
133 International Journal of Control Theory and Applications

Comparative Analysis of BBx, OBBx, POBBx and SOBBx Indexing Methods of Spatial Databases

Comparative Analysis of BBx, OBBx, POBBx and SOBBx Indexing
Methods of Spatial Databases

K. Appathurai1 and M. Anandkumar2

1 Assistant Professor Dept. of Information System and Technology, Sur University College, Sur, Oman
2 Associate Professor Dept. of Information Technology, Karpagam University, Coimbatore – 21

Abstract: Spatiotemporal database deals with moving objects that change their locations over time. Generally, moving
objects report their locations obtained via location-aware devices to a spatiotemporal database server. The server can
store all updates from the moving objects so that it will be capable of answering queries about the past. Some applications
need to know current locations of moving objects only. In this case, the server may only store the present status of the
moving objects. To predict future positions of moving objects, the spatiotemporal database server may need to store
additional information, viz., the objects’ velocities. In this study the indexing structures BBx, Optimal BBx,
Parameterized OBBx and Space based OBBx are analyzed in the way of tree creation, methodology of indexing, the
process of updation and the process of migration are studied.

Keywords: Moving Objects, BBx index, OBBx index, POBBx index, SOBBx index and Migration.

I. INTRODUCTION

In real world applications spatiotemporal databases store data which are continuously varying in space and time.
Because it produce a huge volume of data compared to the traditional database applications. Consequently they
need to be managed efficiently, in order to process the information in a sensible manner. Additionally, unlike
traditional DBMS operations, in spatiotemporal operations, both the cost of I/O, as well as the cost of computation
is quite high. Thus efficient storage and indexing techniques are very much important in handling and processing
this kind of data (3,4,5).

Nowadays there is a tremendous development in the statistical models and techniques to analyze
spatiotemporal data such as vehicle detection and monitoring data (11). Spatiotemporal data occur in many other
contexts e.g. disease mapping and economic monitoring of real estate prices (1). Besides the key interests in
analyzing such data are to produce smooth and predict time evolution of some response variables over a certain
spatial domain. Naturally, such predictions are made from data observed on a large number of variables which
themselves vary over time and space. There are many other significant areas where spatiotemporal data are used
to detect familiar and meaningful patterns as well as to make predictions (12-15). Examples consist of hydrology,
ecology, geology, social sciences and many areas in medicine such as brain imaging, wildlife population monitoring
and tracking, and machine vision (1).



International Journal of Control Theory and Applications 134

K. Appathurai and M. Anandkumar

The ultimate goal of indexing the moving object data is to speed up the retrieval operations of a database
table. But the performance of indexing is hindered due to the following reasons.

1. During indexing (2) the moving objects can’t be updated within the maximum update interval should be
migrated. Due to more migration process the performance is not worthy. So data at all points of time is
constructed with empirical experiments and are reported. So one such case occurs when half objects are
updated frequently while half are not, resulting in relatively many forced updates (i.e. updation by the
system).

2. Usually after the lifespan of tree the object data is moved from one tree to another by updation or migration.
During updation or migration the object is removed from old tree and then added to the next tree. Every
object has indexed time based on that it will find out the old tree and then finds out the position of the object
in that tree and after that the object is removed. Here for finding the old tree and the position the searching
took more time.

3. As per cost and density it may have the following problems in some scenarios:

1. Larger tree leads to an increase in searching cost, while a smaller tree may introduce extra migration
cost.

2. Both the updation time and migration time becomes larger in case of high density (population of
objects) in a tree.

II. BROAD BINARY INDEX (BBX INDEX)

2.1. Tree Construction

Figure 1 shows the tree creation of BBx index structure (2). In the below figure T1, T2, etc., are trees. In this
example consider the number of moving objects is 50 and found the maximum update time interval among all
the 50 objects (maximum time interval means the frequency of update time interval to the server), say in this case
it is 5 seconds means, based on this the linear representation is formed as shown in the figure 1. In this case 12
trees are used for the time period 0 to 30 seconds. Initially the trees are formed 5, 10, 15 etc., seconds and for
storage efficiency the interval is divided by n (usually n=2) (Dan Lin, 2005) so for the seconds 2.5, 7.5, 12.5 etc.,
seconds also the trees are formed. Here the interval is divided by n i.e. 5/2 = 2.5 (subintervals).

The Maximum Update time interval is 5 sec.

This arrow indicates the lifespan of tree T1.

