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Abstract : We propose an extended formalization of the description of networks, taking into account the
weights of vertices and edges, as well as the value of the filler, circulating in the network. The set of network
metrics is expanded on the basis of weighing the vertices and arcs, as well as calculating the potential of the
network. The criteria for the network conflict assessment are substantiated based on the analysis of the
dynamics of the network potential, taking into account the capacity of the filler stored and processed at the
vertices, as well as the carrying capacity of the arcs transporting the filler. The possible strategies and tactics
of the network conflict resolution are considered. We suggest developing the proposed evaluations and methods
for the case of virus attacks in the conditions of network confrontation.
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1. INTRODUCTION

The modern information space is inconceivable without network structures [16-20]. Their extensive
dissemination has found its application in the social [38] and other networks, which have become the subject of
comprehensive study. In particular, the analytical expressions have been obtained for the network metrics such as
the distribution of degrees, cohesion and diameter, the clustering coefficient and others. In addition, there have
been identified and studied the Poisson [8-10], exponential [12], scaleless [4, 15] networks and the networks of
the “small worlds” type [39-40]. A particular attention has been paid to the epidemic resistance of these networks
[23-34]. The paradigmatic models of the analog nature have been the basis of this analysis. At the same time, some
discrete models [36] have appeared, more adequately describing such processes.

However, the confrontation observed in the network structures is by no means limited to mutual virus
attacks and subsequent epidemics. Of the theoretical and practical interest is the study of strategies and tactics
of this process, which has now acquired a global character, so that some analysts have started to talk even
about “network wars”.

Therefore, in the present paper we attempt to formalize the network confrontation. In this connection, it is
desirable not only to describe the networks from the viewpoint of topology, as this has been done hitherto [16-20],
but also to take into account the filler circulating in them. The formalization of the network conflicts, taking into
account the dynamics of the potential of the parties, also appears to be quite important.

Topological definition of a network

Oftentimes, the network structures are described by topological means. For example, to describe networks,
two disjoint sets can be identified, so that the elements of one of them are interconnected via the elements of
another according to a certain law [1-3, 5-7, 11, 13-14, 22]. In particular, this could be a set of variables and a set
of functionals, which establish relationship between the variables of the mathematical model of the system under
study. In the theory of electronic networks, such sets are, for example, the set of node potentials and the set of
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transmissions from a node of the circuit to another node [1-3, 5-7, 11, 13-14, 22]. The set of the elements being
connected is called the set of vertices, whereas the set of connecting elements is called the set of edges.

Therefore, to define a network topologically, one should define the sets of vertices and edges (Table 1), as
well as a law (predicate), establishing the mutual belonging (incidence) of the elements of the sets. It is considered
that topologically a network

G = G(X, A, �) (1)
is defined, if there are given a nonempty set of vertices X ���, a disjoint with it set of edges A(A � X = �) and a
predicate (incidentor) �.

Table 1. The kinds of vertices and edges for the types of networks.

Network type Network vertices Network edges

1 2 3

Electrical network Electric power plants and electric Electric power lines
substations

Gas transmission network Gas fields and storages, gas pumping Gas pipelines and logistics of sea
stations, gas-filling hubs transportation of liquefied natural gas

Oil-transportation network Oil fields and storages, oil pumping Oil pipelines and logistics of sea
stations, oil-filling hubs transportation of oil

Internet Computers Cable and wireless channels of
communication

Cellular networks Cellular phone, base stations of Wireless channels
the network

Railroad networks Railroad stations Train routes

Retail networks Supermarkets, shops, retail outlets, Logistics of the retail articles delivery
online stores

Citation networks Papers Quotations

Neural networks Neuron Synapse

Wholesale trade networks Wholesale warehouses Logistics of the merchandise delivery

Exchange trade networks Brokerage firms and clients Communication channels for bidders

Social networks Users, portal, websites, blogs, accounts Requests for content
and so on

Postal networks Post offices, centers of postal service Routes of mail transportation

Usually, � is a triadic predicate [41], i.e. a predicate defined on all ordered triples xi, xj  and ak, for which
xi, xj � X and ak � A. Analytically, the predicate is described [41] by a logical statement of the following type:

�(xi, ak, xj), (2)

which means that edge ak  joins the vertices xi and xj. The vertices xi and xj  are called incident, whereas the edge
ak, incident to these vertices.

