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Abstract: We study a system of ordinary differential equations which describes the metapopulation SIR model. The
main target is to control the epidemic spreading using the structure of connections between cities. For this purpose,
we formulate optimal control strategy that the control represents a drug treatment and Prevention strategies . Some
methods are given in numerical example section such as control through spectral radius of movement matrix or
optimal control through travelling between cities. Existence results for the optimal control are studied.
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1. INTRODUCTION

Differential and dynamical models is applied to analysis and to make decision in biological models [1, 2].
Optimal control theory is a branch of differential equations that can be used in restraining the spread of
infectious diseases. The study by Kirschner et al. [3] used optimal control theory to establish the optimal
treatment strategy for the managing of antiretroviral drug in individuals who were HIV positive. Geometric
optimal control theory is applied to epidemic model in [4]. In that paper, a general SIR-model with vaccination
and treatment is considered as an optimal control problem over a fixed time and it is shown that the optimal
vaccination schedule can be singular, but that treatment schedules are not. Optimal control techniques is
applied to study optimal strategies for restraining the spread of malaria [6]. Fister and Donnelly [7] also
used optimal control theory to determine the conditions for the elimination of tumor cells in an individuals
under treatment for Cancer.

The structure of a population or group plays an important role in the dynamics of a disease transmission
[8, 9, 10]. Epidemiological models are almost multigroup models. Groups can be classified into geographical
groups such as cities, countries and communities, behavioral groups like different patterns of contact and
high risk groups or epidemiological groups like vertical transmission and co-infection of multiple origins
of the disease agent[11].

One of the important models in epidemiology is metapopulation model. Consider a human disease that
is spread in a large country with a small number of potentially large cities. Suppose that the movements
between cities are fast, and the propagation of an epidemic takes place only at the destination location. In
this setting, travel of individuals between cities must play some role in the spreading of the disease. Based
on continuous time model, Arino and van den Driessche investigated on role of cities in the epidemic
spreading [12]. Arino et al. studied a metapopulation malaria model using SI and SIRS models for the
vectors and hosts [13]. Multigroup models can also be used to investigate infectious diseases with multiple
hosts such as West-Nile virus and vector borne diseases. For a survey of multigroup models, we refer to
[11]. For a class of multigroup SIR epidemic models with varying subpopulation sizes, Guo et al. established
that the global dynamics are completely determined by the basic reproduction number R

0
. Basic reproduction

number, local analysis and global analysis of Metapopulation SIR model have been presented in [14].
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We develop optimal control formulation of Metapopulation SIR model with three cities. The model
and optimal control formulation are introduced in the next section.The basic reproduction ratio will be
computed in section 3. We present the existence of optimal control results in section 4. The optimal control
is characterized in terms of the adjoints and states by Pontryagin Maximum Principle (PMP) in section 5.
The control strategies are considered. Numerical examples for optimal control formulation are presented in
section 6. In section 7 the structure of movement matrix and it’s impact on epidmemic spreading is
investigated and these results are illustrated with numerical examples.

2. THE MODEL

Our metapopulation model is, formulated by dividing the population of size N(t) into three distinct cities.
We study the transmission dynamics in cities with an SIR(susceptible-infected-recovered) model. For

1,2,3=k ; the k-th city is divided into three compartments: the susceptibles, infectious, and recovered,

whose numbers of individuals at time t are denoted by )();( tItS kk  and )(tRk ; respectively. For nji �� ;1 ;

the disease transmission coefficient between compartments iS  and jI  is denoted by ji� ; so that the new

infection occurred in the k-th group is given by jkkjj
IS��3

1=
. The matrix B = ( ij� ) is the contact matrix,

where 0�ij� : Within the k-th group, it is assumed that natural death occurs in kS , kI  and kR  compartments

with rate constants I
k

S
k dd ,  and R

kd  respectively. Individuals in kI  have another death due to disease with rate

constant �
k
. The inflow of susceptible individuals into the groups is given by a constant �

k
. Suppose that

individuals in I
k
 recover with a rate constant �

k
; and once recovered they remain immuned for the disease.

