
I J C T A, 9(41) 2016, pp. 1209-1217
© International Science Press

* Indian Institute of Technology, Mumbai, India, E-mail: vishnustiwari@gmail.com
** Department of Computer Application, PESSE, Visvesvarya Technological University, Bengaluru, India, E-mail: artiarya@pes.edu

Map Reduce Based Probabilistic Generalized
Suffix Tree Construction
Vishnu Shankar Tiwari* and Arti Arya**

ABSTRACT

String sequence indexing is thebasis of many applications including Route Prediction, Bio-Informatics, Text
processing, String matching etc. where thegoal is to index a huge sequences. Moreover, prediction application
requires probabilistic suffix tree. Probabilistic Suffix Tree (PST) is one of widely used string sequence indexing
technique and also serves amodel for prediction. Many available sequence indexing uses suffix tree which is built
over one long sequence.The generalized suffix tree is essentially a suffix tree built from a huge number of smaller
sequences. PST construction from thehuge volume of data by processing sequentially is a bottleneck in the practical
realization. Most of theexisting works focused on time-space tradeoffs on asingle machine. Extending them to
distributed systems is still challenging. Attempts are made to achieve parallelism and scalability by chopping long
single input string into smaller sequences and processing them in parallel. Then merging smaller subtrees to produce
final suffix tree. This approach leads to huge intermediate subtrees. Proposed technique leverages map-reduce
computation framework for distributed construction of suffix tree. Huge collection of smaller string sequences is
processed to construct suffix tree. Collection of intermediate subtrees generatedare made proportional to number
of computing nodes in thecluster and independent of input string size. The probabilistic aspect of thetree is also
taken care so that it can be used as amodel for prediction application.End product is probabilistic generalized suffix
tree (PGST). Implementation is Hadoop based and provides distributed replicated storage of data with fault tolerance.

Keywords: Suffix Tree, Big Data, Map Reduce, Hadoop, HDFS

I. INTRODUCTION

Suffix tree is widely used in pattern recognition and machine learning [1]. Traditionally it is used in
compression, text analytics,bio-informatics, genome sequence analysis, route prediction, speech and language
modeling, text mining etc. [1] [2] [3]. Suffix trees facilitate improved performance of searching on the
indexed string [5]. A compact TRIE data structured created from suffixesof a long sequence is known as
suffix tree [2] [4]. Another variant created from a large number of sequences is known as generalized suffix
tree [3]. Most of the existing work in this area focused on theefficient construction of Suffix tree on a single
machine [6] [7] [8] [9] [10] [11]. PST construction process deals with huge data sets and processing such
volume of data sequentially and coming up with a trie is a bottleneck in the practical realization.In most of
existing techniques, scalability was achieved by leveraging multiprocessor systems and increasing internal
memory[14] [15]. This comes under thecategory of vertical scalability and is limited by theamount of
hardware a single system can support. Alternative is distributed computing based horizontal scalability
where theprocess runs on distributed commodity hardware. Recent attempts in [4] [5] [18] tried achieving
parallelism by chopping input string into smaller units and processing them in parallel to produce intermediate
trees on disk. Finally merging intermediate trees to get final suffix tree. This leads to a huge number of
subtrees to merge [4]. Our approach generates set of suffixes asintermediate result. Number of such sets
generated ae in order of a number of nodes participating in computation and independent of input size.
Sometimes because of application’s requirement and also to achieveparallelism suffix tree built from



1210 Vishnu Shankar Tiwari and Arti Arya

acollection of sequences rather than one single sequence [3]. We present distributed processing technique
to construct generalized suffix tree from a large number of relatively smaller sequences. The proposed
technique is a two-step process. In thefirst step, suffixes of the input sequences along with their frequency
of occurrence are computed and in thesecond step, ageneralized suffix tree is computed. Proposed two-step
process makes itintuitive for distributed map reduce based computation without losing accuracy and
efficiency. In Map Reduce model- Mappers computes all the suffixes along with their frequency count and
Reducer constructs final probabilistic generalized suffix tree (PGST). As part of processing frequency of
occurrence of each suffix is taken care and probability of nodes of thetreeare computed. This is an essential
requirement in many prediction applications which are interested not only in suffix tree butalso theprobability
of occurrence of anode of thetree. Rest of the paper is arranged as follows. Existing work on suffix tree and
contribution of this work is discussed in section II. Section III describes Suffix trees and generalized suffix
tree. A two-step process for constructing generalized suffix tree is presented in section IV which can be
used to run on a single machine. Approach discussed in intuitive for distributed computation.Map-reduce
based horizontally scalable process of constructing PGST is presented in section V. Performance evaluation
results are discussed in section VI.