Geometrically, a network is usually represented by a graph, i.e. a collection of points, which are in one-to-one
correspondence with the elements of the set of vertices X, and the lines connecting them, which are in one-to-one
correspondence with the elements of the set of edges A.
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Elements and parts of the network topology

On the basis of the definition (1) of a network, for each element ak � A there holds [41] one and only one of
the following statements:

1& ( , , ) & ( , , ) ;i j i j i k j i kx x x x x a x x a x� �� � � �� �� � (3)

( , , ) ;i i k jx x a x� �� �� �� � (4)

1& ( , , ) & ( , , ) ;i j i j i k j i kx x x x x a x x a x� �� � � �� �� � (5)

Table 2. The weights of vertices and edges for various types of networks.

Network type Weights of the network vertices Weights of the network edges

1 2 3

Electrical network

Gas transmission network

Oil-transportation network

Internet

Cellular networks

Railroad networks

Retail networks

Citation networks

Neural networks

Wholesale trade networks

Exchange trade networks

Social networks

The logical statements (3) - (5) allow classifying edges as the oriented (directed) edges, arcs (3), loops (4)
and non-oriented (non-directed) edges, links (5). It is appropriate to note that, in a number of practical cases (we
have in mind unistor graphs), the links are represented, according to the statement (5), by an aggregate of two
(merged into one) arcs. In studying such properties of the network that do not depend on the direction of its arcs,
it is convenient to use the predicate

� ( , , )i k jx a x� � ( , , ) V ( , , ),i k j j k ix a x x a x� �
which is called a semi-incidentor; it is applied in the social networks.

Volume of the generated or accumulated
electrical energy

Volume of the extracted and accumulated
gas

Volume of the extracted and accumulated oil

Volume and value of the generated content

Personal data of subscriber

Volume of the accommodated trains

Volume of revenue for each element of the
network

Authorship and the amount of information

State of the neuron

Volume of accumulated and sold batches of
goods

Exchange rates and share prices, stock
exchanges indices

Quantity of users and network resources

Losses in the transmission of
electrical energy

Carrying capacity of the gas
pipeline, tonnage of the liquefied

gas tanker

Carrying capacity of the oil
pipeline, tonnage of the tanker

Capacity of the internet-
connection

Availability and reliability of the
communication channel

Freight traffic rate of the moving
trains

Commodity circulation along the
supply chains

Citedness of the source

Speed of response

Volume of goods supplied along
the network edges

Volume of trade over the
communication channels

Intensity of requesting the
resources
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In the description of physical networks, a weight �(ak) corresponds to each edge, which is called the weight
of the edge ak and which is equal to a specific physical quantity (Table 2).

As for the network vertices, they are often identified with the variables that describe the state of the object.
For example, in solving a number of technical problems (generalized signal graph), the concept of a weighted
vertex (weight of the vertex) is used, which can be interpreted as the weight of the loop, incident to the given vertex.

As the kinds of elements in the network, we may distinguish chains and cycles. By a chain we mean a sequence

x0a1x1a2x2…xN–1aN xN of the elements of a graph, for which the statement N – 1
0 +1, +1& ( , x )i i i ix a� �  is true. A cycle

is a closed chain x0 = xN.
Such elements of graphs as path and loop play a very important role in the description of networks with the

help of graphs. A path P0,N from the vertex x0 to the vertex xN is a finite chain x0a1 x1 a2 x2…xN–1 aN xN, for

which the statement N – 1
0 +1, +1& ( , x )i i i ix a� �  is true.

As a qualitative characteristics of the path P, one uses such concepts as the path length l(P) and the path
weight �(P).

