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Abstract. In this paper, we prove some limit theorem for occupation time
problem of certain self-similar processes related to the fractional Brownian

motion, namely the bifractional Brownian motion, the subfractional Brown-
ian motion and the weighted fractional Brownian motion. The key ingredients
to prove our results is the well known Potter’s Theorem involving slowly vary-
ing functions. We give also the Lp-estimate version of strong approximation

of our limit theorem.

1. Introduction

Throughout this paper, we use the same symbol Y τ := (Y τ
t , t ≥ 0) to denote

each of the Gaussian τ -self-similar processes: the fractional Brownian motion (τ =
H, fBm for short), the bifractional Brownian motion (τ = HK, bfBm for short),
the subfractional Brownian motion (τ = α

2 , sfBm for short) and the weighted

fractional Brownian motion (τ = 1+b
2 , wfBm for short) and we denote Lτ :=

(Lτ (t, x) , t ≥ 0 , x ∈ R) its local time, (see the definitions below). For any fixed
t0 ≥ 0 and any ρ > 0, we define the tangent process related to Y τ as follows:

Y ρ,τ :=

(
Y ρ,τ
t =

Y τ
t0+ρt − Y τ

t0

ρτ
, t ≥ 0

)
,

and we denote Lρ,τ := (Lρ,τ (t, x) , t ≥ 0 , x ∈ R) its local time.
It is proved recently in [1], and in [18] that when ρ goes to zero, the process

(Y ρ,τ
t , t ≥ 0) converges, in the sense of the finite dimensional distributions, to the

fBm of Hurst parameter τ , (up to a multiplicative constant). Notice that in the
fBm case we have: (Y ρ,H , t ≥ 0) d (Y H , t ≥ 0), where d denotes the equalities
of the finite dimensional distributions.

The aim of the present paper is to obtain a limit theorem for normalized occu-
pation time integrals of the form:

1

n1−τ(1+γ)

∫ nt

0

f(Y ρ,τ
s )ds, (1.1)

Received 2017-3-25; Communicated by the editors.

2010 Mathematics Subject Classification. 60G18; 60J55; 60F17.
Key words and phrases. Limit theorems, strong approximation, self-similar process, bifrac-

tional Brownian motion, subfractional Brownian motion, weighted fractional Brownian motion,

local time, fractional derivative; slowly varying function.

383

           Serials Publications 
                 www.serialspublications.com 

Communications on Stochastic Analysis 
Vol. 11, No. 4 (2017) 383-397



384 AISSA SGHIR, MOHAMED AIT OUAHRA, AND SOUFIANE MOUSSATEN

where f = Kl,γ
± g, and Kl,γ

± is the generalized fractional derivative of order γ > 0
generated by a slowly varying function l, (see the definitions below), and g ∈
Cβ ∩L1(R) with compact support. Cβ is the space of functions satisfying a Hölder
condition of order some β > 0. The process in (1.1) was studied in the case of the
classical fractional derivative Dγ

± where l ≡ 1, and we refer to Yamada [24],[25]

for Brownian motion case (τ = 1
2 ) and to Shieh [21] for fBm case (τ = H). Notice

that even if f is not a fractional derivative of some function g, the limiting process
in (1.1) is a fractional derivative of local time.

We end this section by the definitions of the Gaussian τ -self-similar processes
studied in this paper. The first process is the bfBm with parameters H ∈ (0, 1)
and K ∈ (0, 1] introduced in [14]. It is a (τ = HK)-self-similar Gaussian process,
centered, starting from zero, with covariance function:

RH,K(t, s) =
1

2K

[
(t2H + s2H)

K

− |t− s|2HK
]
.

The case K = 1 corresponds to the fBm [16] of Hurst parameter τ = H ∈ (0, 1).
The second process is the sfBm with parameter α ∈ (0, 2). It is an extension of
Brownian motion (H = 1

2 ) or (α = 1), which preserves many properties of fBm
but not the stationarity of the increments. It was introduced by Bojdecki et al.
[7]. It is a (τ = α

2 )-self-similar Gaussian process, centered, starting from zero,
with covariance function:

RH(t, s) = tα + sα − 1

2
[(t+ s)α + |t− s|α].

The third process is the wfBm with parameters a and b introduced in [8]. It
is a (τ = 1+b

2 )-self-similar Gaussian process, centered, starting from zero, with
covariance function:

Ra,b(t, s) =

∫ s∧t

0

ua
[
(t− u)

b
+ (s− u)

b
]
du,

where a > −1, −1 < b < 1, and |b| < 1+a. Clearly, if a = 0, the process coincides
with the fBm with Hurst parameter 1

2 (1 + b), (up to a multiplicative constant).
The remainder of this paper is organized as follows: In the next section, we

present some basic facts about local time and the generalized fractional derivative.
In section 3, we give the proof of our limit theorem. Finally, in the last section, we
state and prove strong approximation version of our limit theorem, more precisely,
we show the Lp-estimate version.