II. RELATED WORK

Suffix tree was first introduced by Weiner [13]. It was further simplified by McCreight [6] and Ukkonen
[7] and optimal construction is proposed. Naïve approach can take up to O(n3) time but Ukkonen [7] can
build suffix tree in linear time O(n). But they work on a one long string and there is no way can be made
parallel. Also they are in-memory based and suffers with memory constraints [2] and suffers with memory
locality of reference [4]. Researches tried removing bottleneck making it disk based. Hunt’s algorithm [9],
TDD [16], ST-Merge [17] and TRELLIS [12] are in this category but solves issue partially [4]. They comes
under category of semi disk based. These approaches partitions long string into multiple subtrees and
writes to disk and then merges them. Complexity of building tree is reported to be O(n2). None of them are
parallel and distributed and hence merging phase requires lots of inter-processor communication. If everything
fits into memory then they perform better than Ukkonen’s algorithm but as soon as it goes beyond memory
capacity they become inefficient. Scalability is severe issue with them. Recent two methods proposed
wavefront [18] and B2ST [19] actually made it possible to compute even when input size is larger than
memory available. B2ST [19] uses suffix arrays instead of partitioning suffix tree.A suffix array is an array
containing all suffixes of the input sorted in lexographic order. Long input string is chopped in smaller
units and builds suffix arrays in memory and dumps onto the disk. In next phase merging is performed.
Focus is on reducing I/O but parallelism is not addressed. It also takes complexity of O(n2). Wavefront [18]
focused on parallelism. Unlike others this works on whole string and partition is created on suffixes which
shares common S-prefixes [4] [20]. Suffix subtree are constructed for each partition and then merged in
last phase. Requires all the time two buffers- one the tree is getting merged which consumes around 50% of
memory and another is resultant tree. Focus is mainly on leveraging multi core architecture. It is implemented
and tested on IBM BlueGene/L super computer. However scalability cannot be achieved indefinitely because
of tiling overhead [18]. ERA [4] took more intelligent approach which first chops the single long input
sequence into smaller segments. And then subtrees are built for each independent partition. Then each
subtree is divided horizontally and subtrees are merged to give final subtrees. It avoids multiple traversal of
the subtreeto reduce I/O costs. Parallelism is tested in multi core system as well as distributed and reported
complexity of O(n2). In order to achieve parallelism wherever applicable relies on chopping input string
into smaller segments and construct subtrees for each of such segment. Authors in [5] proposed map reduce
based horizontal scalable suffix construction based on Ukkonen’s algorithm [7]. Input string is decomposed
into smaller units following the same approach as in ERA [7]. Then for each partition Ukkonen’s algorithm
[7] for in memory computation of subtree. Hence drawback is if the partition is long enough to not fit in



Map Reduce Based Probabilistic Generalized Suffix Tree Construction 1211

memory technique becomes inefficient. Map Reduce is used for distributed computation. Mapper modules
are used to compute subtree and dumps them on to disk. Hence output is a forest composed of smaller
suffix trees. Output of this work is unusable as not one final tree is constructed. All other existing techniques
generates final tree and is still a bottleneck.

Table 1
Comparison of the most important algorithms for suffix tree construction

Complexity Memory Locality Parallel Probabilistic

McCreight [6] O(n) Poor No No

Ukkonen [7] O(n) Poor No No

Hunt [9] O(n2) Good No No

TRELLIS [12] O(n2) Good No No

TDD [16] O(n2) Good No No

ST-Merge [17] O(n2) Good No No

Wavefront [18] O(n2) Good yes No

B2ST [19] O(n2) Good No No

ERA [4] O(n2) Good yes No

Map-Reduce Ukkonen [5] O(n2) Good yes No

Proposed PGST O(n2) Good yes yes

Proposed work attempts to address shortcomings of the existing techniques. Focus is on distributed
computation of suffix tree on acluster of independent machines. Map-reduce framework over Hadoop is
used. One important issue tackled is partitioning. Even if theinput string is divided into multiple shorter
chunks, resulting chunks are packaged in groups and dispatched to distributed node for computation and
each such node will generate exactly one intermediate resultant suffix set. So thenumber of suffix sets
generated independent of how many parts input string is broken but depends on how many nodes participated
in computation which is constant for cluster. Since it works on theset of string we call it as ageneralized
suffix tree. Without loss of generality, as others, in case input is one long string then the input string can be
chopped into multiple smaller units and proposed technique can be used. Many prediction application does
not require only suffix tree but also theprobability of occurrence of each node of the suffix tree. The author
in [1] uses Suffix tree as Markov model for prediction in DNA sequence, music, text etc. for which
probabilistic tree is essential. Other such example includes route prediction which requires Probabilistic
Suffix Tree (PST). We address this essential requirement and keeps arecord of frequency of occurrence of
each suffix in mapper module and at later stage passed toreducer module so that probability of each node in
tree can be calculated. This tree is we call Probabilistic Generalized Suffix Tree (PGST).