The number of edges that form the path is called the length of the path. For the path x0a1x1a2x2…xN–1 aN xN,
its length l(P0,N) = N. The weight of the path can be defined as the product of weights of the edges that form it; for
the path above, the weight

�(P0,N) =
N

= 1

( ).i
i

a��
A path may be finite or infinite; it is called simple if no edge occurs in it twice. The path P, in which none of the

vertices occurs twice, is called elementary. In the description of a network, simple elementary paths are usually
used. Therefore, for brevity, the “path” term will refer, in what follows, to a simple elementary path.

A closed path is called a contour L, for the contour x0 = xN. The definitions of the length l(L) and the weight
�(L) of the contour are analogous to the corresponding definitions, formulated above for a path. A contour L is
called simple, if all its edges are different, or composite (complex), otherwise. The contour L is called elementary,
if all its vertices are different.

To describe the properties of a network, the elementary contours are applied, which in the sequel will be
called just contours. For such contours, as for the paths (excluding the initial and end vertices), the statement is true
that each vertex is incident to two arcs, while for one of them it is the end vertex, whereas for the other, the initial
one, i.e.

+L[ ( )i ix s x� � = s–(xi) = 1],
+P & 0 & N[s ( )i ix i i x� � � � = s–(xi) = 1],

where s+(xi) is the number of arcs, issuing from the vertex xi ; s
– (xi) is the number of arcs, entering the vertex xi

(degree of the vertex) [22].
Trees and pre-trees are the elements of graphs which are rather widely used in practice. A tree is a graph, not

containing cycles. The edges, complementing a tree, are called chords. A pre-tree T is a tree, in which each vertex
(with the exception of one of them, x0, called a root of the pre-tree) is the end one only for a single arc, i. e.

+T[s ( )i ix x� � = 1 & 0].i�

The weight of a pre-tree is defined as the product of the weights of all arcs included in it.
To describe graphs, one often uses the notion of a k-tree; a k-tree (k-pre-tree) is the union of k non-touching

trees (pre-trees); the weight of a k-tree (k-pre-tree) is equal to the product of the weights of all the constituent
trees (pre-trees). A dual to the notion of a k-tree is the notion of a k-chord, which is a collection of k non-touching
chords of a tree (pre-tree). A particular case of pre-tree is a star, a collection of simple paths with a common end
or initial vertex; this vertex will be called the center xc of the star. If the center of the star S is the initial vertex of the
paths Pc,i, i.e.
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S = i =1 ,& Pm
c i ,

where m is the number of paths that form the star S, then such star will be called divergent. Otherwise, if the center
of the star S is the end vertex of the paths Pj, c that constitute S, i.e.

S = i =1 ,& Pm
j c ,

then the star will be called convergent. Besides, we will call a star simple, if every its path has the length equal to
one.

A characteristic feature of the star is that, to any vertex that is not the star center, only one outgoing and one
incoming arc are incident.

Star matrix of the network

To describe graphs, the matrices of neighborliness (adjacency), sections and contours are used. However, a
shortcoming of these matrices is that they reflect only the presence or absence of incidence between the vertices
and edges and do not take into account the weights of the edges, which are oftentimes assigned to each of these
elements in describing real objects (in particular, networks). In this regard, one should consider to be more convenient
the matrix S, the elements of which are determined by the following relations:

�(xi, aij, xj) � �ij = �(aij) ;
�(xk, ajk, xj) � �ik = �(aik) ;

where i, j, k = 1(1)n;G(X, A, �) is the unigraph, described by the matrix S; X={x1, x2,…, xn} .
Let us call S the star matrix of the network. It is easy to notice that S is a square matrix of the dimension

n × n. Moreover, the diagonal elements of the star matrix correspond to the weights of the loops aii at the nodes xi,
whereas the non-diagonal elements, situated at the intersection of the j-th row and the k-th column, correspond to
the weights of the arcs ajk, connecting the vertex xk with the vertex xj. In the general case, the row j (Figure 1) of
the matrix S contains the weights of the loop and the arcs entering the vertex j:

1j jk jj jn� � � �

Fig. 1. The row j of the star matrix of the network.

