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ABSTRACT

Use of Splines is not yet investigated for compressed sensing (CS). We tried exponentialsplines (1E-splines) and
double sided exponential splines (2E-splines, proposed here)in compressed sensing scenario for ECG reconstruction
and found that both outperform commonly used wavelets based approaches.Using these splines, peak root mean
Square deviation (PRD) values were much lower for the same amount of measurements when compared to bi-
orthogonal wavelets. Also, the variation of PRD when analyzed againstthe number of random samples taken, the
relationship is almost linear up to a value of 50% of the samples. The frequency domain representations of these
2E-Splines were investigated and the differences from E-splines are discussed. Comparisons of results are presented
for E-Splines,2E-Splines and bi-orthogonal wavelets.The interpolatingproperties of these splines were also
investigated,for various orders, for a comparison. Filtering of the ECG signal and thresholding during reconstruction
were not attempted, since a realistic comparison of the two analytical methods were found necessary.

Keywords: Compressed Sensing (CS), electrocardiography (ECG), PRD, Double exponential Splines (2E Splines)

1. INTRODUCTION

In approximation problems, the elementary fragments are to be selected in a way that their description
should be simple,universally accepted and geometrically understandable. The benefit of simplicity is
adequatelyunderstandable. The universality helps to reduce puzzlement and extended calculations, geometric
clarity helps to conjecture subsequent fragments and inanalyzing the resulting curve. Meeting all the above
requirements at one instanceisnot easy. Using polynomials or piece wise functions full fill a part of these
requirements but in each case of its own.Splines [1] were introduced to combine the advantage of both
polynomials and piece wise functions. Even though splines are polynomial functions connected together
they will not show as much as oscillatory behavior as compared to higher order polynomials. Local
polynomial approximation produces discontinuities in the connecting regions where splines surfaces are
smooth everywhere.

B-spline interpolation yields best cost quality trade off when compared to other interpolation methods
[2]. In problems where continuous model of signal or images are required,spline representation gives a
better option than other techniques and it was already shown that [1] interpolation and approximation using
splines can be performed by digitals filters.Multiresolution properties of splines make them a principal
contender in the construction of wavelet bases [3]. Having all these advantages polynomial splines
aresparingly used in continuous signal processing, the main reason behind thismay bepiece-wise polynomials
appears only marginal in continuous time processing systems. Exponential functions are more significant
in continuous system than piece wisepolynomials, for example exponentials corresponds to the responses
of filtersand circuits.Exponential-Splines (E-splines) proposed by Michael Unser through his series of
papers [4-5] narrowed the gap between spline fitting techniques and continuous system theory.
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As smoother functions gives better frequency resolution we tried splines in Compressed Sensing [6]
scenario. Exponential splines are attempted instead of polynomial splines as it is more significant because
of the stated reasons above.Ourexperimental results were very encouraging. During our experiments we
found that the splines obtained from basic exponential splines(through convolution) are asymmetric in
nature for first few orders. Due to this fact, symmetric exponential splines, a new type of exponential
splines, that are named here as double exponential splines or 2E splineswere formulated. Wavelets are
commonly employed to get better reconstruction in CS based ECG reconstruction applications.Our
experimental results shows that 1E splines and 2E splines basisperformed better than thewavelet based
approaches.

Even though proposed byMichael Unser [4-5] in 2005, the potential of exponentials plines are not
explored much. Some recent research reveals the application of exponential splines in diverse domains, for
example Moreno et.al [7] recently (2015) proposed a new method for radar target identification. The method
uses E-pulses (extinction-pulses) which are built using exponential-splines. Like this, the aim of this paper
is to give a brief introductionto 2E splines to the benefit of engineering researcher as an alternative.The
improvement in CS based ECG reconstruction werealso found worth noting. Mathematical properties of
the 2E space, (space spanned by the double sided exponentials) are not analyzed as we aim to give an
introduction to 2E splines. We had analyzed the frequency response of 2E splines. Variations in interpolation
for both splines were also investigated.