III. SUFFIX TREE AND GENERALIZED SUFFIX TREE

Let � = {A, B, ... . Z} denote a finite alphabet set of characters. �* denotes the set of all finite length strings
formed using characters from �. Let X = x

0
, x

1
, ... ., x

n–1
 $ with xi � & X � �* denote an input string of length

n = |X| and $ ���. Concatenation of two strings X and Y denoted as XY has length |X| + |Y| and consists of
alphabets from X followed by alphabets from Y such that XX = x

0
, x

1
, ... ., x

n–1
, y

0
, y

1
, ... . y

m–1
. A string Y, is

prefix of another string X, denoted as Y<< X
i
, if X = ZY for some string Z � �*. Similarly a string Y, is suffix

of another string X, denoted as Y» X
i
, if X = ZY for some string Z � �*. For X = ABCB all prefixes are �, A,

AB, ABC, ABCB and all possible suffixes are �, B, CB, BCB, ABCB. Empty string �����* has length zero and
is both prefix as well as suffix. Hence number of prefixes and suffixes of a string X is |X|. Given a string X
all prefixes as well suffixes can be computed in time �|X| each.



1212 Vishnu Shankar Tiwari and Arti Arya

The ordered arrangement of all |X| suffixes of string X in a compact TRIE is known as the suffix tree T
of X. For demonstration purpose let us assume alphabet set ��= {A, C, G, T} and a string X = AATGG$. All
the suffixes are as shown in Table 2 and resulting Suffix tree is as shown in Figure 1.

Table 2
All suffixes for AATGG$

i x
i

Suffix

1 x
1

AATGG$

2 x
2

ATGG$

3 x
3

TGG$

4 x
4

GG$

5 x
5

G$

6 x
6

$

Figure 1: Suffix tree of string AATGC$

Some of thekey features of Suffix tree are listed below:

• Internal nodes can have max children equal to |�|. Hence branching factor of thetree is |�|. Leaves
have zero children.

• Each edge in suffix tree is labeled by an alphabet a���.

• For any node, path (v) is the string formed by concating labels starting from root the the of the tree.
If v is leaf node then path (v) corresponds to a suffix of the string.

• For each leaf u, the path (u) represents a suffix. Number of leaves is |X| where X is string for tree
construction.

• If two nodes u and v has same parent x then label (x, u) � label (x, v) where (x, u), (x, v) are edges of
tree. In other words no two edges out of a node can have edge labels.

Generalized suffix tree was initially proposed in [19]. Unlike other suffix trees which process one long
sequence. The generalized suffix tree is constructed from a set of string. This work focuses on theconstruction
of generalized suffix tree through distributed computing leveraging map-reduce processing framework. As
part of processing frequency of occurrence of each suffix is taken care and probability of nodesare computed.
This tree is known as Probabilistic Generalized Suffix Tree (PGST).



Map Reduce Based Probabilistic Generalized Suffix Tree Construction 1213

IV. PROBABILISTIC GENERALIZED SUFFIX TREE (PGST) CONSTRUCTION BASICS

A suffix tree constructed from a collection of strings is known as generalized suffix tree. Given is a set of
strings S = {S

1
, S

2
 ... .. S

n
} where S

i
 ��� �1 � i � n. Each S

i
 is appended with symbol $ ��� so that none of

suffix is a substring of any other suffix. This ensures each suffix creates a leaf in the tree.We propose two-
step process to compute generalized suffix tree from S. First phase computes all suffixes and second phase
constructs tree from suffixes computed earlier. Both steps are described below.

In the first phase, all the suffixes are generated and are put on a map which stores suffix as key and
frequency as value. For each all suffixes are calculated and put in a map where key is suffix itself and value
is number of time it occurs in D. Processing is as summarized in algorithm 1 below.