To this row, there corresponds a convergent simple star with a loop at its center xj (Figure 2a). Therefore, the
method of constructing the network graph can be reduced to a sequence of construction of convergent simple stars
and loops at each node with their subsequent uniting. Similarly, in the general case, to the k-th column (Figure 3) of
the matrix S, there corresponds a divergent simple star with a loop at its center xk  (Figure 2b).

Fig. 2. The parts of the network graph, corresponding to a row (a) and a column (b) of the S-matrix.
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Fig. 3. The k-th column of the star matrix of the network.
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Hence, any digraph of the network can be constructed by uniting the divergent simple stars and loops, formed
for each of its vertex separately.

An example of a star matrix can be the matrix, constructed for the graph (Figure 4).

Fig. 4. An example of a network digraph.

The given example testifies to the simplicity of forming the star matrix. An advantage of the matrix S is also its
conformity with the system of homogeneous linear equations of the network

1

n

ij j
j

a x
�
� = 0, i = 1(1) n (6)

or, in the matrix form, SX = 0,

where X = 

1

2

n

x

x

...

x

� �
� �
� �
� �
� �
� �
� �
� �

 is the vector of state variables of the network vertices.

Among the merits of the matrix S is its convenience for the formation of the contour and tree subgraphs,
necessary in the calculation of symmetrical and non-symmetrical algebraic complements of the determinants of the
described linear systems [22].

Fillers of the networks

No matter how diverse [23-35] the networks are, they are characterized by the presence of filler (Table 3). It
is this filler that is collected and processed at the vertices (nodes) of the network and transported along its edges.

The concentration and transfer of the filler is the main function of any network, from electronic to the biological
ones. The nodes and transfer channels are necessarily adapted to the network type, i.e., to the kind of its filler
(Table 3). This filler is usually stored, processed and filtered at the network vertices. The processing of the filler is
diverse. Clearly, the block diagram of the implementing it network node (Figure 5) only generally reflects the set of
its operators (in practice, it may be shorter and more detailed). For example, in the oil transport networks, a new
oil product, gasoline, can be obtained from oil.

Fig. 5. Generalized block diagram of the node (vertex) of the network, taking into account the processing of its filler.
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In the gas transmission networks, the processing may include producing LNG for its subsequent loading
through the terminal to tankers. In the banking networks, the carrier may undergo a currency conversion, etc.
However, regardless of the form, the filler is necessarily present in each network, as the blood in any living organism.

In the above context, the definition of a network will require not only specifying its graph G (1), but also
clarifying the issue of the network filler I. Thus, it is possible to define a network N by setting the graph defining its
topology and the filler flows circulating over its structure

Net = Net (I,G), (7)
where I is the set of filler flows; G is the structure (topology) of the network, defined by a graph or its matrix.

In (7), the network has a less abstract than in (1) representation, because not only the nature of connections
of its vertices is taken into account, but also the parameters of the filler transmitted along its edges. This is the
fundamental distinctive feature of the definition of network proposed in (7).

Table 3. Kinds of filler according to the network type.

Network type Filler of the network

1 2

Electrical network Electric current

Gas transmission network Natural gas

Oil transportation network Oil

Internet Internet-content

Wireless network Radio-signal

Railroad networks Cargo and passengers

Trade network Commodities

Neural network Neural impulse

Social network Social information

Spider's net Vibration signal

Exchange trade networks Quotations

Network of military bases Arms, military personnel, ammunition

Blood circulatory system Venous and arterial blood

Bank network Money

Subway network Trains with the subway passengers

It should be noted that I and G are disjoint (I � G = �) sets, but, obviously, between their elements should
exist some one-to-one correspondences of routing (which flow, along which edge and to which vertex goes).

From this perspective, the last expression (7) will assume the form
Net = Net(I, G, M), (8)

where M is the predicate (schedule) of routing the flows I in the structure G.
The obtained expression (8), combined with (1), should be considered as the most complete definition of a

network, taking into account its topology G and filler I, as well as the routing M of the filler in its structure.
In addition, it should be noted that all sets listed in (8) are functions of the time, after which the carrier flows

and their routes may change and even the network topology may change. The schedule M is responsible for their
synchronization. A typical example of this is social networks [23-35], pulsating with their connections, the number
of users, popularity of contents, etc. In contrast to the corporate networks, the schedule M has an obvious stochastic
character.
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The development of topological variety of networks is generally related to the structures with the information
filler [23-35].