Figure 1: Tree creation of BBx index structure

2.2. Indexing Method

Each tree has a lifespan (a minimum and maximum time period for indexing). At the end of the lifespan the tree
values are updated to the next tree. So first, it is checked whether all the objects reach the next tree or not and
they reach then all the objects to next tree are updated and then the objects are removed or deleted from the



135 International Journal of Control Theory and Applications

Comparative Analysis of BBx, OBBx, POBBx and SOBBx Indexing Methods of Spatial Databases

existing old tree to avoid duplication of index. The function updation is called for updation of objects. In this
updation algorithm the tree where the update object is identified (search) and located and then the position of the
object in that tree is found out (search). Then the identified object is removed and updated in new tree. The object
insertion or updation into the tree the binary tree method (2) is followed, If the key value of insertion node ‘C’ is
lesser than the key value of node ‘N’ then node ‘C’ is inserted on left position of the node ‘N’ and if it is greater,
it is inserted on right position of the node ‘N’. If already nodes are there in that position it assumes that node as
‘N’ and the same procedure is followed. The insertion time for each object is stored in ‘Arr’ and total object
inserted is stored in ‘Tot’.

2.3. Updation and Migration Technique

Each tree has a lifespan. At the end of the lifespan the tree values are updated to the next tree. So first, it is
checked whether all the objects reach the next tree or not and if they reach then all these objects are updated to
next tree and then those objects are removed or deleted from the existing old tree to avoid duplication of index.
For updation of objects the function updation is called. If some of the objects do not reach the next tree, for those
objects the migration function is called. In this case the property of velocity is found missing because of non-
moving object. So for those migrated objects the future position can’t be predicted. The following steps show the
Migration Algorithm.

III. OPTIMAL BROAD BINARY INDEX (OBBX INDEX)

3.1. Tree Construction

In the proposed work i.e. Optimal Broad Binary Index (OBBx), the maximum update time interval is doubled.
The maximum update interval value 5 is doubled (i.e. 10) and the linear representation is formed as shown in the
figure 2. Initially the trees are formed 10, 20, 30 seconds and for storage efficiency the interval is divided by n
(usually n=2) so for the seconds 5, 15, 25 seconds also the trees are formed. Here the interval is divided by n i.e.
10/2 = 5 (subintervals).

The Maximum Update time interval is 10 sec.

Figure 2: The OBBx index tree

3.2. Indexing Method

The following algorithm shows for tree construction, Object insertion, updation and migration.

1. The maximum update time interval for each object is found out and stored in ‘ui’.

2. The maximum update time interval ‘ui’ is multiplied by two and then based on this interval the linear
array is formed for ts1, ts2, ts3, etc.

3. Array of ‘n’ equal intervals of ts1, ts2, ts3, etc., is formed (subintervals).



International Journal of Control Theory and Applications 136

K. Appathurai and M. Anandkumar

4. Each object lifespan is found out and is stored in ‘LE’.

5. Based on the lifespan the data are stored in the tree.

6. If the key value of insertion node ‘C’ is lesser than the key value of node ‘N’ then node ‘C’ is inserted
on left and if it is greater, it is inserted on right. If already nodes are there the same procedure is
followed. The insertion time for each object is stored in ‘Arr’ and total object inserted is stored in
‘Tot’.

7. After the lifespan, the objects move from one tree to another, while ‘Arr’ is not equal to null, and it is
checked whether all the moving objects are reach the new tree or not. If they reached function is
called as update or else function is called as migration.

Each tree has a lifespan (a minimum and maximum time period for indexing). At the end of the lifespan the
tree values are updated to the next tree. So first, it is checked whether all the objects reach the next tree or not and
they reach then all the objects to next tree are updated and then the objects are removed or deleted from the
existing old tree to avoid duplication of index. The function updation is called for updation of objects. The
following algorithm shows how the updation takes place in OBBx index. In this updation algorithm the tree
where the update object is identified (search) and located and then the position of the object in that tree is found
out (search). Then the identified object is removed and updated in new tree. The object insertion or updation into
the tree the binary tree method (Dan Lin, 2005) is followed, If the key value of insertion node ‘C’ is lesser than
the key value of node ‘N’ then node ‘C’ is inserted on left position of the node ‘N’ and if it is greater, it is inserted
on right position of the node ‘N’. If already nodes are there in that position it assumes that node as ‘N’ and the
same procedure is followed. The insertion time for each object is stored in ‘Arr’ and total object inserted is stored
in ‘Tot’. The figure 3 shows the overall structure of indexing.