Table 3: Suffixes and their occurrence count

The process is demonstrated through the example below. Following four sequences we take for
demonstration and is used as running example in all next sections. .
Suffix set is calculated for each sequence. Map with each suffix and their occurrence count computed by
Algorithm 1 is summarized in below Table. Combined length of all the sequences is  For a
given sequence Si number of suffixes is |S

i
| and can be computed in O|Si|. Hence suffixes of all sequences

can be calculated in 

In the second phase, we start with the empty tree and insert the suffixes from the map in sequence. If
any suffix sequence is unique makes a completely new branch. If the partial matchingsequence is already
found in the tree then till the match is found frequencies are summed up and for the unique portion, a new
branch is formed Algorithm II. explains the process. Fig. 2(a) below shows result of inserting suffix ACGT$
in empty tree. Next we insert a partial overlapping suffix APGT$ Fig. 2(b).

Figure 2: (a) String ACGT$ inserted in anempty tree.
(b) Then string APGT$ inserted

At any point of time height of the tree is  is the length of longest suffix. Total
number of suffixes to be inserted in tree is . Each insertion starts with root and can go till leaf



1214 Vishnu Shankar Tiwari and Arti Arya

i.e. total nodes to be traversed can be up to h. So complexity of this phase is  which dominates
overall complexity.

V. DISTRIBUTED CONSTRUCTION OF PROBABILISTIC GENERALIZED SUFFIX TREE
(PGST)

Map-reduce is a programming model for processing large data sets with a parallel, distributed algorithm
on a cluster. Map-reduce works by breaking the processing into two phases: the map phase and thereduce
phase. Each phase has key-value pairs as input and output [22]. Mapper procedure that performs filtering
and sorting and a reducer procedure perform a summary operation.

Set of string sequences  is partitioned in proportion to number of computing nodes available

in cluster. If number of nodes in clustered k then number of partitions created is  where n is cardinality of

S. For each of the partition of strings, a mapper module is triggered. Mapper locally operates on set a of
sequeces assigned to it and output is the map of suffixes a keys and values as frequency of their occurrence
similar to described Algorithm I in section III. For demonstration we take S contains following four strings

 .then say two part itions got created as
 and  Processing in mapper is described

below. For each partition a mapper is invoked and two output from corresponding mappers are shown in
below.

Mapper Module: Suffix frequency calculation of local partition 
 
Input: partition of strings  
Output: Map of all suffixes with frequency 

 
Algorithm:  
1. For each string  repeat I and II 

I. Compute all suffixes of  
II. Insert suffixes calculated into . If suffix exists 

in increment count else insert suffix 
with  . 

2.Send  to reducer 

mapperx mappery 

i xi Suffix Count j yj Suffix Count 
1 x1 ACGT$ 1 1 y1 ACGT$ 1 
2 x2 CGT$ 1 2 y2 CGT$ 1 
3 x3 GT$ 2 3 y3 GT$ 2 
4 x4 T$ 2 4 y4 T$ 2 
5 x5 $ 2 5 y5 $ 2 

6 y6 APGT$ 1 
7 y7 PGT$ 1 

Table 4: All suffix and their frequency from mappers

Suffix tree build is taken care in reduce phase. The process starts from an empty tree. Each suffix from
a different mapper is inserted in the tree. Since we add frequencies during each insertion overall frequency
for each node remains same as when computed on a single node. For example, when computed on single
node suffix has frequency 4 on each corresponding node of the tree. In reducer module for same suffix in
mapper-I and mapper-II frequency is 2 in each. Reducer will insert this suffix twice and hence for this
suffix frequency count will be 4. Performance on Hadoop cluster is shown in Figure 6.

Reducer Module: Generalized Suffix Tree Construction 
 
Input: Maps of suffixes with frequency from mapper modules  

 
Output: Generalized Suffix Tree 
Algorithm:  
For each  

I. Traverse tree till any branch has overlap with 
 and increment each node by  

II. For remaining alphabets of fork a branch 
starting last node till where overlap was found  in 
step I. For each node in new branch set count 
equal to .  Figure 3: Summary of architecture of process



Map Reduce Based Probabilistic Generalized Suffix Tree Construction 1215

V. EVALUATION

This section presents performance evaluation results of distributed construction of probabilistic suffix tree
construction on Reuters-21578 collection of news articles. It is most frequently used in theevaluationof
NLP techniques especially classification. (http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html).
It has around 12,902 documents with 90 classifications. We used these documents for PST evaluation.
Each document is assumed to be an input stream of alphabets and PST is constructed. Data was stored on

Figure 4: (a) Suffix tree after output suffixes from mapper
x
 is inserted in empty tree along with frequency (b) Suffix tree after

output suffixes from mapper
y
 is inserted intotreeofprevious step & frequency merged

(b) Suffix tree after probability computed

Figure 5: Performance with varying sequence size



1216 Vishnu Shankar Tiwari and Arti Arya

Hadoop distributed file system (HDFS) distributed over thecluster. Replication factor affects time complexity.
If it’s too low then lots of time goes into network latency for data transfer to thecomputing node. To achieve
better results we kept replication factor equal to number of compute nodes. So that data is available on all
computation nodes and we don’t spend too much time in data transfer. The experiment was performed over
cluster containing 6 compute machines (five workers and one master node).Each node has a64-bit processor
with 8 GB main memory. The result is proof of concept it scales linearly.