A fundamentally different idea from all of the above is a proposal to introduce a filler matrix (Figure 6), which
takes into account not only the topology of the storage and transfer of filler, but also the parameters of these
operations from the viewpoint of the filler. The elements of this matrix are obviously functions of time, so it can help
to monitor the dynamics of the network. At the same time, the elements of the matrix (Figure 6) offer the prospect
of weighing the components (vertices and edges) of the network, which is quite essential for the description of
heterogeneous networks, which form the basis of modern information, economic and other spaces of the world
order.

To consider the features of the filler matrix, we mark in Figure 7 arbitrary vertices xi and xk, as well as the arcs
ajk and akj which connect them.

Fig. 6. Filler matrix of the network, where = 
�
Fil

= F
i1
/ t

As we can see (Figure 6), the matrix ||Fil (xj )|| retains all the properties of the network topology, reflected in
the star matrix (Figure 7). The only difference is that its cells contain the parameters of the filler: in the diagonal cells,
the parameters of the filler stored in the network vertices, whereas in the non-diagonal elements, the carrying
capacity of the filler circulating through the corresponding arcs of the network.

Fig. 7. Star matrix of the network.

Metrics of the weighted networks

Using unweighted graphs [21-22] significantly limits the possibilities of adequate description of network
structures. This shortcoming is especially manifested in addressing the problems of the network security assessment
tasks where the risk analysis includes an assessment of potential damage. Without the weighing �(.) of the vertices
and edges of the network graph, it is virtually impossible. We introduce the necessary notation: V[.] is the operation
of weighing the filler volume; C[.] is the operation of weighing the value of the unit volume of the filler; Pot [.] is the
operation of weighing the network potential or its element with respect to the filler; Fil  is the network filler; Real [.]
is the operation of weighing the real filling of the network or its element; Net is the network; Fil(in) is the filler
entering the network; Fil(out)  is the filler coming out of the network.
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The question arises: what and how to weigh? Here the most important factor is the network filler. Its volume
accumulated at a vertex or transported along an arc becomes the result of weighing. Thus, the concept of carrying
capacity has started to be used for the network arcs; this concept refers to the maximum possible volume of filler
transmitted along the arc per unit time. Obviously, this is an extreme (potential) assessment, which determines
the potential of the arc. Similarly, for a network vertex, it is possible to find the maximum admissible volume

Pot[xi] = max{�(xi)}= max{V[Fil (xi)]}, (9)
the maximum of its weight with respect to V, the filler volume, stored at the vertex xi. In turn, the potential of a
network arc is

Pot [ajk ] = max{�(ajk)}= max ilV[F ( )]jka
,

t

� ��� �� �� �� ��� �� �
(10 )

the maximum of the (time) derivative of the volume V of the filler, pumped through the arc ajk.
In actual circulation of the filler over the network, the instant values of weights of its vertices and edges are

substantially different from their potentials. Here some averaged (over the period of study) estimations are appropriate.
However, it is not so important whether the average or extreme estimation is realized. It is important to find the

potential of the network as a sort of integral (with regard to the limiting filling) characteristic. To do this, one should
find the total weight of all vertices of the network

Pot[X] = otP [ ]j
i

x� (11)

and all its arcs Pot[A] = otP [a ].jk
i
� (12)

From (11) and (12), it is possible to propose the following potential metric of the network
Pot[Net] = Pot[X] × Pot[A]. (13)

For a non-weighted network, where the weights of the vertex and the arc are identical, we have
Pot [Net] = N × M,

where N is the number of vertices and M is the number of arcs in the networks.
These estimates do not take into account the most important (in terms of safety) parameter. This is the value

of the unit volume of the filler, which, generally speaking, has its own value for each vertex and arc of the network.
In this context, the expressions (9) and (10) take the form