Notice that most of the estimates in this paper contain unspecified finite positive
constants. We use the same symbol C to denote these constants, even when they
vary from one line to the next.

2. Local Time and the Generalized Fractional Derivatives

We begin this section by a briefly survey on local time and we refer to [12].
Let X := (Xt , t ≥ 0) be a real-valued separable random process with Borel

sample functions. For any Borel set B ⊂ R+, the occupation measure of X on B
is defined as:

µB(A) = λ{s ∈ B ; Xs ∈ A}, ∀A ∈ B(R),
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where λ is the one-dimensional Lebesgue measure on R+. If µB is absolutely
continuous with respect to λ, we say that X has a local time on B denoted by
L(B, .). Moreover, the local time satisfies the occupation density formula: for
every Borel set B ⊂ R+ and every measurable function f : R → R+, we have∫

B

f(Xt)dt =

∫
R
f(x)L(B, x)dx,

and we have the following representation of local time:

L(t, x) := L([0, t], x) =
1

2π

∫
R

(∫ t

0

eiu(Xs−x)ds

)
du. (2.1)

This representation due to the Fourier analysis for local time, have played a central
role to study the regularities properties of local time of our processes. Tudor
and Xiao [22] have proved, by using Lamperti’s transform and the concept of
strong local nondeterminism introduced by Berman [5], the existence and the
joint continuities of local time of bfBm. The case of fBm was given by Xiao [23].
Mendy [17] have studied the local time of sfBm for any α ∈ (0, 1), by using a
decomposition in law of sfBm given in [4]. Notice that the same arguments used
in [17] with a decomposition in law of bfBm given in [15] give easily the Hölder
regularities of bfBm. The case of wfBm for any a ≥ 0 and −1 < b < 1 was given
in [18]. Finally and more precisely, we have the following Hölder regularities of
the local time Lτ where τ = HK ∈ (0, 1) for the bfBm, τ = H ∈ (0, 1) for the
fBm, τ = α

2 ∈ (0, 1
2 ) for the sfBm and τ = 1+b

2 ∈ (0, 1) for the wfBm.

Theorem 2.1. For any integer p ≥ 1, there exists a constant δ > 0 and C > 0
such that for any t ≥ 0, any h ∈ (0, δ), any x, y ∈ R and any 0 < ξ < 1−τ

2τ , there
hold:

∥Lτ (t+ h, x)− Lτ (t, x)∥2p ≤ Ch1−τ ,
(2.2)

∥Lτ (t+ h, y)− Lτ (t, y)− Lτ (t+ h, x) + Lτ (t, x)∥2p ≤ C|y − x|ξh1−τ(1+ξ), (2.3)

where ∥.∥2p = (E|.|2p)
1
2p .

Remark 2.2. Following the same arguments used in [1] to prove Theorems 3.1 and
3.2, and the motivation in [9]: page 862, it is easy to see that the tangent process
Y ρ,τ has the local time:

Lρ,τ (t, x) =
Lτ (t0 + ρt, ρτx+ Y τ

t0)− Lτ (t0, ρ
τx+ Y τ

t0)

ρ1−τ
.

In fact, by virtue of (2.1) and a changes of variables: v = u
ρτ and z = t0 + ρs, we

have

Lτ (t0 + ρt, ρτx+ Y τ
t0)− Lτ (t0, ρ

τx+ Y τ
t0)

ρ1−τ

=
1

2πρ1−τ

(∫
R

∫ t0+ρt

0

eiv(Y
τ
z −(ρτx+Y τ

t0
))dzdv −

∫
R

∫ t0

0

eiv(Y
τ
z −(ρτx+Y τ

t0
))dzdv

)
=

1

2πρ1−τ

∫
R

∫ t0+ρt

t0

eiv(Y
τ
z −(ρτx+Y τ

t0
))dzdv
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=
1

2π

∫
R

(∫ t

0

eiu(Y
ρ,τ
s −x)ds

)
du = Lρ,τ (t, x).

An immediate consequence of Theorem 2.1 is the following result concerning
the regularities properties of the local time Lρ,τ .