The main advantage of CS is that it reduce the amount of data to be captured, CS theory states that
we can recover the signals with less number of samples [8].In situations where there is a limitation in
available recourses for data capturing, like sensors or in situations where these resources are extremely
expensive CS plays a vital role.It also helps when we have to capture very large amount of data like 24
hour ECG monitoring. For this purpose of 24 hour monitoringHolter monitors [9]were generally employed
to record ECG of patients with the help two,three or twelve electrodes. For continuous monitoring for
longer periods this method causes discomfort in patients.The wires between the electrode and the recorder
may alter because of patient’s movements, which may cause variation in the measurements. Wireless
sensors can be used as an alternative solution [10].These sensors sense the biomedical signals and transmit
the data. Compared to wired network wireless sensors are more attractive and provides more comforts to
the patients but the main drawback is increased power consumption, whichis propositional to the amount
of data transmitted.

The major share of power is consumed by the radio frequency (RF) power amplifier. For example, the
power amplifier of the body sensor network transmitter developed for the Medical Implant Communications
Service,uses around 74% of the total power consumed in the system [11]. As the power required is
propositional to data transmission, reduction in the amount data transmitted will drastically improve the
power saving. In these scenarios CS based methods provides an attractive solution which aims to reduce
the samples and tries to reconstruct the data with lesser samples but reconstructing the original data from
limited samples is always a challenging problem, always there is a tradeoff between the number of samples
chosen and the reconstruction quality. Once we reduce the number of measurements the quality of the
reconstructed signal will also get reduced.

Applying 1E and 2E splines in CS based ECG reconstruction is a move forward in that direction. CS
techniques are predominantly applied in image applications as compared to signal processing applications,
part of the reason may be the lack of proper hardware techniques available for taking the random input
measurements, but Random Modulation [12-13] based analog to information converters made significant
impact in this area.

Random demodulation(RM) provides a hardware-compact architecture for realizing compressive sensing
systems especially in signal processing. Modulated Wideband Converters (MWC) [14] are also used for
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accessing random samples. The structure is somewhat same as to that of parallel random demodulator.
Here input signal is applied parallely to an array of analog mixers.The most notable contribution in
compressed sensing hardware technology was proposed by Ravelomanantsoa et al, the CS encoder proposed
by them saves up to 82.9% and 75% of power in electrocardiogram and electroencephalogram applications
[15].Some recent research in CS hardware technology shows that the method can be used as a compression
technique with extremely low computational complexity [16].

Recently M. Bortolotti. et.al proposed an ultra dual mode ECG monitor based on Compressed Sensing
which is 70% energy efficient than the base lines systems [17]. All these research shows that CS is an ideal
candidateagainst the bottle neck caused by energy crisis.Our research shows that introduction of splines in
CS will increase the reconstruction quality further. We were able to get the desired quality with less number
of measurements as compared to wavelet based approach. For example by using our approach with splines
we got the PRD (Percentage Root mean square Difference) of around 35% with 280 measurements, but by
using the commonly used bi-orthogonal wavelet approach same PRD is obtained onlyafter taking580
measurements.As noted the power consumption is directly propositional to the number of measurements, it
is eminent that spline basis will help in energy saving also.

Even though CS has advantages in energy saving, practical obstruction in the adaptation of CS technique
is the reconstruction delay. This causes bottleneck between real time processing and CS.But the use of
GPU(Graphics Processing Unit) bought a break through in this area. For exampleDavid S. Smith et.al
performed real time CS basedMRI reconstruction using split Bregman solver combined with a GPU
computing platform which shows that larger amount of data can be used in real time computations [18]
Other significant contributions in this area are noted in [19-25]. In CS based ECG reconstruction scenario,
Kanoun et.al proposed a method for real time ECG monitoring system, which uses an iPhone as a decoder
forreconstructing the ECG data [26].

CS theory states that any S-sparse signal can be recovered correctly by ensuringnumber of random
measurements to be greater than or equal to four times the number of non zero coefficients in the signal
[27]. i.e., m � 4S, where ‘m’ is the number of random measurements and ‘S’, the number of non zero
coefficients in the signal. As the number of coefficients increases number of random measurements for
acceptable reconstruction quality will also get increased. Thresholding in time or frequency domain are
usually employed in order to increase the sparsity in data (to reduce the number of non zerocoefficients),
but in practical, ideal CS reconstructionrequires to reconstruct the original signal from few random samples,
that is few randomly projected samples (m) will be available and CS algorithms is expected to reconstruct
the data from it, it means that thresholding is not possible in actual CS. So in our experiments we didn’t
threshold or filtered the data. In CS based ECG reconstruction biorthogonal wavelets are usually employed,
as biorthogonal wavelets seems to yield better results [28-29], so we had considered biorthogonal wavelets
as the baseline approach to compare our results.