Figure 3: Overall Structure of Indexing

3.3. Updation and Migration Technique

The following steps show the updation algorithm. In this ‘tindex’, ‘posindex’ and ‘keyo’ are the variables for
storing the values of old objects index time in the tree, position of the object within the tree and key value of the
object. Here the objects previous tree value is found using ‘tindex’ value.



137 International Journal of Control Theory and Applications

Comparative Analysis of BBx, OBBx, POBBx and SOBBx Indexing Methods of Spatial Databases

Each tree has a lifespan. At the end of the lifespan the tree values are updated to the next tree. So first, it is
checked whether all the objects reach the next tree or not and if they reach then all these objects are updated to
next tree and then those objects are removed or deleted from the existing old tree to avoid duplication of index.
For updation of objects the function updation is called. If some of the objects do not reach the next tree, for those
objects the migration function is called. In this case the property of velocity is found missing because of non-
moving object. So for those migrated objects the future position can’t be predicted. The following steps show the
Migration Algorithm.

In the above algorithm, tindex is a variable which is used to store the time when the object was indexed into
the old tree. Posindex is another variable which is used to store the position of the object in the old tree. ‘Keyo’
is used to store the key value of the object. The variable ‘curpos’, ‘curtim’ and ‘curarr’ are variables used to store
the new object values.

The Optimal Broad Binary (OBBx) indexing is calculated using formulas 1, 2 and 3 mentioned below. In
the below formula [phase]2 and [x_rep]2 like the format [x]2, it refers the binary representation of x, and
denotes concatenation. The two components of the function are ‘phase’ and ‘x_rep’ which are defined in formulas
2 and 3. Here ‘O’ is a given object and tu is the time when the object issues an update.

IV. PARAMETERIZED OPTIMAL BROAD BINARY INDEX (POBBX INDEX)

4.1. Tree Construction

In case of POBBx indexing the tree construction is same as OBBx indexing method. i.e the maximum update time
interval is make it as twice, based on that the linear representation is formed.



International Journal of Control Theory and Applications 138

K. Appathurai and M. Anandkumar

4.2. Indexing Method

A proposed indexing algorithm called Parameterized Optimal Broad Binary (POBBx) index is implemented
from the OBBx index algorithm. In OBBx index structure the searching process is one of the major crises during
updation and migration processes. Besides the searching takes more time during the updation and migration
processes. The workload of whole process of indexing also required more effort. Owing to these efforts, there
was a great increase in the memory space utilization, processor utilization, execution time and cost. Moreover in
the tree the node insertion and deletion is also a complex processes when the number of moving objects is high.

The main aim of the proposed algorithm is to reduce the searching process during updation and migration
of moving objects, so that the efficiency is improved and we get better results than in the OBBx index algorithm.

4.3. Updation and Migration Technique

In OBBx index algorithm during node value updation or migration first it finds the old tree by taking the lifespan
using updated time against it in the old tree. Next it finds the position of the node in that tree and then it finds the
key value of the node. There the end time is changed to current time. So for each updation or migration, searching
plays a major role. In this proposed work the maximum update time interval is similar to OBBx index and during
values transferred from one tree to another the old tree address and position is also passed along with the moving
object. So during updation or migration from one tree to another there is no need to search for the old tree and its
position. So lot of searching time and effort is reduced. Due to this reduction of searching the node access is also
reduced. Besides, the utilization of memory is also reduced and automatically the processing speed is improved
than in OBBx index. The algorithm to Tree Construction, Object Insertion, Updation and Migration were similar
to OBBx index method but the searching technique is differing from OBBx index algorithm.

V. SPACE BASED OPTIMAL BROAD BINARY INDEX (SOBBX INDEX)

5.1. Tree Construction

In case of SOBBx indexing the tree construction is same as OBBx indexing method. i.e the maximum update time
interval is make it as twice, based on that the linear representation is formed.



139 International Journal of Control Theory and Applications

Comparative Analysis of BBx, OBBx, POBBx and SOBBx Indexing Methods of Spatial Databases

5.2. Indexing Method

The main aim of the proposed Space based Optimal Broad Binary (SOBBx) algorithm is to improve the performance
in exclusive level than in POBBx indexing technique. In this proposed algorithm, the basic design of POBBx

indexing structure bears the major work focus in node updation in the trees. The new technique applied is called
Hybrid update. In Moving object indexing, the Location of Objects, Distribution of Objects, and Workload are
the three factors play an important role for effective indexing and they can change frequently based on time. In
order to avoid migration as much as possible while keeping the tree size relatively small, we have applied Hybrid
Update technique in POBBx indexing.