Theorem 2.3. For any integer p ≥ 1, there exists a constant C > 0 such that
for any s, t ≥ 0, any x, y ∈ R, any 0 < ξ < 1−τ

2τ and any ρ > 0 sufficiently small,
there hold:

∥Lρ,τ (t, x)− Lρ,τ (s, x)∥2p ≤ C | t− s |1−τ (2.4)

∥Lρ,τ (t, y)−Lρ,τ (s, y)−Lρ,τ (t, x)+Lρ,τ (s, x)∥2p ≤ C|y−x|ξ | t−s |1−τ(1+ξ) (2.5)

Proof. The proofs of (2.4) and (2.5) are similar. Let us deal for exemple with
(2.5). By virtue of (2.3), we have

∥Lρ,τ (t, y)− Lρ,τ (s, y)− Lρ,τ (t, x) + Lρ,τ (s, x)∥2p

=
∥Lτ (t0 + ρt, ρτy + Y τ

t0)− Lτ (t0 + ρs, ρτy + Y τ
t0)

ρ1−τ

+
−Lτ (t0 + ρt, ρτx+ Y τ

t0) + Lτ (t0 + ρs, ρτx+ Y τ
t0)∥2p

ρ1−τ

≤ C|y − x|ξ | t− s |1−τ(1+ξ) .

This gives the desired estimate. □

Remark 2.4. The passage through the tangent process allowed us to obtain regu-
larities without the condition | t−s |< δ, it was the motivation for which we chose
the tangent process Y ρ,τ instead of choosing the process Y τ in (1.1).

Now, we give the definition of the generalized fractional derivatives and we
refer to [11] and the references therein. For this, we collects some basic facts
about slowly varying function and we refer for example to Bingham et al. [6] and
Seneta [20].

Definition 2.5. A measurable function l : R+ → R+ is slowly varying at infinity
(in Karamata’s sense), if for all t positive, we have

lim
x→+∞

U(tx)

U(x)
= 1.

We are interested in the behavior of l at +∞, then in what follows, we assume
that l is bounded on each interval of the form [0, a], (a > 0). This assumption is
provided by Lemma 1.3.2 in [6]. For γ > 0, let kγ the function defined by:

kγ(y) :=

{
l(y)
y1+γ , if y > 0,

0, if y ≤ 0,

where l is slowly varying function at +∞, continuously differentiable on [a,+∞[,
(a > 0), (this property is given by Theorem 1.3.3 in [6]), and l(x) > 0 for all x > 0
and l(0+) = 1.



OCCUPATION TIME PROBLEM-FRACTIONAL BROWNIAN MOTION 387

For any γ ∈]0, β[ and g ∈ Cβ ∩ L1(R), we define:

Kl,γ
± g(x) :=

1

Γ(−γ)

∫ +∞

0

kγ(y) [g(x± y)− g(x)] dy,

and we put:

Kl,γ := Kl,γ
+ −Kl,γ

− .

The following theorem called Potter’s Theorem, (see Theorem 1.5.6 in [6]), has
played a central role in the proof of our main results.

Theorem 2.6. 1) If l is slowly varying function, then for any chosen constants
A > 1 and δ > 0, there exists X = X(A, δ) such that:

l(y)

l(x)
≤ Amax

{(y
x

)δ

,
(y
x

)−δ
}

(x ≥ X, y ≥ X).

2) If further, l is bounded away from 0 and ∞ on every compact subset of [0,+∞[,
then for every δ > 0, there exists A = A(δ) > 1 such that:

l(y)

l(x)
≤ Amax

{(y
x

)δ

,
(y
x

)−δ
}

(x > 0, y > 0).

Remark 2.7. 1) Kl,γ
+ and Kl,γ

− satisfy the switching identity:∫
R
f(x)Kl,γ

− g(x)dx =

∫
R
g(x)Kl,γ

+ f(x)dx, (2.6)

for any f, g ∈ Cβ ∩ L1(R) and γ ∈]0, β[.
2) For h : R → R and a > 0, we denote by ha the function x → h(ax). Then,

Kl,γ
± (ha) = aγ(K

l( .
a ),γ

± )a, ∀ γ > 0, ∀ a > 0, (2.7)

where l( .
a ) : x 7−→ l(xa ).

3) If we take l ≡ 1, we recover the definition of the classical fractional derivative
denoted by: Dγ , (see [19], [24] and the references therein), where

kγ(y) :=

{ 1
y1+γ , if y > 0,

0, if y ≤ 0,

Dγ
±g(x) :=

1

Γ(−γ)

∫ +∞

0

g(x± y)− g(x)

y1+γ
dy,

and

Dγ := Dγ
+ −Dγ

−.

Now we are ready to state and prove the main results of this section.