Based on these assumptions, the following system of differential equations can be expressed (for i = 1, 2,
3):
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The following parameters appear in our model:

ij� : transmission coefficient between iS and jI ;

R
k

I
k

S
k ddd ,, : natural death rates of S ; I ; R  in the k-th group, respectively;

k� : inflow of susceptible individuals into the k-th group;

k� : recovery rate of infectious individuals in the k-th group;

k� : disease-caused death rate in the k-th group.

All parameter values are assumed to be nonnegative and 0.>,,, k
R
k

I
k

S
k ddd �  Using the same parameters

and class names as in the model (1), we suggested the following ODEs system (3) describing the model
with controls.
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The control functions u
i
(t), v

i
 and v

ij
(t) have to be bounded on [0, 1] and Lebesgue integrable functions.

1,2,3=),( itui  measure the time dependent efforts on the preventive strategy (such as vaccination) of
susceptible individuals in S

i
, to reduce the number of individuals that may be infectious. The control functions

v
ij
 measures the time dependent efforts on the limitation strategy of immigration of susceptible individuals

from city i to j. v
i
(t) measures the time dependent efforts on the treatment of infected individuals in city i to

reduce the number of infected individuals. This control will have an impact on the output flow of people
from the The objective functional to be minimized is:

=),,,,,,,,,,,( 323123211312321321 vvvvvvvvvuuuJ (4)
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Here, PONLKGFEDCBA ,,,,,,,,,,,  are adjustment parameters. They are converting the dimension
from population number into cost expended over a finite time period ofT  years. We seek an optimal
control
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}),,,,,,,,,,,(|)({min 323123211312321321 UvvvvvvvvvuuuUJ �

where

},,|),,,,,,,,,,,{(= 323123211312321321 measerablevvuvvvvvvvvvuuuU ijii  and ]}[0,1,,,{0 Ttvvu ijii ���  is

the control set.

3. BASIC REPRODUCTION NUMBER

The global behavior of the metapopulation model depends on the basic reproduction number, i.e., an average
number of secondary cases produced by a single infective individual, who is introduced into an entirely
susceptible population. System (1) has an infection-free equilibrium in which the susceptible components
are positive and the infective components equals to zero. According to definition of R

0
, for R

0
>1, initial

infection will spread, and the disease will disappear if R
0
 < 1. Denote this infection-free equilibrium by

,0,0),0,0,,0,0,(= 0
3

0
2

0
1 SSSE  where S

i

i
i d

S
�

=0
. Analyzing the local stability of this point gives the epidemic

threshold condition, 0R . E is locally asymptotically stable if R
0
 < 1, and unstable if R

0
 > 1. Thanks to [14]

basic reproductive ratio is given by )(= 00 MR �  where
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Here M
0
 called movement matrix and � denotes the spectral radius of matrix. We investigate the effect

of different prevention strategies on the spread of infectious diseases within a population. The majority of
existing papers fall into one of two groups. In the first group, prevention strategies are modeled by a
constant parameter and the goal is to understand how changing the value of the parameter changes the
dynamics of the system. Often the aim is to determine the best parameter value for a given performance
measure. In this manner we can compute basic reproductive ratio,
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where 
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In the second group, prevention strategies are allowed to vary as a function of time and the goal is to
determine the best function for a given performance measure. We will investigate this point of view in the
following.

4. DERIVING THE OPTIMAL SOLUTION

In this section, we derive the optimal control system for minimizing the functional 4 subject to 1. In order
to derive the necessary conditions for this optimal control, we use Pontryagin’s Maximum Principle [18].
The Hamiltonian is defined as follows:
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with transversality conditions 1,2,3,4.=0,=)( iTYi  The following characterization holds