5.3. Updation and Migration Technique

The principle of Hybrid update is to update as many objects as possible without increasing the number of input/
output accesses. This means, the object identity, current location and velocity for each moving object are
recognized. Based on this information, the future is predicted and Hybrid update is applied. This hybrid update
accesses the same tree nodes as regular updates. In a Time t, more objects are shifted from a current tree to some
distanced tree instead of the next immediate tree. Fewer objects are left in the older sub tree and it may reduce the
migration process. This saves the cost of regular update as well. So we can effectively index the moving objects
by nearly 20-25% more efficiently than by POBBx indexing method. Updation costs and migration costs are
reduced upto 20-30% when compared to POBBx indexing method. Figure 4 shows the Space based Optimal BBx

index Hybrid Update. It clearly shows how the tree is constructed based on time interval and the Hybrid Update.
Besides it indicates some of the objects updated from tree T1 to T4, T1 to T8 instead of regular update.

Figure 4 : The SOBBx index Hybrid Update

VI. PERFORMANCE ANALYSIS

In this indexing nine moving objects are considered. The starting time of indexing is 13 ms and the ending time
is 201 ms. In figure 5 the ‘x’ axis is the indexing methods and ‘y’ axis is the indexing time.

Figure 5 shows the total indexing time for all the four methods viz., Broad Binary index (BBx index),
Optimal Broad Binary index (OBBx index), Parameterized Optimal Broad Binary index (POBBx index) and
Space based Optimal Broad Binary index (SOBBx index). The total processing time for BBx Indexing is 17 sec.,
the total processing time for OBBx Indexing is 10.1 sec., the total processing time for POBBx Indexing is 8.6 sec.,
and the total processing time for SOBBx index is 6.5 seconds. So it is proved that the SOBBx index method is



International Journal of Control Theory and Applications 140

K. Appathurai and M. Anandkumar

much better than BBx, OBBx and POBBx methods. The percentage of improvement is calculated by the following
formula,

(x1-x2) / x1 * 100.

In this ‘x1’ is the first value and ‘x2’ is the second value.

Besides in figure 5, the percentage of improvement from BBx index to OBBx index is 40.5%, from OBBx

index to POBBx index is 14.85% and from POBBx index to SOBBx index is 24.4%. The overall improvement
from BBx index to SOBBx index is 62%. The percentage of improvement is calculated as (17- 6.5) / 17 * 100.

Figure 5: Comparison of BBx, OBBx, POBBx and SOBBx indexing in terms of Processing Time

Figure 6 indicates the number of trees used in indexing process for all the four techniques. Here the number of
trees used in BBx index is 25. The number of trees used in OBBx index, POBBx index and SOBBx index is 13. This
is because of the maximum update time interval. In case of OBBx index, POBBx index and SOBBx index methods
the maximum update time interval is doubled, and so the number of trees used is reduced to almost 50%.

Figure 6: Comparison between BBx, OBBx, POBBx and SOBBx in terms of creation of number of trees



141 International Journal of Control Theory and Applications

Comparative Analysis of BBx, OBBx, POBBx and SOBBx Indexing Methods of Spatial Databases

Figure 7 indicates the number of migration hits that occurred in all the four techniques. Here the number of
migration hits in BBx index is 99. The number of migration hits in OBBx index, POBBx index and SOBBx index
is 49. This is because of maximum update time interval. In case of OBBx index, POBBx index and SOBBx index
methods, the maximum update time interval is doubled, and so the number of migration hits is reduced to almost
50%. Once the migration is reduced the efficiency is automatically improved.

Figure 7: Comparison of BBx, OBBx, POBBx and SOBBx indexing in terms of migration hits

Figure 8 indicates the number of node accesses occurred in all the four techniques. Here the number of
nodes used in BBx index is 720. The number of nodes used in OBBx index is 645, in POBBx index is 528 and in
SOBBx index is 504. This is because of the new searching mechanism which is implemented in POBBx index
and by hybrid update technique in SOBBx index. So once the node usage decreases, automatically it will reduce
the work load and improve the efficiency.

Figure 8: Comparison of BBx, OBBx, POBBx and SOBBx indexing in terms of Node Accesses



International Journal of Control Theory and Applications 142

K. Appathurai and M. Anandkumar

Figure 9 indicates the usage of memory in all the four techniques. Here the memory space required in BBx

index is 98 bytes. The memory space required in OBBx index is 38 bytes. The memory space required in POBBx

index is 32 bytes and the memory space required in SOBBx is 29 bytes. This is because of the new searching
mechanism which is implemented in POBBx index and by hybrid update technique in SOBBx index. So once the
memory usage decreases, automatically it will reduce the work load, cost and the efficiency are improved.