Theorem 2.8. Let 0 < γ < ξ and K ∈ {Kl,γ
± ,Kl,γ}. For any integer p ≥ 1, there

exists a constant C > 0, such that for any t, s ≥ 0 and any x ∈ R and any ρ > 0
sufficiently small, there hold:

∥KLρ,τ (t, .)(x)−KLρ,τ (s, .)(x)∥2p ≤ C | t− s |1−τ(1+γ) .
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Proof. We treat only the case K = Kl,γ
+ , the other cases are similar. Let b =

|t− s|τ . By the definition of Kl,γ
+ , we have

∥Kl,γ
+ Lρ,τ (t, .)(x)−Kl,γ

+ Lρ,τ (s, .)(x)∥2p

≤ 1

|Γ(−γ)|

∫ +∞

0

l(u)
∥Lρ,τ (t, x+ u)− Lρ,τ (t, x)− Lρ,τ (s, x+ u) + Lρ,τ (s, x)∥2p

u1+γ
du

≤ I1 + I2.

where

I1 :=
1

|Γ(−γ)|

∫ b

0

l(u)

× ∥Lρ,τ (t, x+ u)− Lρ,τ (t, x)− Lρ,τ (s, x+ u) + Lρ,τ (s, x)∥2p
u1+γ

du

and

I2 :=
1

|Γ(−γ)|

∫ +∞

b

l(u)

× ∥Lρ,τ (t, x+ u)− Lρ,τ (t, x)− Lρ,τ (s, x+ u) + Lρ,τ (s, x)∥2p
u1+γ

du.

We estimate I1 and I2 separately. Since l is bounded on each compact in R+,
it follows from (2.5) that:

I1 ≤ C | t− s |1−τ(1+ξ) bξ−γ

≤ C | t− s |1−τ(1+γ) .

Potter’s Theorem with 0 < ξ < γ implies the existence of A(ξ) > 1 such that:

l(u) ≤ A(ξ)l(b)
(u
b

)ξ

.

Combining this fact with (2.4), we obtain:

I2 ≤ C | t− s |1−τ(1+γ) .

The proof of Theorem 2.8 is done. □

We end this section by the following result. It will be useful in the sequel to
prove the tightness in our limit theorem.

Corollary 2.9. Let 0 < γ < ξ and K ∈ {Kl,γ
± ,Kl,γ}. For any integer p ≥ 1,

there exists a constant C > 0, such that for any t, s ≥ 0, any x ∈ R, any ρ > 0
sufficiently small and any n sufficiently large, there holds:

[l(nτ )]−1

∥∥∥∥∥Kl

(
.

n−τ

)
,γ
Lρ,τ (t, .)

( x

nτ

)
−K

l

(
.

n−τ

)
,γ
Lρ,τ (s, .)

( x

nτ

)∥∥∥∥∥
2p

≤ C | t− s |1−τ(1+γ),

where l
(

.
n−τ

)
: x 7−→ l

(
x

n−τ

)
.
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Proof. We treat only the case K
l

(
.

n−τ

)
,γ

+ , the other cases are similar. Let b =

|t− s|τ . By the definition of K
l

(
.

n−τ

)
,γ

+ , we have

[l(nτ )]−1
∥∥∥Kl

(
.

n−τ

)
,γ

+ Lρ,τ (t, .)
(

x
nτ

)
−K

l

(
.

n−τ

)
,γ

+ Lρ,τ (s, .)
(

x
nτ

)∥∥∥
2p

≤ 1

|Γ(−γ)|

∫ b

0

l(nτu)

l(nτ )

×

∥∥∥Lρ,τ (t, x
nτ + u)− Lρ,τ (s, x

nτ + u)− Lρ,τ (t, x
nτ ) + Lρ,τ (s, x

nτ )
∥∥∥
2p

u1+γ
du

+
1

|Γ(−γ)|

∫ +∞

b

l(nτu)

l(nτ )

×

∥∥∥Lρ,τ (t, x
nτ + u)− Lρ,τ (s, x

nτ + u)− Lρ,τ (t, x
nτ ) + Lρ,τ (s, x

nτ )
∥∥∥
2p

u1+γ
du

:= J1 + J2.

We estimate J1 and J2 separately. It follows from (2.5) that:

J1 ≤ C sup
u∈R+

l(nτu)

l(nτ )
| t− s |1−τ(1+δ) bδ−γ

≤ C sup
u∈R+

l(nτu)

l(nτ )
| t− s |1−τ(1+γ) .

Potter’s Theorem with 0 < ξ < γ implies the existence of A(ξ) > 1 such that:

l(nτu) ≤ A(ξ)l(nτ b)(
u

b
)ξ.

