LectureNotesin Biomathematics, VVol. 83) Springer-Verlag, Heidlberg,
1989.



784 M. Afshar and M. R. Razvan

[9] Huang, W., Cooke, K.L., Castillo-Chavez, Sability and bifurcation for a multiplegroup model for the dynamics of HIV/
AlDStransmission, SIAM J. Appl. Math 52 (1992), 835-854.

[10] JM. Hyman, J. Li, E.A. Stanley, The initialization and sensitivity of multigroup models for the transmission of HIV,
Journal of Theoretical Biology 208 (2001) 227-249.

[11] H.R.Thieme, Mathematicsin Population Biology,Princeton University Press, Princeton, 2003.
[12] J. Arino, P. van den Driessche, Metapopulations epidemic models, In: Fields | nstitute Communicationsvol ume 48, 2006.

[13] J. Arino, A. Ducrot, P. Zongo, A metapopul ation model for malariawith transmission-blocking partial immunity in hosts,
In: Journal of Mathematical Biology, volume 64, 2012.

[14] Hongbin Guo, Michad Y. Li, Zhisheng Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic
models,In: Canadian Applied Mathematics Quarterly, Volume 14, Number 3, Fall 2006.

[15] Fleming, W. H. and Rishel, R. W., Deterministic and Sochastic Optimal Control, Springer Verlag, New York, 1975.

[16] Deuflhard, P. and Bornemann, F., Scientific computing with ordinary differen- tial equations, volume42. Textsin Applied
Mathematics, Springer, Berlin, 2002.

[17] H.R. Joshi, Optimal control of an HIV immunology model, Optimal Control Applicationsand Methods, Volume 23, Issue
4, pages 199213, July/August 2002.

[18] Sethi, S. P and G L. Thompson, Optimal Control Theory: Applicationsto Management Science and Economics, Kluwer,
Boston, 2nd edition, 2000.

[19] V. Capasso, Mathematical structure of the epidemic systems in: Lecture Notes in Biomathematics, vol. 97, Springer-
Verlag, Berlin, Heidel berg, 1993.

[20] Z. M@, J. Li, Dynamical Modeling and Analysis of Epidemics, World Scientific, 2009.

[21] Piet Van Mieghem, D. Stevanovic, F. Kuipers, C. Li, Ruud van de Bovenkamp, D. Liu, H. Wang, Decreasi ng the spectral
radius of a graph by link removals, Physical Review E 84 (1), 016101.