The algorithm performance is analyzed on the basis of (PRD).PRD can be found out by taking the
ration between l

2
 norm of the difference in the input and reconstructed signal and the input signal.PRD

formula is defined as
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Where Xi(n) be theoriginal signal, Xr(n) be the reconstructed signal and N be its length

The paper is arranged as follows. In Section II we are giving a brief introductionof compressed sensing.
Section II details one of the main contributions of this paper. In this section we describeabout the formulation
of exponential splines and our newly found double exponentials. In subsections we investigate the frequency
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response characteristic of 2E splines and analyze the variation in interpolation for both 1E and 2E splines.
In Section III,we show our results when 1E spline and 2E spline are applied in compressed sensing scenario
and we prove that both splines perform better than wavelet based approaches, we conclude this paper in
section IV.

2. COMPRESSIVE SENSING (CS)

CS is an emerging area in the field of signal and image processing. CS ideally shows how to reconstruct the
signals with lesser samples.CS theory asserts that one can recover certain signals and images from limited
number of randomly projected samples. Here we explore the possibility of CS theory in Electro Cardio
Gram (ECG).

Compressed Sensing can be simply explained as, if ‘x’ is the input vector of size N � 1 and if it has alternative
notation in another domain say �, where it is sparse. i.e. x = ��. Then CS theory states that x can be recovered
from few randomly projected samples of x on another basis � by solving the optimization problem

11
min

.  s t y �

�
��

� is the coefficients of ‘x’ in ��and ��= �

The detailed mathematical explanation can be found in [30-31].

3. EXPONENTIAL AND DOUBLE EXPONENTIAL SPLINES

Exponential splines are made by connecting exponential segments in smooth fashion. The connecting
points are called as knots. The splines we considering are cardinal in nature, which means knots are placed
at integer points.

3.1. Construction of Basic Exponential (IE)Splines

In [4] Michael Unserelaborates the equation for generating the exponential splines, for example consider if
f

a
(t) is an one sided exponential extending from 0 to + �, with ‘a’ as the co efficient of the power

� � � �,0  at
a af t e t f t� � � �

Then first order Basis Exponential spline with parameter ‘a’ can be obtained as

� � � � � �1a
a a aB t f t e f t� � � (2)

The whole process for a = -0.5 is illustrated in Fig. 1

Higher order Splines can be obtained by the convolution of lower order splines i.e.

Figure 1: From causal exponent to B-Spline. (a) Causal exponent f
a
(t). (b) f

a
(t) Shifted by one unit. (c) Basis spline
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� � � �1 2 3* *  ... ... ... a a a aNB t B B B B t�

The first order, second order, third order and fourth order exponential splines are shown in Fig. 2. From
the figure it is eminent that the E-Splines obtained are not symmetric in nature.

Figure 2: Normalized 1st, 2nd,3rd and 4th order one sided exponential(1E or E) splines.

3.2. Generation of Double sidedExponential Symmetric Splines

The splines obtained from one sided (1E) exponentials are not symmetric in nature, for generating an
exponential spline that is symmetrical we had used the B-spline equation as

� � ;    a t bB t Ae for all t� ��

where ‘a’ is the scaling parameter and the parameter ‘b’ decides the center of spline (Maximum value). By
changing the values of ‘a’ and ‘b’ in all possible ways (from � to +�) a space can be formulated which
contains all the double exponentials , we can use the equation (1) to span this space, which can be called as
double sided exponential space(or 2E space). Putting, b = 0 will give a spline which is centered at 0.

So, B-spline which is centered at zero is

� � a tB t Ae��

i.e. B(t) = Ae+at; fort = –� to 0

             = Ae–at; fort =  0 to �

We have truncated the exponential in the interval form -0.5 to +0.5

The truncated double sided exponential function in the interval (-0.5, 0.5) is

� � ;  0.5 0.5a tB t Ae t�� � � �

� � ;  0.5  0atB t Ae fort to�� � �

;  0  0.5atAe fort to�� �

= 0; else where
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The truncated exponential in the interval (-0.5, 0.5) is shown in Fig. 3.

