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ABSTRACT

The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and

distributed computing system. The scheduling problem is to maintain a balanced execution of all the tasks among

the various available nodes in a multiprocessor network. In this paper a dynamic scheduling algorithm named as

Optimal Multi-Step Scheduling Algorithm (OMSS) has been proposed for scheduling the load on various

multiprocessor interconnection networks. In particular, the performance of the OMSS algorithm is evaluated for a

special class of multiprocessor system known as cube based multiprocessor networks. A comparison is also made

by applying other standard scheduling algorithms on the same networks. The comparative simulation study shows

that the proposed OMSS algorithm gives better performance in terms of task scheduling on various cube based

multiprocessor networks.

Keywords: Cube Networks, Scheduling Algorithm, Minimum Distance Property, Scheduling Performance Parameter,

Multiprocessor Interconnection Networks

1. INTRODUCTION

Over the time, many scheduling policies were introduced which are designed to achieve their goals such as

efficient utilization of process elements, minimization of resource idleness or decreasing the total execution

time. Some techniques are specific to a particular type of multiprocessor architecture. These approaches are

developed using different strategies such as Minimum Distance Scheme (MDS) [1], Hierarchical Balancing

Method (HBM) [2] etc. There are algorithms which operate and optimize the task scheduling based on the

prediction of process behavior. These algorithms consider the process behavior extraction, classification and

prediction [3]. Iterative greedy approach is also a notable algorithm to minimize the total execution time and

communication cost [4]. The main idea in this algorithm is to improve the quality of the assignment in an

iterative manner using results from previous iteration [4-5]. These algorithms are applied on specific parallel

system and the performance has not been extensively studied on a cube type of multiprocessor system. This

paper is devoted to investigate the scheduling problem on a cube multiprocessor architecture [6-7]. The

standard dynamic algorithms namely MDS algorithms which was designed originally for tree types

multiprocessor networks has been modified to overcome its drawback of large execution time and greater

imbalance at earlier stages of load generation. In the proposed algorithm two different parameters are improved.

First the execution time is reduced by involving intermediate processor in the balancing process and the

second is to reduce the values of load imbalance by extending load migration into two hopes.

The choice of the topology of the interconnection network is critical in the performance of massively

parallel computer systems. In this paper four cube based multiprocessor interconnection networks are
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considered for the purpose of simulation. Simulation results are evaluated and a comparative study based

on various performance parameters is carried out on the results obtained by the algorithms. The performance

is also evaluated for standared hypercube (HC) [8], Folded Hypercube (FHC) [9], Cross Cube (CQ) [10]

and Star Crossed Cube (SCQ) [11] architecture and a comparative study is made. The important properties

of these interconnection networks are given in Table 1.

Table 1

Summary of Cube Interconnection Network

Parameter HC FHC CQ SCQ

Nodes 2n 2n 2n n!2m

Diameter n n+1 n (m+1)/2+—3(n-1)/2
Degree n n/2 n+1/2 m+n-1

Cost n2 n/2*n+1 n(n+1)/2 (m+n-1)((m+1)/2 +—3(n-1)/2)

This paper is organized in five sections. In Section II, the dynamic scheduling model is described in

brief. The proposed algorithm with Pseudo codes is described in Section III. In section IV the simulation

and result analysis of the proposed algorithm is implemented on the various networks with same fashion.

Section V concludes the paper.

2. DYNAMIC SCHEDULING MODELS

We presume an effective problem characterization wherein the load is partitioned into a large number of

tasks needed for simulation. Each task tends to be ‘ program or even partitioned components of a single

program. Nevertheless, almost all the tasks are unbiased and also may be executed on virtually any processor

at a sequence. The scheduling performance of the technique continues to be analysed on the three different

networks by simulating artificial dynamic load. To simulate the load on the given networks, it is characterized

into two groups of task structures. Uniform and non-uniform load [12-13]. For a worthwhile simulation,

tree structures that forms a representative sample of programs are required that are to be executed on the

network. The tree is seen as a test problem whereby the algorithms are to be applied. In the event of uniform

load, tasks are generated in a deterministic manner in the form of a regular tree. Each node of the tree

represents a task, and executed in parallel in breadth-first persuasion beginning with the root task that is

allocated to certain given nodes of the network. The total number of nodes in the task tree at a level

represents a particular stage of the load. To be able to depict non-uniform load (non-deterministic load), the

total problem is invented to be an arbitrary tree which relax by itself level by level [14]. A task scheduled on

a processor spawns an arbitrary or random number of subtasks, which are part of the whole problem tree.

Thus the load on each processor is varying at run time creating unbalance, and balancer/scheduler has to be

invoked after each stage [15-17].

3. OPTIMAL MULTI-STEP SCHEDULING ALGORITHM

There are many algorithms which are based on the principle of minimum distance feature. Minimum distance

is the property which assures the minimization of the communication in distributing subtasks and collecting

partial results. A scheduling algorithm operates with this property such as Minimum Distance Scheme

(MDS) minimizes overhead and ensures the maximum possible speedup. The OMSS is an extension of

MDS algorithm. In this algorithm, the adjacency matrix of the network is used to satisfy the minimum

distance property. A one in the matrix indicates a link between two nodes whereas a zero indicates there is

no link between nodes. For load balancing, the MDS algorithm determines the value of Ideal Load (IL) at

various stages of the load (task generation). IL is calculated by summing the load of each node in the

network divided by the total number of nodes available in the network. The overloaded (donors) and under
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loaded (acceptors) processors are identified based on the value of IL, which is being treated as threshold.