Combining this fact with (2.4), we obtain:

J2 ≤ C
l(nτ b)

l(nτ )
| t− s |1−τ(1+γ) .

Finally, by using the fact that:

lim
n→+∞

l(nτu)

l(nτ )
= 1,

we complete the proof of Corollary 2.9. □

3. Limit Theorems

The main result of this section is the following result.

Theorem 3.1. Let 0 < γ < ξ < 1−τ
2τ . Suppose that f = Kl,γ

± g where g ∈
Cβ ∩ L1(R) with compact support for some γ < β. Then when n → +∞ and
ρ → 0, the sequence of processes:(

[n1−τ(1+γ)l(nτ )]−1

∫ nt

0

f(Y ρ,τ
s )ds

)
t≥0

,
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converges in law to the process:(
I(g)c−1−γDγ

∓L
τ (t, .)(0)

)
t≥0

,

where I(g) =
∫
R g(x)dx, Lτ is the local time of the fBm Bτ of Hurst parameter τ

and the constant c is given by:

c = 1 (for sfBm), c = 2
1−K

2 (for bfBm) and c =

√
2t

a
2
0√

1 + b
(for wfBm).

Remark 3.2.
1) Notice that even if f is not a fractional derivative of some function g, the
limiting process is a fractional derivative of local time.
2) We recall that τ = HK ∈ (0, 1) for bfBm, τ = H ∈ (0, 1) for fBm, τ = α

2 ∈ (0, 1
2 )

for sfBm and τ = 1+b
2 ∈ (0, 1) for wfBm.

Proof of Theorem 3.1. The convergence of the finite dimensional distributions
follows easily by using the same arguments used in [9] to prove Proposition 5.2 in
case of the well known multifractional Brownian motion, and Remark 3.18 in [11].
In fact, according to [1], section 2.3, the process: (Y ρ,τ

t , t ≥ 0) converges, in the
sense of finite dimensional distributions, when ρ → 0, to the process: (c.Bτ

t , t ≥ 0),
where c is the constant appeared in Theorem 3.1. Therefore by combining the fact
that f is locally Riemann integrable and Theorem VI.4.2 in [13], we obtain∫ nt

0

f(Y ρ,τ
s )ds −→

∫ nt

0

f(c.Bτ
s )ds as ρ → 0+.

Using the occupation density formula, the scaling property of local time, (2.6) and
(2.7), one can write:

c1+γ [n1−τ(1+γ)l(nτ )]−1

∫ nt

0

f(c.Bτ
s )ds

= cγ [n1−τ(1+γ)l(nτ )]−1

∫
R
f(x)Lτ

(
nt,

x

c

)
dx

= [l(nτ )]−1 (cnτ )
γ
∫
R
f(x)Lτ

(
t,

x

cnτ

)
dx

= [l(nτ )]−1 (cnτ )
γ
∫
R
g(x)Kγ

∓

(
Lτ

(
t,

.

cnτ

))
(x)dx

=
l(cnτ )

l(nτ )
[l(cnτ )]−1 (cnτ )

γ
∫
R
g(x)Kγ

∓

(
Lτ

(
t,

.

cnτ

))
(x)dx.

According to [11], Remark 3.18, as n → ∞, we have

[l(cnτ )]
−1

(cnτ )γKl,γ
∓

(
Lτ

(
t,

.

cnτ

))
(x) −→ Dγ

∓L
τ (t, .)(0).

By the definition of the slowly varying function l, we have

lim
n→+∞

l(cnτ )

l(nτ )
= 1.
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Finally, we obtain the convergence in the sense of finite dimensional distributions.
To end the proof of Theorem 3.1, we need only to show the tightness of the
sequence:

An
t := [n1−τ(1+γ)l(nτ )]−1

∫ nt

0

f(Y ρ,τ
s )ds.

By the occupation density formula, the scaling property of local time and (2.6),
we have

∥An
t −An

s ∥2p =

∥∥∥∥ 1

l(nτ )n1−τ(1+γ)

(∫ nt

0

f(Y ρ,τ
u )du−

∫ ns

0

f(Y ρ,τ
u )du

)∥∥∥∥
2p

= nτγ [l(nτ )]−1

∥∥∥∥∫
R
f(x)Lρ,τ

(
t,

x

nτ

)
dx−

∫
R
f(x)Lρ,τ

(
s,

x

nτ

)
dx

∥∥∥∥
2p

= nτγ [l(nτ )]−1

∥∥∥∥∫
R
Kl,γ

± g(x)
[
Lρ,τ

(
t,

x

nτ

)
− Lρ,τ

(
s,

x

nτ

)]
dx

∥∥∥∥
2p

= nτγ [l(nτ )]−1

∥∥∥∥∫
R
g(x)

[
Kl,γ

∓ Lρ,τ
(
t,

.

nτ

)
(x)−Kl,γ

∓ Lρ,τ
(
s,

.

nτ

)
(x)

]
dx

∥∥∥∥
2p

.