Figure 9: Comparison of BBx, OBBx, POBBx and SOBBx indexing in terms of Storage

Figure 10 shows the updation time for all the four indexing methods. Here the updation time for BBx index
is 8.4 seconds. The updation time for OBBx index is 6.4 seconds. The updation time for POBBx index is 5.0
seconds and for SOBBx is 2.2 seconds. Here the updation time drastically decreases from POBBx index method
to SOBBx index method because of the hybrid update technique in SOBBx index. The percentage of updation
time improvement from POBBx index to SOBBx index is almost 56%.

Figure 10: Total Updation Time



143 International Journal of Control Theory and Applications

Comparative Analysis of BBx, OBBx, POBBx and SOBBx Indexing Methods of Spatial Databases

Figure 11 shows the migration time for all the four indexing methods. Here the migration time for BBx

index is 1.5 seconds. The migration time for OBBx index is 1.1 seconds. The migration time for POBBx index is
0.99 seconds and for SOBBx is 0.76 seconds. Here the migration time gradually decreases from BBx index to
SOBBx index method because of the new searching, hybrid update technique in POBBx index and SOBBx
index.

Figure 11: Total Migration Time

5.8. Results and Discussion

• The number of Moving Objects is considered to be : 9

• Starting Time: 13 ms.

• Ending Time: 201 ms.

Table 1
Comparison of all the four indexing methods

Aspects BBx OBBx POBBx SOBBx

Processing Time (sec.) 17 10.1 8.6 6.5

No. of Trees 25 13 13 13

Migration Hits 99 49 49 49

Node Accesses 720 645 528 504

Storage Requirement (bytes) 98 38 32 29

Updation Time (sec.) 8.4 6.4 5.0 2.2

Migration Time (sec.) 1.5 1.1 0.99 0.76

Table 1 shows the comparison results of BBx index, OBBx index, POBBx index and SOBBx index methods
under different aspects. Table 2 shows the comparison in terms of processing time.



International Journal of Control Theory and Applications 144

K. Appathurai and M. Anandkumar

Table 2
Comparison based on processing time

No. of Objects BBx OBBx POBBx SOBBx

9 17 10.1 8.6 6.5

% of improvement (Processing Time)

The above comparisons clearly show that the indexing performance is improved almost to 62% from BBx

index to SOBBx index method. Moreover the performance analysis is conducted at different number of moving
objects for all the four indexing methods in terms of indexing time. Table 3 shows the results of all the four
methods.

Table 3
Performance analysis

S. No. No. of Objects BBx OBBx POBBx SOBBx

1 50 79 50 42 31

2 100 155 89 75 58

3 150 232 135 117 88

4 200 309 184 155 118

5 250 385 235 198 146

Avg. Processing time in Sec. 232 138.6 117.4 88.2

The indexing is done at different number of moving objects like 50,100,150,200 and 250. In all the cases
the percentage of improvement is almost the same. Finally the average processing time is calculated for all the
methods and the percentage of improvement from BBx index to OBBx index is found to be around 40%, from
OBBx index to POBBx index is around 15%, from POBBx index to SOBBx index is around 25% and the overall
improvement from BBx index to SOBBx index is around 62%.

ACKNOWLEDGEMENT

I sincerely thank Sur University College for providing us with various resources and an unconditional support for carrying out
this work.

VII. CONCLUSION

The first contribution of the paper is to minimize the number of trees used in the indexing methods. Normally in
the indexing methods more number of trees is involved leading to higher level of workload, indexing time and
migration hit ratio. While minimizing the number of trees involved in indexing the migration hit ratio, indexing
time and the workload automatically get minimized and as a result the efficiency of the proposed algorithm will
be great impact. With the proposed work, the number of trees and the migration process is found to be reduced
to almost 50%. The second contribution of the paper is to minimize the searching time during indexing process.
Usually in index structure the searching process will be one of the major crises during moving object updation
and migration processes. Normally, the searching takes more time during the moving object updation and migration
processes and the workload of whole process of indexing will require more effort. Owing to these efforts, there
becomes a great increase in the memory space utilization, processor utilization, execution time and cost. So in
this proposed work a new technique is implemented to reduce the searching time, memory space utilization,
processor utilization, execution time and cost.