The higher order splines can be obtained by the successiveconvolution of lower order splines

� � � �1 2 3* *  ... ... ... NB t B B B B t�

1st order, 2nd order, 3rd order and 4th order normalized double exponential splines are shownin Fig. 4.
Splines are symmetric in nature

Figure 3: Double sided exponential in the interval –0.5 to 0.5

Figure 4: Splines obtained from double sided exponential

3.3. Frequency Response of Double Sided Exponential Splines

Fourier transform of a function is

� � � � j tX j x t e dt
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��
� � �

Fourier transform of the truncated double sided exponential function

� �
0.5

0.5

a t j tX j Ae e dt� � �

�
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On integrating and applying limits
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By Euler’s formula
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Applying Euler’s formula in (10)
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That is the Fourier transform of the truncated exponential in the interval (-0.5, 0.5 ) is
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For a function A = a = 1; that is
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Normalized Frequency Response for the function for different values of a, a = 0, 1, 3 and 5

The cross over’s for sidelobes ideally has to occur at multiplies of 2�. However deviations can be
noticed from the frequency plot for a>1. Even though we haveexpected a better results for 2E splines in
ECG reconstruction the performance would have been affected by the difference in cross over’s. Our
experiments show that the reconstruction quality of ECG data lies marginally less for 2E splines than
1E.Frequency response of 2E splines response broaden out with increasing values of ‘a’ and smoothening
out of the loops on either side of the central loop.

Figure 5: Frequency response for the values a =0, 1, 3 and 5
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3.4. Comparison between 1E Splines and 2E Splines

3.4.1. Percentage variation (PV)for 1E splines

To find the PV, each spline and its two translates are added together.First translate is obtained by shifting
the spline by one unit and second translate is obtained by shifting the first translate by one unit, then all the
shifted versions are added together. For an example Fig. 6 shows the addition of 1st order splines. The
variation in boundary and variation in the top are separately found out and are tabled below.

Figure 6: Shows the addition of 1storder E-spline and it’stranslates.PV in boundary and in
top for 1st order, 2nd order and 3rd order 1E splines are tabulated and shown in Table 1.

Table 1
Percentage of variation

Spline 1E1 1E2 1E3

P.V. in boundary (%) 21.32 20.39 18.56

Variation in top 12.25 3.45 2.81

1E1 - First order one sidedexponential spline

1E2 - Second orderone sided exponential spline.

1E3 - Thirdorderone sided exponential spline.

3.4.2. Percentage variation (PV) for 2E splines

The same process as in case of 1E is repeated here for 2E. Fig. 7. shows the addition of 2nd order douvle
exponential spline and its translates.

Figure 7: Addition of 2E2 and its translates.
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PV in boundary and in top for 1storder, 2ndorder and 3rd order2E splines are tabulated and shown in Table
2.

Table 2
Percentage of variation in 2E splines

Table 4 Spline 2E1 2E2 2E3

P.V. in boundary in % 4.95 10.25 17.13

Variation in top in % 3.42 0.15 3.94

4. EXPONENTIAL-SPLINES IN CS

Bi-orthogonal wavelets are commonly employed in ECG based CS reconstruction as they seems to give
better results [28-29]. So we had compared our results against it. Forone sided and two sided exponential
spline based CS, representative ordinates are selected from first order, second order and third order splines.
These values are used to make transform matrices for CS instead of bi-orthogonal wavelet basis. Each
spline behavior is analyzed in the context of CS for a scaling factor of a = 1. The input ECG signal is taken
from MITArrhythmia data base, which is shown below in Fig. 8 [32]. MIT data base contain ECG recording
of 47 subjects taken between 1975 and 1979.

The recordings were digitized at 360 samples per second per channel with 11-bit resolution over a 10
mV range.Input data we consideredis of size of 800 � 1(N = 800).

Random samples are obtained by projecting the data using a random matrix. For each experiment input
data is projected onto a random matrix (of size ‘m � 800’) to take random measurements. We had varied
‘m’ from 10% of the data size i.e. 10 % of 800(80) to 75% of 800 (600).