Therefore, it follows from (2.7), that:

∥An
t −An

s ∥2p ≤ C[l(nτ )]−1

×
∫
S

∥∥∥g(x)(Kl

(
.

n−τ

)
,γ

∓ Lρ,τ (t, .)
( x

nτ

)
−K

l

(
.

n−τ

)
,γ

∓ Lρ,τ (s, .)
( x

nτ

))∥∥∥
2p
dx

≤ C

∫
S

∥g∥∞[l(nτ )]−1

×
∥∥∥(Kl

(
.

n−τ

)
,γ

∓ Lρ,τ (t, .)
( x

nτ

)
−K

l

(
.

n−τ

)
,γ

∓ Lρ,τ (s, .)
( x

nτ

))∥∥∥
2p
dx,

where S = supp(g).
Thanks to Corollary 2.9, for n sufficiently large, we have

∥An
t −An

s ∥2p ≤ C | t− s |1−τ(1+γ) .

Finally, we can take p(1− τ(1 + γ)) > 1 and the tightness is proved.

4. Strong Approximation

In this section, we give a strong approximation of Theorem 3.1, more precisely
the Lp-estimate. Our main result in this paragraph reads:

Theorem 4.1. Let f be a Borel function on R satisfying:∫
R
|x|k|f(x)|dx < ∞, (4.1)

for some k > 0. Then, for any sufficiently small ε > 0 and ρ > 0, and any integer
p ≥ 1, when t goes to infinity, we have∥∥∥ ∫ t

0

Kl,γf(Y ρ,τ
s )ds

∥∥∥
2p

=
I(f)

Γ(−γ)
∥DγLτ (t, .)(0)∥2p + o(t1−τ(1+γ)−ε).

0 < γ < ξ < 1−τ
2τ and Lτ is the local time of the fBm Bτ of Hurst parameter τ .
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In order to prove Theorem 4.1, we shall first state and prove some technical
lemmas. The proofs are similar to that given by Ait Ouahra and Ouali [2] in case
of fractional derivative and fBm.

Lemma 4.2. Let 0 < γ < ξ < 1−τ
2τ . For any sufficiently small ε > 0 and ρ > 0,

and any integer p ≥ 1, when t goes to infinity, we have

sup
x∈R

∥∥Kl,γLρ,τ (t, .)(x)
∥∥2p
2p

= o(t2p(1−τ(1+γ))+ε).

Proof. Using Theorem 2.8 for s = 0 and the fact that Kl,γLρ,τ (0, .)(x) = 0 a.s.,
we get:

sup
x∈R

∥∥Kl,γLρ,τ (t, .)(x)
∥∥2p
2p

≤ Ct2p(1−τ(1+γ)).

The conclusion follows immediately. □

In the same way, using (2.5) for s = 0 and the fact that Lρ,τ (0, x) = 0 a.s., we
get the following result.

Lemma 4.3. Let 0 < ξ < 1−τ
2τ . For any sufficiently small ε > 0 and ρ > 0, and

any integer p ≥ 1, when t goes to infinity, we have

sup
x ̸=y

∥Lρ,τ (t, x)− Lρ,τ (t, y)∥2p2p
|x− y|2pξ

= o(t2p(1−τ(1+ξ))+ε).

Lemma 4.4. Let 0 < γ < ξ < 1−τ
2τ . For any sufficiently small ε > 0 and ρ > 0,

and any integer p ≥ 1, when t goes to infinity, we have

sup
x∈R

∥∥∥∥∫ 1

0

l(y)
Lρ,τ (t, x+ y)− Lρ,τ (t, x− y)

y1+γ
dy

∥∥∥∥2p
2p

= o(t2p(1−τ(1+ξ))+ε).