�
�
�

�

�
�
�

�

�

�

�

�

�
�
�

�

��
�

�

�

�

�

�

,0},1}.
2

)(
{max{min=

,0},1}
2

)(
{max{min=

,0},1}
2

)(
{max{min=

,0},1}
2

)(
{max{min=

,0},1}
2

)(
{max{min=

,0},1}
2

)(
{max{min=

398*
3

265*
2

132*
1

397*
3

264*
2

131*
1

W

IYY
v

Z

IYY
v

Q

IYY
v

F

SYY
u

E

SYY
u

D

SYY
u

�

and

�
�
�
�
�
�

�

�
�
�
�
�
�

�

�

�

�

�

�

�

�

,0},1}.
2

)(
{max{min=

,0},1}
2

)(
{max{min=

,0},1}
2

)(
{max{min=

,0},1}
2

)(
{max{min=

,0},1}
2

)(
{max{min=

,0},1}
2

)(
{max{min=

233278*
32

133178*
31

322345*
23

122145*
21

311312*
13

211212*
12

P

ISYY
v

O

ISYY
v

N

ISYY
v

L

ISYY
v

K

ISYY
v

G

ISYY
v

�

�

�

�

�

�

Proof. Applying Pontryagin Maximum Principle, we obtain

0=)(,= 1
1

1 TY
S

H
Y

�
�

��

evaluated at the optimal control and corresponding states, which results in the stated adjoint system (7).

Similar progress can be done for 92 ,...,YY . By considering the optimality conditions for Hamiltonian,

0===
ijii v

H

v

H

u

H

�
�

�
�

�
�

 and solving them, the characterization of optimal control functions can be derived.

To illustrate the characterization of *
1u  we have

.
2

)(
=0=)(2= 131*

113111
1 D

SYY
uSYSYDu

u

H �
���

�
�

By standard control arguments involving the bounds on the controls, we conclude

�
�
�

�

��
�

�

�

�

�

�
�

�
�

.1>
2

)(
1

,0<
2

)(
0

,1
2

)(
0

2

)(

=

131

131

131131

1

D

SYY
if

D

SYY
if

D

SYY
if

D

SYY

u



Control of Diseases Epidemic Spreading through Metapopulation Models 775

In compact notation, we have ,0},1}
2

)(
{max{min= 131*

1 D

SYY
u

�
. The rest of the control functions can be

found by a similar method.

5. NUMERICAL RESULTS

In this section, we investigate numerically an optimal policy and prevention strategies of our model. The
state and adjoint system of differential equations together with the control characterization above form the
optimal control system to be solved numerically. As we know the state equations have initial conditions,
while the adjoint equations have final time condition and we cannot solve the optimality system directly by
sweeping forward in time method. Thus forward-backward sweep method (thanks to Lenhart and
Workman[2]), is used. For the control function, an initial estimate is made. Then the state system is solved
forward in time from the dynamics using a Runge Kutta method of the fourth order(RK4). Results for state
values are placed in the right-hand sides of the adjoint differential equations. Then the adjoint system is
solved backward in time with given final conditions, again employing a RK4 method. Both state and
adjoint values are used to update the control using the characterization, and then the process is repeated.
This iterative process terminates when current state, adjoint, and control values converge sufficiently.

5.1. Example(1): Minimum cost static control

Now we will use the MATLAB program to ascertain how each control parameter affects the solution. This
example illustrates how constant parameter control could change the future of epidemic spreading. Let us
enter the following values in the model system (1):

According to (3) the reproduction number for this example equals to 1.6071=0R  and there exists an

asymptotically stable endemic equilibrium point

(6.2222,0.4048,2.0238,9.3333,0.6071,3.0357,12.4444,0.8095,4.0476)

that system tends to this point. By using constant  parameter control

0======0,===0.1,=== 223123211312321321 vvvvvvvvvuuu  one can compute the basic
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reproductive number by (5) and obtain .8036=0R  The system tends to disease-free equilibrium

point 0,10),0,7.5,10,(5,0,5,7.5  and outbreak does not occur. Here the objective functional
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The final cost is 1175.8=J  when we have no control on processes and 30.6442=J  for constant
parameter control strategy. Despite the control of outbreak, it seems that the cost increases greatly. One can

solve the simple optimization problem to find the best ),,.....,,,1,( 3231132 vvvuuu . This gives

Minimum static controls

u1 = 0.044 u2 = 0.056 u3 = 0.066

v1 = 0.006 v2 = 0.009 v3 = 0.012

v12 = 0.002 v13 = 0.002 v21 = 0.002

v23 = 0.003 v31 = 0.002 v32 = 0.003

and J = 10.5903. Figure(1) shows the minimum cost static controls.