Pot[xi ] = max{C[Fil (xi)]V[Fil (xi)]} (14)

and Pot[ajk ] = max il
il

V[F ( )]
C[F ( )] jk

jk

a
a .

t

� ��� �� �� �� ��� �� �
(15)

In the case of immensity of the problem, its simplification is possible due to categorizing the network elements.
So, for inhomogeneous networks, a layer-by-layer consideration is possible, where the layer is formed by the
degree of the vertices. The value of the filler can be considered roughly equal and then the expression (13), which
takes into account (14) and (15), is substantially simplified.

At the same time, the real content of the network is of practical interest
Peal[Net] = Peal [X] × Peal[A], (16)

where: Peal[X] = il il{C[F ( )] V [F ( )]},j i
i

x x�

Peal[A] = il
il

V[F ( )]
C[F ( )] j k

j k
jk

a
a .

t

�

�� (17)

as well as the maximum admissible filling of the simplest piece of the network (two vertices connected by an arc),
from a collection of which the network itself is formed.
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Besides, it is possible to find the balance of the network filler
Peal [Net] = Peal [Fil(in)] – Peal[Fil(out)], (18)

which is, obviously, a function of time. In the information-telecommunication networks, Fil is the content.

Formalization of the strategies of network confrontation

A network [22] is a system (structure-parametric) formation
Net (X, A, Fil) (19)

on the set of vertices (concentrators) X, the disjoint with it set A of arcs (transporters) X � A = �, the filler Fil,
which circulates, is accumulated and processed in the given network Net.

Accordingly, it is possible to evaluate the network capabilities through the cardinality of the above sets |X| and
|A|. In particular, the structural potential of the network (19) can be defined as follows:

Pot (X, A) = |X| |A|. (20)
One of the strategies of network confrontation is to limit the structural capabilities of the enemy network. This

approach can be implemented in two ways. First, one can impede the development of the network structure and
its potential, when one seeks to reduce the positive derivative of the growth of powers of the sets of concentrators
and network transporters

ln |X| ln |A|
and .

t t

� �
� �

� �
For example, with regard to the European energy supply, the restrictions have been introduced to the Russian

gas transmission network, concerning building the “South Stream” and developing the “Nord Stream”.

Without any doubt, these decisions of the European Union were lobbied by the players interested in the
development in Europe of their energy networks and weakening of Europe’s dependence on the energy resources
produced in Russia. A key player in the implementation of this strategy is the United States, under the pressure from
which Bulgaria has refused to allow the “South Stream” gas pipeline passing through its territory.

It should be noted that all these alternatives have arisen because of problems with the gas pipeline passing
through Ukraine to Europe, which serves as an illustration of implementation of the second strategy of the
network confrontation. The thing is that it is also possible to reduce the potential of the enemy network by means
of attacking the stem (with the highest carrying capacity) transporters  AM, which leads to reducing the filler flow

il Mln |F (A )|

t

�
�

�
due to various reasons. For Ukraine, these are political factors and its economic difficulties, leading to “extortion
by the pipe”. The unauthorized gas takeoff, violations of the contractual obligations, and also extortion of money
from the European Union to pay for gas are observed there.

The Ukrainian center of political instability, organized by the United States, in the absence of alternative
network capacity to supply gas to Europe, remains a significant obstacle to establishing normal economic Russian-
European relations.

It is appropriate to note that such crisis phenomena have a multi-network character. Under the pretext of
“exporting democracy”, the Ukrainian coup in 2014 was carried out in the context of the slogan “Ukraine is not
Russia”, which contained a seed of severance of the critical network links with the Russian Federation. As the
subsequent events showed, these ties started to be cut with respect to the military-industrial complex, transport
and information communication, where the potential (20) of the network cooperation of the countries significantly
diminishes

otln P (X, A)
.

t

�
�

�
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The attack on the network may also be carried out by reducing the value of its filler. In fact, in this way the
potential of the network (16) - (17) diminishes. Such an operation was carried out by the United States and Saudi
Arabia by causing to fall the oil prices and thus undermining the economy of the USSR in the late twentieth century.