Proof. We have

sup
x∈R

∥∥∥∥∫ 1

0

l(y)
Lρ,τ (t, x+ y)− Lρ,τ (t, x− y)

y1+γ
dy

∥∥∥∥2p
2p

≤ sup
x∈R

sup
0<y≤1

∥Lρ,τ (t, x+ y)− Lρ,τ (t, x− y)∥2p2p
y2pξ

∣∣∣∣∫ 1

0

l(y)

y1+γ−ξ
dy

∣∣∣∣2p
By virtue of Lemma 4.3 and the fact that l is bounded on [0, 1], we deduce the
lemma. □

Lemma 4.5. Let 0 < γ < ξ < 1−τ
2τ . For any sufficiently small ε > 0 and ρ > 0,

and any integer p ≥ 1, when t goes to infinity, we have

sup
|x|≤ta

∥∥∥∥∫ ∞

1

l(y)
Lρ,τ (t, x+ y)− Lρ,τ (t, y)

y1+γ
dy

∥∥∥∥2p
2p

= o(t2p(1−τ(1+ξ))+2paξ+ε),

for some a > 0.

Proof. We have

sup
|x|≤ta

∥∥∥∥∫ ∞

1

l(y)
Lρ,τ (t, x+ y)− Lρ,τ (t, y)

y1+γ
dy

∥∥∥∥2p
2p
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≤ sup
|x|≤ta

sup
y∈R

∥Lρ,τ (t, x+ y)− Lρ,τ (t, y)∥2p2p

∣∣∣∣∫ ∞

1

l(y)

y1+γ
dy

∣∣∣∣2p
≤ sup

|x|≤ta
|x|2pξ sup

y∈R

∥Lρ,τ (t, x+ y)− Lρ,τ (t, y)∥2p2p
|x|2pξ

∣∣∣∣∫ ∞

1

l(y)

y1+γ
dy

∣∣∣∣2p .
Using Potter’s Theorem for x = 1, y ≥ 1 and 0 < δ < γ, we obtain:∫ +∞

1

l(y)

y1+γ
dy < ∞. (4.2)

Finally, by virtue of Lemma 4.3, we deduce the desired estimate. □
Lemma 4.6. Let f be a Borel function on R satisfying (4.1) for some k > 0.
Then, for any sufficiently small ε > 0 and ρ > 0, and any integer p ≥ 1, when t
goes to infinity, we have:∥∥∥∫ t

0

Kl,γf(Y ρ,τ
s )ds

∥∥∥
2p

=
I(f)

Γ(−γ)
∥Kl,γLρ,τ (t, .)(0)∥2p + o(t1−τ(1+γ)−ε),

where 0 < γ < ξ < 1−τ
2τ .

Proof. By the occupation density, we have

I(t) :=

∥∥∥∥∫ t

0

Kl,γf(Y ρ,τ
s )ds− I(f)

Γ(−γ)
Kl,γLρ,τ (t, .)(0)

∥∥∥∥2p
2p

= C

∥∥∥∥∫
R
(Kl,γLρ,τ (t, .)(x)−Kl,γLρ,τ (t, .)(0))f(x)dx

∥∥∥∥2p
2p

≤ C(I1(t) + I2(t)),

where

I1(t) :=

∥∥∥∥∥
∫
|x|>ta

(Kl,γLρ,τ (t, .)(x)−Kl,γLρ,τ (t, .)(0))f(x)dx

∥∥∥∥∥
2p

2p

,

and

I2(t) :=

∥∥∥∥∥
∫
|x|≤ta

(Kl,γLρ,τ (t, .)(x)−Kl,γLρ,τ (t, .)(0))f(x)dx

∥∥∥∥∥
2p

2p

,

for some 0 < a ≤ τ .
Let us deal with the first term I1(t). Lemma 4.3 and (4.1) imply that:

I1(t) ≤ sup
|x|>ta

∥Kl,γLρ,τ (t, .)(x)−Kl,γLρ,τ (t, .)(0)∥2p2p

∣∣∣∣∣
∫
|x|>ta

|x|−k|x|k|f(x)|dx

∣∣∣∣∣
2p

≤ t−2pak sup
|x|>ta

∥Kl,γLρ,τ (t, .)(x)−Kl,γLρ,τ (t, .)(0)∥2p2p

∣∣∣∣∣
∫
|x|>ta

|x|k|f(x)|dx

∣∣∣∣∣
2p

= o(t2p(1−τ(1+γ))−2pak+ε).