Figure 1: Minimum cost static controls and its effect on epidemic spreading
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5.2. Example(2): Optimal control policy

Here, we consider the previous example with optimal control approach that control functions u
i
, v

i
, v

ij
 can

be continuous functions with respect to the time. Let us enter the following values as an adjustment parameters
in optimal control method in the previous example:

1000,1= �������������� TZWQPOLKGFEDCBA

As we observe, the model system tends to endemic equilibrium. Figures (2) and (3) shows an optimal
schedule and related control functions

),,,,,,,,,,,( 321323123211312321 vvvvvvvvvuuu

for T = 1000. Final cost for optimal control is J = 4.4627 and the final cost without control strategy is
J

2
 = 1175.8. The optimal control strategy tries to hold costs in a practical level and it depends on our

adjusting objective functional J and coefficients A, B, C,

6. TRAVELLING BETWEEN CITIES AND ITS EFFECT ON THE EPIDEMIC SPREADING

In this section we try to depict the impact of movement matrix on the epidemic spreading in the
metapopulation model. In the second section the basic reproduction number was computed by spectral
radius of movement matrix. The spectral radius of movement matrix changes by removing edges. The
decrease of the spectral radius, an important characterizer of metapopulation dynamics, by removing edges
is investigated in [21]. In that paper, the minimization of the spectral radius by removing m edges is shown
to be an NP-complete problem, which suggests considering heuristic strategies. Several greedy strategies
are compared, and several bounds on the decrease of the spectral radius are derived. Here we face the small
scale and we can study the minimization of the spectral radius (consequently minimization of the basic
reproduction number) by simple computing. Next examples show these.

Figure 2: Optimal control strategy. obviously optimal control causes the model system not to tend to endemic
equilibrium point and this process occurs with the minimum cost
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6.1. Example(1): Control through spectral radius of movement matrix

Consider the second example in the numerical results section again. The basic reproduction number was
R

0
 = 1.6071. By eliminating e

ij
 edge, v

ij
 value will be changed to 1 in the model. This means that the ij entry

of movement matrix reduces to zero and consequently the spectral radius of movement matrix (or the basic
reproduction number of model) decreases. The next figure and table show the connection graph of cities
and removed edges and their effect on the basic reproduction number. It resembles that this model can be
applied to the real models.

Figure 3: Control function. These functions show control strategy at each moment

Figure 4: Movement graph
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Removed edge R
0

Removed edge R
0

12e 1.4777 2112 ,ee 1.4009

13e  1.4286 3113 ,ee  1.3409

21e  1.4777 3223 ,ee  1.1884

23e  1.3165 2312 ,ee  1.2311

31e  1.4286 2313 ,ee  0.8929

32e  1.3165 1312 ,ee  1.2500

By removing e
13

 and e
23

 (this means that we exert limitation on trips from city 1 to city 2 and from city
2 to city 3) the basic reproduction number decreases to less than one and consequently the epidemic spreading
does not occur. Another practical way to decrease the basic reproduction number is to reduce the rate of the
trips. For instance, when epidemic spreading begins, we exert limitation on the trips that leads to reduce the
rate of trips reduce to 1/3. Then in the above example the basic reproduction number reduced to
R

0
 = 0.9344.

6.2. Example(2): Optimal control through travelling between cities

Consider the second example in numerical results section again with optimal control approach that control
functions v

ij
 can be continuous functions with respect to the time. The optimal strategy is shown in figures

below.

Figure 5: Optimal control on metapopulation model. Here we only use v
ij
, the limitation strategy of immigration of

susceptible individuals from city i to j, as a control function
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As we observe, optimal control in this example persists on v
21

 and v
32

. This is agree with the results on
previous example. Note that by adjusting the parameter, we will find more appropriate results.