Figure 8: Input ECG from MIT data base [32]

4.1. Compressed sensing using one sided exponentials

PRD obtained for each one sided exponential splines are plotted against the number of random samples
(measurement) taken in Table.3.

1E1 denotes 1storder one sided exponential spline.1E2 denotes 2ndorderone sided exponential spline
and 1E3 indicate 3rdorder one sided exponential spline.PRD at each of these splines are plotted against the
number of measurements as shown in Fig. 9.
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We had repeated the experiments for 56 times (112 including double exponentials) for different values
of ‘m’, with ‘m’ ranging from 80 to 600 and we observed that PRD is coming under 20% when the
measurements are above 400(50%). There was a sustainable improvement compared to conventional bi
orthogonal wavelet basis, which is shown in violet color.

4.2. Compressed Sensing Using 2E Splines

Table 4 shows the PRD obtained when 2E1 (1st order 2E spline), 2E2 (2nd order 2E spline) and 2E3 (3rd order
2E spline) where used to reconstruct the ECG signal using CS approach, and the same is graphically shown
in Fig. 10 which illustrate the improvement over bi orthogonal wavelets based approach.

Table 3
Measurements vs PRD for 1Esplines

Measurement in% PRD-1E1 PRD-1E2 PRD-1E3 Bior 4.4

10.00 88.81 93.32 92.38 108.35

15.00 74.16 78.79 74.02 86.88

20.00 67.88 69.24 66.25 81.47

25.00 53.81 57.50 51.79 72.52

30.00 43.51 45.07 41.86 73.84

35.00 35.93 33.09 30.34 71.56

40.00 26.32 24.90 20.39 71.22

45.00 18.56 16.08 14.72 59.23

50.00 16.62 10.60 11.65 61.78

55.00 10.82 6.19 7.31 54.67

60.00 8.83 4.26 6.37 45.11

65.00 7.03 3.90 5.70 45.26

70.00 4.57 2.99 4.25 36.93

75.00 3.35 2.63 3.26 28.25

Figure 9: Measurements vs PRD for exponential Splines and bior 4.4
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Table 4
Measurements vs PRD for 2Esplines

Measurement Percentage PRD-2E1 PRD-2E2 PRD-2E3 Bior 4.4

10.00 94.89 89.80 91.49 108.35

15.00 76.56 76.68 74.71 86.88

20.00 71.55 69.16 64.29 81.47

25.00 64.09 55.14 51.52 72.52

30.00 48.42 42.72 39.67 73.84

35.00 38.89 31.19 30.64 71.56

40.00 31.69 21.17 20.37 71.22

45.00 23.28 13.04 14.26 59.23

50.00 20.34 10.85 11.91 61.78

55.00 14.15 5.49 7.89 54.67

60.00 11.14 4.33 7.06 45.11

65.00 9.50 3.93 5.97 45.26

70.00 7.15 2.97 4.66 36.93

75.00 6.03 2.47 3.71 28.25

4.3. PRD E1 vs. 2EI

Fig. 11 compares the PRD obtained when one sided exponential spline bases (1E) and two sided exponential
spline bases (2E) are used for reconstructing the ECG. From the graph we can interfere that 2E splines and
1E splines give almost similar values, 2E values slightly on lower side This may be because of the Cross
over’s as shown in frequency response of 2E splines.Both splines perform far better than conventional bi -
orthogonal basis (which is shown in light blue color).

5. CONCLUSIONS

In this paper we proposed a compressed sensing technique using symmetrical and asymmetrical E-splines.
We had applied exponential splinesin CS for the first time and developed a new type of symmetrical splines
from double sided exponentials .The frequency domain representation of these splines were investigated
and discussed. As expected 2E spline reconstructed signal did not perform better than E spline based one.
The frequency spectrum answers this, where frequency shifts are noticed at low level of signals. However,

Figure 10: PRD for 2E1, 2E2, 2E3 and bi orthogonal 4.4 against the number of measurements (In percentage)
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the results were better as compared to the state of art methods usingbiorthogonalwavelet basis. The variation
in interpolation also studied and detailed for both 2E and E-Splines.
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