The third strategy should be especially mentioned, when not so much the structural “sequesters” are imposed
on the network but the filling of the network is restricted. In relation to Russia, this attack is carried out by means
of sanctions, restricting the influx into the domestic network structures of the filler in the form of credit resources,
advanced technologies and investments.

Recall that these sanctions were imposed under the pretext of settling the Ukrainian crisis, that is, Ukraine was
used as a tool in the network war against Russia.

Today, the most important task of the manufacturer is not so much to make the product, but to sell it. Even the
consumer society, formed by the Western civilization, cannot help in solving this problem without additional measures.
In connection with this, a true network economic war has started in the global economic space.

The states that are the leading producers seek to expand their trade networks to the new economic spaces,
restricting the access of their competitors to these markets. For example, the USA is preparing a project of
market integration with Europe. They intend to implement something similar in the Asia-Pacific region, driving
China out of this market. Creating the most favored regime for its own multinational companies, obviously
having a network structure, such alliances provide an opportunity for the rapid development of their networks
and prevent a similar development of the network economy of the countries which are not the members of these
unions. In fact, these are the measures of economic globalization of the world and getting more opportunities to
control the planet through the control over the markets of the North-Atlantic and Asia-Pacific areas primarily in
the interests of the United States.

This is the fourth strategy of the network confrontation, when one network tries to increase its potential

1ln Pot (X, A)
.

t

�
�

�
(21)

At the same time, there are created the conditions for the other network

2ln Pot (X, A)
,

t

�
�

�
which reduces its potential. These conditions may concern the restrictions on the movement of goods and so on.

Criteria for evaluation of network conflict, taking into account the metrics of the weighted networks

To classify conflicts, the modern conflict studies use the dynamics of efficiencies E1 and E2  of the conflicting

parties on the basis of the differential sensitivity [37] in the form of  2

1

E
E .�
�  First, correct assessment of the

effectiveness of the network is very difficult. Second, the most objective are the relative rather than differential
assessments, i.e. one should calculate the relative sensitivities of the analyzed parameters of the conflicting
networks. This is confirmed by the fact that, for the same absolute deviations of efficiency, the advantage in
relative terms belongs to the party with the lesser current value of efficiency. Let us try to correct this shortcoming
in the conflict assessments.

Suppose that the metrics of some conflicting networks Net1 and Net2  are known; in particular, their potentials
Pot [Net1] and Pot [Net2] have been evaluated. Assuming that the confrontation is aimed at changing the capabilities
of the conflicting parties, let us assess the conflict according to these extreme estimates. In the differential form, the
assessment criterion will be the following

K =
ot 1

ot 2

P [Net ]

P [Net ]
.

�
� (22)

However, as has been shown above, this assessment (13) does not quite satisfy the researcher. So we move
on to the relative sensitivity
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K =
ot 1 ot 1

ot 2 ot 2

ln P [Net ] ln P [Net ]/

ln P [Net ] ln P [Net ]/

dt
,

dt

� �
�

� � (23)

where, taking into account the metrics on the set of vertices Pot[X] and Pot[A] of the network, we have

K = ot 1 ot 1

ot 2 ot 2

ln P [X ]/ t ln P [A ]/ t

ln P [X ]/ t ln P [A ]/ t
.

� � � �
�

� � � �
(24)

In the expression (24) we have Pot[X1] = 1

1

il
il

V[F ( )]
max C[F ( )] ;jk

jk
i

a
a

t

� ��� �� �� �� ��� �� �
� (25)

where the operators C[.] and V[.] respectively assess the value and the volume of the filler Fil in the elements
(vertices xi and arcs ajk) of the network Net1. The expressions analogous to (25) can be written also for the
second network Net2

Pot[X2] = 2 2il ilmax {C[F ( )] V [F ( )]};i i
i

x x�

Pot[A2] = 2

2

il
il

V[F ( )]
max C[F ( )] ;jk

jk
jk

a
a

t

� ��� �� �� �� ��� �� �
� (26)

In the expressions (25) and (26), the summation is performed over the entire set of vertices and arcs of each
network separately.