7. CONCLUSION

This paper has presented mathematical and epidemiological results about the control of disease spreading
in metapopulation model. This was designed to examine the following questions:

• How do the structure of movement matrix can affect the dynamics of disease spreading?

• Which conditions on the rate of control parameter can ensure the eradication of disease, or at least
minimize its incidence?

• What is the mathematical and numerical consequence of considering such model?

• What is the optimal treatment and prevention strategy?

A deterministic mathematical model for the transmission dynamics of disease in metapopulation model
has been built to answer these questions. An important result of this analysis is that the cost-effective
balance of prevention and treatment methods can control a disease outbreak. Strategies of optimal control
can affect the reducing of death toll and severity of an outbreak. Optimal control theory in our model is a
starting point for more elaborate models.
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Figure 6: Control functions in movment control model
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9. APPENDIX

9.1. Existence of an optimal control

The existence of the optimal control can be proved by using a theorem and it’s corollary by Fleming and
Rishel ([15], Th. 4.1, p. 68-69).

Theorem 8.1: Consider the control problem with system equations (1), There exists Uuuuu �),,,( *
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To use an existence results, we must check the following conditions:
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1. f is class C1 and there exist constant C such that

• Ctf |<,0,0)(|

• |)|(1|),,(| UCUXtf X ��

• CUXtfU �|),,(|

2. Let � be the class of feasible pairs (X, U). The set � with corresponding control in admissible control
set is non-empty.

3. UXtbXtaUXtf ),(),(=),,( �

4. The control set is closed, compact and convex.

5. The integrand of the objective functional is convex in control set. The boundedness of solutions of the
system (1) for the finite time interval is used to prove the existence of an optimal control pair. For this,
let
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that shows the boundedness of iii RIS ,,  for 1,2,3=i .

Let check these conditions. Obviously f is C1 and Ctf <0|=,0,0)(| . It is easy to check that the entries of

),,(,0,0),( UXtftf X  and ),,( UXtfU  are in terms of iii RIS ,,  for 1,2,3=i  and some constant parameters.

From the boundedness of iii RIS ,,  for 1,2,3=i , the |),,(||,,0,0)(| UXtftf X  and |),,(| UXtfU  are bounded

and we conclude that there exist a constant C  such that |)|(1|),,(|,|<,0,0)(| UCUXtfCtf X ��

and CUXtfU �|),,(|  which completes the condition 1. To verify the condition 2, we refer to theorem 2.7

(page37) [16] which is due to E. Picard and E. Lindelof. With the bounds above, it follows that the partial
derivative of the state system is bounded which implies the state system is lipschitz continuous with respect
to state variables. We may now establish the condition 2 through the Picard-Lindelof theorem. For condition
3, we have

��
�
�
�
�
�
�
�
�
�
�
�

�

�

��
�
�
�
�
�
�
�
�
�
�
�

�

�

��
�����

�����
�

�����
�����

�
�����

�����

333333

3333333323321331

333323321331333

2222

2222322322221221

322322221221222

1111

1111311321121111

311321121111111

)(

)(

)(

=),(

IvRdI

IdISISIS

ISISISSd

RdI

IdISISIS

ISISISSd

RdI

IdISISIS

ISISISSd

Xta

R

I

S

R

I

S

R

I

S

�
�����

���
�

�����
���

�
�����

���

and =),( Xtb



Control of Diseases Epidemic Spreading through Metapopulation Models 783

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

��
�

�

���

�

���

�

00

00000000

000000000

000000000

00

00000000

00

0000000

00

0000000

00

00000000

00

0000000

00

0000000

33

23321331

3

23321331

3

22

222212212

222212212

11

311321121

311321121

IS

ISIS

I

ISIS

S

IS

ISISI

ISISS

IS

ISISI

ISISS

��

��

��

��

��

��

The control set is [0, 1]12 which is closed, compact and convex that is verified the condition 4. Finally
to verify the condition 5, it is clear that the integrand of the objective functional is convex on control set and
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completes the proof.
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