145 International Journal of Control Theory and Applications

Comparative Analysis of BBx, OBBx, POBBx and SOBBx Indexing Methods of Spatial Databases

The Third contribution of the paper is further enhancement of indexing based on the cost and density
(population) of the moving objects. In some scenarios, larger tree lead to a higher query cost, while a smaller tree
may introduce extra migration cost. Besides, both the updating time and migration time becomes more in case of
high density in a tree. In the proposed work, in order to avoid migration at the most while keeping the tree size
relatively small, a new update technique is applied. In the present investigation, it is illustrated that the past
indexing algorithms are not suitable for modern day applications, due to the advances in the indexing technologies
and searching mechanisms. The primary contribution is to overcome the weakness mentioned above. The proposed
research is carefully designed in such a way that it can be used efficiently in monitoring with high performance.
It is well designed so as to cope up with the real time applications. The simulation results show that the performance
is good when compared with the other indexing algorithms.

REFERENCES

[1] Guoliang Xing, Jianping Wang, Ke Shen, Qingfeng Huang, Xiaohua Jia and Hing Cheung So, 2008. Mobility-assisted
Spatiotemporal Detection in Wireless Sensor Networks. IEEE conference on 1063-6927.

[2] Dan Lin, Christian S. Jensen, Beng Chin Ooi, Simonas S¡ altenis, 2005. BBx index Efficient Indexing of the Historical,
Present, and Future Positions of Moving Objects. ACM Ayia Napa Cyprus, 1- 59593 – 041.

[3] Christian S. Jensen_, Dan Lin, and Beng Chin Ooi, 2004. Query and Update Efficient B+ -Tree Based Indexing of Moving
Objects, Proceedings of the 30th VLDB Conference, Toronto, Canada, 768-779.

[4] Chengcui Zhang, and Shu-Ching Chen, 2003. Adaptive Background Learning for Vehicle Detection and SpatioTemporal
Tracking, IEEE conference on ICICS-PCM, Singapore, 0-7803-8185.

[5] Mete Celik, and Shashi Shekhar, 2006. Mixed-Drove Spatio-Temporal Co-occurrence Pattern Mining: A Summary of
Results, Proceedings of the Sixth International IEEE Conference on Data Mining, 0-7695-2701.

[6] Maria Luisa Damiani, Herve Martin, Yucel Saygin, Maria Rita Spada and Cedric Ulmer, 2009. Spatiotemporal Access
Control: Challenges and Applications on ACM 978-1-60558-537.

[7] Nasrin, Salma, Kawagoe and Kyoji , 2010. A novel index structure for efficient data management in super-peer architecture,
IEEE Conference on, Ubiquitous and Future Networks (ICUFN).

[8] Manachai Toahchoodee, Indrakshi Ray, Kyriakos Anastasakis, Geri Georg and Behzad Bordbar, 2009. Ensuring
Spatiotemporal Access Control for Real-World Applications, on ACM 978-1-60558.

[9] Y. Tao, D. Papadias, and J. Sun, 2003. The TPR*-Tree: An Optimized Spatiotemporal Access Method for Predictive
Queries. In Proc. of the Intl. Conf. on Very Large Data Bases, VLDB.

[10] C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled, 2002. STAR-Tree: An Efficient Self-Adjusting Index for Moving
Objects. In Proc. of the Workshop on Alg. Eng. and Experimentation, ALENEX, pages 178–193.

[11] George Kollios, Vassilis J. Tsotras, Dimitrios Gunopulos, Alex Delis and Marios Hadjieleftheriou, 2001. Indexing animated
objects using spatiotemporal access methods, IEEE Transactions on Knowledge and Data Engineering.

[12] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, 2000. Indexing the Positions of Continuously Moving
Objects. In Proc. of the ACM Intl. Conf on Management of Data, SIGMOD, pages 331–342.

[13] Y. Theodoridis, M. Vazirgiannis, and T. Sellis, 1996. Spatiotemporal Indexing for Large Multimedia Applications. In
Proc. of the IEEE Conference on Multimedia Computing and Systems, ICMCS.

[14] Mindaugas Pelanis, Simonas Saltenis And Christian S. Jensen, 2005. Indexing the Past, Present and Anticipated Future
Positions of Moving Objects, ACM Transactions on Database Systems, Vol. , No. , 05, Pages 1–43.

[15] Su chen, beng chin ooi and kian-lee tan, 2013. Continuous Online Index Tuning in Moving Object Databases, ACM
Transactions on Database Systems, Vol. 1, No. 7, Pages 1–45.