REFERENCES
[1] Begleiter, R., El-Yaniv, R., & Yona, G., “On prediction using variable order Markov models”, Journal of Artificial Intelligence

Research, 22, 385–421, 2004.

[2] M. Comin and M. Farreras, “Efficient parallel construction of suffix trees for genomes larger than main memory”,
EuroMPI’13, Proceedings of the 20th European MPI User’s Group Meeting, 2013.

[3] Paul Bieganski; John Riedl; John Carlis; Ernest F. Retzel, “Generalized Suffix Trees for Biological Sequence
Data”. Biotechnology Computing, Proceedings of the Twenty-Seventh Hawaii International Conference on. pp. 35–44,1994.

[4] E. Mansour, A. Allam, S. Skiadopoulos, P. Kalnis, “ERA: efficient serial and parallel suffix tree construction for very long
strings”, Proceedings of the VLDB Endowment (PVLDB), Vol. 5, No. 1, pp. 49-60, 2011.

[5] U. C. Satish, P. Kondikoppa, S. Park, M. Patil, R. Shah, “Mapreduce based parallel suffix tree construction for human
genome”, 20th IEEE International Conference on Parallel and Distributed Systems ICPADS 2014 Hsinchu Taiwan, pp.
664-670, 201, 2014.

[6] E. M. McCreight, “A Space-Economical Suffix Tree Construction Algorithm”, J. ACM, vol. 23, no. 2, pp. 262–272, 1976.

[7] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica, vol. 14, no. 3, pp. 249–260, 1995.

[8] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan, “On the sortingcomplexity of suffix tree construction,” J. ACM,
vol. 47, no. 6, pp. 987–1011, 2000.

[9] E. Hunt, M. P. Atkinson, and R. W. Irving, “A database index to large biological sequences,” in In VLDB, 2001, pp. 139–
148, 2001.

[10] S. J. Bedathur and J. R. Haritsa, “Engineering a fast online persistent suffix tree construction,” in ICDE, pp. 720–731,
2004.

[11] C.-F. Cheung, J. X. Yu, and H. Lu, “Constructing suffix tree for gigabyte sequences with megabyte memory,” IEEE Trans.
Knowl. Data Eng., vol. 17, no. 1, pp. 90–105, 2005.

[12] B. Phoophakdee and M. J. Zaki, “Genome-scale disk-based suffix tree indexing,” in Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, ser. SIGMOD ’07. New York, NY, USA: ACM, pp. 833–844.

Figure 6: Performance on Hadoop cluster



Map Reduce Based Probabilistic Generalized Suffix Tree Construction 1217

[13] P. Weiner, “Linear Pattern Matching Algorithms,” in SWAT, 1973, pp.1–11, 2007.

[14] R. Hariharan, “Optimal parallel suffix tree construction,” in STOC, pp. 290–299, 1994.

[15] G. M. Landau, B. Schieber, and U. Vishkin, “Parallel construction of a suffix tree (extended abstract),” in ICALP, pp. 314–
325, 1987.

[16] S. Tata, R. A. Hankins, and J. M. Patel. “Practical suffix tree construction”, In Proc. of VLDB, pages 36–47, 2004.

[17] Y. Tian, S. Tata, R. A. Hankins, and J. M. Patel, ”Practical methods for constructing suffix trees”, The VLDB Journal,
14(3):281–299, 2005.

[18] A. Ghoting and K. Makarychev. “Indexing genomicsequences on the IBM blue gene. In Proceedings ofConference on
High-Performance ComputingNetworking, Storage and Analysis (SC), pages 1–11,2009.

[19] M. Barsky, U. Stege, and A. Thomo. Suffix trees for inputs larger than main memory. Information Systems, 36(3):644 –
654, 2011.

[20] K. Erciyes, “Distributed and Sequential Algorithms for Bioinformatics”, Computational Biology, Springer International
Publishing, ISBN 978-3-319-24966-7, 2015.