Now, we deal with I2(t). By the definition of Kl,γ and the fact that f is integrable,
we have:

I2(t) ≤
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sup
|x|≤ta

∥∥∥∥∫ ∞

0

l(y)
Lρ,τ (t, x+ y)− Lρ,τ (t, x− y)− Lρ,τ (t, y) + Lρ,τ (t,−y)

y1+γ
dy

∥∥∥∥2p
2p

×

∣∣∣∣∣
∫
|x|≤ta

|f(x)|dx

∣∣∣∣∣
2p

≤ C sup
|x|≤ta

∥∥∥∥∫ 1

0

l(y)
Lρ,τ (t, x+ y)− Lρ,τ (t, x− y)− Lρ,τ (t, y) + Lρ,τ (t,−y)

y1+γ
dy

∥∥∥∥2p
2p

+

C sup
|x|≤ta

∥∥∥∥∫ ∞

1

l(y)
[Lρ,τ (t, x+ y)− Lρ,τ (t, y)]− [Lρ,τ (t, x− y)− Lρ,τ (t,−y)]

y1+γ
dy

∥∥∥∥2p
2p

which, in view of Lemmas 4.4 and 4.5, implies:

I2(t) = o(t2p(1−τ(1+ξ))+ε) + o(t2p(1−τ(1+ξ))+2paξ+ε)

= o(t2p(1−τ(1+ξ))+2paξ+ε).

Then

I(t) = o(t2p(1−τ(1+γ))−2pka+ε) + o(t2p(1−τ(1+ξ))+2paξ+ε).

Choosing:

a =
τ(ξ − γ)

ξ + k
.

It is clear that 0 < a ≤ τ . We finally get:

I(t) = o(t2pb+ε),

with

b =
ξ(1− τ(1 + γ)) + k(1− τ(1 + ξ))

k + ξ
.

Clearly b < 1−τ(1+γ), because γ < ξ. Then for all sufficiently small ε > 0, when
t goes to infinity, we have

I(t) = o(t2p(1−τ(1+γ))−ε),

which gives the desired estimate. □

Now, to end the proof of Theorem 4.1, it suffices to establish the following
result.

Lemma 4.7. Let f be a Borel function on R satisfying (4.1) for some k > 0.
Then, for any sufficiently small ε > 0 and ρ > 0, and any integer p ≥ 1, when t
goes to infinity, we have:

I(f)

Γ(−γ)

∣∣∥Kl,γLρ,τ (t, .)(0)∥2p − ∥DγLτ (t, .)(0)∥2p
∣∣ = o(t1−τ(1+γ)−ε),

where Lτ is the local time of the fBm of Hurst parameter τ .
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Proof. Using (4.1), we get:

J(t) :=
I(f)

Γ(−γ)
∥Kl,γLρ,τ (t, .)(0)∥2p ≤ C(J1(t) + J2(t)),

where

J1(t) := sup
|x|>ta

∥Kl,γLρ,τ (t, .)(0)∥2p
∫
|x|>ta

|x|−k|x|k|f(x)|dx,

and

J2(t) := sup
|x|≤ta

∥Kl,γLρ,τ (t, .)(0)∥2p.

The same arguments used in the proof of Lemma 4.6 implies that:

J1(t) = o(t1−τ(1+γ)−ka+ε).

For J2(t), we have by Lemma 4.3:

J2(t) = o(t1−τ(1+ξ)+ε),

therefore
J2(t) = o(t1−τ(1+ξ)+aξ+ε),

Consequently
J(t) = o(t1−τ(1+γ)−ε).

On the other hand, using Remark 2.2 and the fact that the fBm Bτ satisfies:

(Bρ,τ , t ≥ 0) d (Bτ , t ≥ 0),

we get: (
Kl,γLτ (t, .)(0) , t ≥ 0

)
d
(
Kl,γLρ,τ (t, .)(0) , t ≥ 0

)
.

Therefore

I(f)

Γ(−γ)
∥Kl,γLτ (t, .)(0)∥2p =

I(f)

Γ(−γ)
∥Kl,γLρ,τ (t, .)(0)∥2p = o(t1−τ(1+γ)−ε).

In particular, if we take l ≡ 1, we get:

I(f)

Γ(−γ)
∥DγLτ (t, .)(0)∥2p = o(t−τ(1+γ)−ε).

The proof of Lemma 4.7 is done. □
Finally, combining Lemma 4.6 and Lemma 4.7, the proof of Theorem 4.1 is

completed.

Remark 4.8. We should point out that in this paper we only study the Lp-estimate
of our limit theorem. This is enough for the purpose of this study. We will study
the a.s., estimate in future work and apply this idea to study the law of the iterated

logarithm of stochastic process of the form
∫ t

0
Kl,γf(Y ρ,τ

s )ds. For the a.s. estimate
in case of Brownian motion and the symmetric stable process of index α ∈ (1, 2],
we refer respectively to [10] and [3].
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Oujda, Université Mohammed Premier, Laboratoire de Modélisation Stochastique et
Déterministe et URAC 04, BP, 717, Maroc

E-mail address: sghir.aissa@gmail.com
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Sciences Oujda, Université Mohammed Premier, Laboratoire de Modélisation Stochas-
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