Migration of load takes place from overloaded processor to underloaded by applying the connectivity

check. Each donor processor, during balancing, selects tasks for migration to the various connected and

under loaded processors with the help of adjacency matrix and thus maintaining minimum distance.

Comparing execution times is fair only if we compare the best algorithm on each system for overall load.

However, to make the algorithm cost efficient the load is characterized into different stages. In this particular

algorithm the performance is evaluated for varying the load in each iteration and keeping the system size

constant. Each stage represents a particular state of the task structure which consists of finite number of

tasks. T he load im balance factor for k
th stage, denoted as LIF

k
, is defined as:

LIF
k
 = [max {load

k
 (P

i
)} - (ideal_load)

 k
] / (ideal_load) 

k
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And max (load
k 
(Pi)) denotes the maximum load pertaining to stage k on a processor P

i
, 0  i  N-1, and

load 
k 
(P

i
) stands for the load on processor P

i
 due to kth stage. Based on the IL value, the donor processors

and acceptor processors are identified. Migration of task can take place between donor and acceptor

processors only after checking connectivity between them. A pseudo code of the algorithm is shown in

Table 2.

Table 2

The Optimal Multi-Step Scheduling (OMSS) Algorithm

Algorithm: OMSS

Proposed Algorithm ( )

/* The processor i with processor j. Assume the level of connectivity is given (multiple level)*/

Int connected (int i, int j, int level) /* returns true if processors i, j are connected */

{

If (level = = 1)

Return adj [i] [j];

For (int k = 0; k < no_proc; k++)

{

If (k = = i || k = = j) continue;

If (connected (i, k, level-1) = = 1 && connected (k, j, level-1) = = 1)

{

Return 1;

}

}

Return 0;

End of procedure

4. SIMULATIONS AND ANALYSIS OF RESULTS

To draw general conclusion about the effectiveness of the Optimal Multi-Step Scheduling Algorithm (OMSS),

the simulation run consists of generating various types of load and mapping them on the cube networks

namely Hypercube (HC), Folded Hypercube (FC), Cross Cube (CQ) and Star Crossed Cube (SCQ). The

estimation of LIF is obtained for various numbers of tasks and the task migration takes place from one node

to another node in the form of packets of size such as one, four and eight. The algorithm implemented and

tested on the various multiprocessor networks under the same environment. The Minimum Distance

Scheduling is considered and implemented to test the performance of cube based network as it was originally
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designed especially for fully connected networks such as mesh topology. The minimum distance property

is taken into account only the directly connected processors available in the network for migration.

When MDS algorithm is implemented on the cube based network the task are scheduled with purely

random task structures. The mapping of task is performed at various levels of task structures and behavior

is shown in the curves given in Figure 1. It demonstrates that values of LIF initially start reducing with the

increase in number of tasks. However, at large number of tasks the scheduler unable to map the task

efficiently and hence LIF value become higher.

Figure 1: MDS algorithm on Cube Based Networks

In the same pattern proposed algorithm is applied which produces similar results in cube based networks.

The time varies on MDS and Other Scheduling Scheme on HC, FHC, CQ and SCQ network. The time is

continuously reducing and becomes one at one thousand tasks. However, MDS Scheme shows the lesser

balancing time. This trend is depicted in Figure 2.

When comparing the simulation results it is observed that the proposed algorithm producing similar

results in cube based networks. The LIF is increasing at higher levels of task structures and tasks are not

mapped efficiently. The initial value of LIF is lesser as well as it reduces with increase in the number of

tasks. This trend is depicted in Figure 3.

Figure 2: Time Graph of MDS Algorithm on Cube Based Networks
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It is widely recognized that one of the major benefit of parallel computing is to offer a shorter time to

solution than the fastest uniprocessor system. The performance results shown in Figure 4 indicate the

behavior of balancing time of OMSS algorithm i.e. Time verses Load. The figure shows the speedup for the

proposed OMSS algorithm. It is to be noted that there is regular pattern in the balancing time with load. The

behavior of the tasks is unpredictable; therefore, the balancing time varies on OMSS on the cube network.

The total execution time of OMSS initially starts reducing with the increase in number of tasks. The time is

continuously reducing and becomes constant at higher stages of tasks.

The comparison made from the graphs based on various simulation results demonstrates that

OMSS scheme is performing well on FHC network considering the factor of LIF and its balancing

time. The scheduling scheme is giving better results for FHC in comparison to other tested networks

for different types of loads. Therefore, it can be concluded that OMSS scheme and FHC network is

a better organization and performance is significantly better particularly for unpredictable load.

The overall performance of the OMSS Scheme is highly dependent on the connectivity of the various

nodes available in the network. However, the algorithm allocates the tasks to the available processors

in the network whether they are connected directly and partially to indirectly connected nodes. The

Figure 3: OMSS Algorithm on Cube Based Networks

Figure 4: Time Graph of OMSS Algorithm on Cube Based Networks
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OMSS scheme is cost effective; degree of balancing is higher and has significant impact on overall

parallel performance.

4. CONCLUSION

This Paper proposed a new scheduling algorithm and applied on various cube based multiprocessor

interconnection networks in terms of load imbalance left after a balancing action and execution time. The

performance of the OMSS algorithm is extremely influenced by the connectivity of the numerous nodes

obtainable in the network. Nevertheless, the algorithm allows for the tasks to the available processors in

the network whether these are linked instantly and statically. From the comparison created on the graphs

depending on numerous simulation results, it may be concluded that OMSS algorithm is carrying out

nicely from MDS algorithm in terms of LIF on cube multiprocessor interconnection networks. The OMSS

algorithm is more effective with higher degree of balancing and the network usage is economical. The

algorithm shows significant performance when run on cube based multiprocessor systems.
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