In the case, when the confrontation aims at changing the real parameters of the networks, it is appropriate to
assess the conflict according to the following criterion

K = eal 1 eal 1

eal 2 eal 2

ln R [X ]/ t ln R [A ]/ t

ln R [X ]/ t ln R [A ]/ t
,

� � � �
�

� � � �
(27)

where the operator Real [.] realizes weighing of the real (not extremal) filler in the elements of the network Net1

Peal[X1] =
1 2il il{C[F ( )] V [F ( )]};i i

i

x x� (28)

Peal[A2] =
1

1

il
il

V [F ( )]
C[F ( )] ;jk

jk
jk

a
a

t

�

�� (29)

and the network Net2 Peal[X2] =
1 2il il{C[F ( )] V [F ( )]};i i

i

x x� (30)

Peal[A2] = 2il
il2

V [F ( )]
C[F ( )] jk

jk
jk

a
a .

t

�

�� (31)

As can be seen, the expressions (28) and (29) differ from the expressions (25) and (26) by the absence of
searching the maximum admissible values.

In each specific case of confrontation, a conflict can be classified by the values of K, determined by the above
expressions (24) – (29).

As for measuring the depth � of the conflict, the following analytical assessments can be offered. In particular,
we have for the set of vertices

�[X] = |(�Peal [X1])/�t – �Peal [X2])/�t|. (30)

Correspondingly, for the set of arcs we can write

�[A] = |(�Peal [A1])/�t – �Peal [A2])/�t|. (31)

Expressions (30) and (31) reflect the relative dynamics of confrontation between Net1 and Net2 in the context
of expansion (contraction) of real possibilities of the concentrators (30) and the transporters (31) of the filler.
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For the extremal assessments (in the context of the struggle just for them), it is possible to obtain similar
expressions:

�[X] = |(�Pot [X1])/�t – �Pot [X2])/�t| ; (32)

�[A] = |(�Pot [A1])/�t – �Pot [A2])/�t| ;

Accordingly, for the integral assessment of the depth of the conflict, one can write

�[Net] = |(�Pot [Net1])/�t – – �Pot [Net2])/�t|. (33)

In conclusion, it should be noted that the obtained expressions (24) - (33), as well as other characteristics of
the conflict, are functions of time and must be calculated separately for each specific situation of confrontation.

2. CONCLUSION AND THE DEVELOPMENT DIRECTION

The obtained above mathematical models may be useful for describing the distributed systems [22] and
similar network structures which conflict in space [21]. One of the forms of their confrontation is mutual virus
attacks. The epidemics arising in this case cause significant damage to the opponent. Therefore, in terms of further
development of this research work, it is expedient to examine the dynamics of the potentials of the opposing sides
in case of failure of the elements under virus attacks.

For example, for homogeneous networks, their potential, based on the results of this paper, can be estimated
initially as follows

Pot[Net] =
2[X]

2

k
,

where k is the degree of the network vertices; |X| is the number of the network vertices;
Taking into account the number |XR| of the vertices, destroyed by the virus, the relative dynamics of the

network potential will be

ot

ot

P

P

�
=

2
R

2
X

2

(|X| – |X |)
2 N

X
2

k

,
k

| |
�

where NX =  R|X |

|X|
 is the epidemic resistance [36] of the network vertices during a virus attack on the network.

To assess the conflict at the considered stage, it is appropriate to compare the relative deviations of the
conflicting party potentials

ot 1 ot 2

ot 1 ot 2

P P

P P
–

� �
= (NX2 – NX1)(NX2 + NX1),

where NX1 and NX2 are the corresponding epidemic resistances of the mutually attacked sides of the conflict.
The presented expressions show that it is the party with a larger epidemic resistance, i.e. with a smaller NX,

that  has an advantage.
The development of such estimates is of real practical and theoretical interest for further studies of network

confrontation with the usage of virus attacks.
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