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Abstract. In the context of isometric imbedding we consider the method
of convex integration using Haar functions. Given a short map f0 on [0, 1],

under appropriate randomization we construct random isometric maps fn
using convex integration. It is then shown that n3/2(fn−f0) converges weakly
to a Gaussian noise measure. We next consider the problem of composing the

Gaussian noises from successive convex integrations since isometric imbedding
for surfaces proceeds through similar steps. Some applications to approximate
isometric imbeddings for two dimensional manifolds are also considered.

1. Introduction

One of the applications of Gromov’s convex integration theory is a substan-
tial simplification of the proof of the Nash-Kuiper isometric imbedding theo-
rem. Spring [10] has given the following simple description of Gromov’s main
one dimensional lemma in convex integration: let A ⊂ Rq be open, connected,
f ∈ C1([0, 1],Rq), q > 2, be such that ∀t ∈ [0, 1], f ′(t) ∈ Conv(A). Then for any
ϵ > 0, ∃g ∈ C1([0, 1],Rq) such that ∀t ∈ [0, 1], (i) |g(t) − f(t)| < ϵ, (ii) g′(t) ∈ A.
The proof on page 171 of Gromov [5] simplified to the order r = 1 case follows
his method of convex integration which uses an approximately periodic function.
However the very general setting mentioned above makes it difficult to see the
structure of the approximation in the one dimensional lemma.

In our previous article [3] we considered an example of the above using the
Nash twist with a view to studying how the difference curve {g(t)−f(t), t ∈ [0, 1]}
behaves under randomization on g, when ϵ → 0. To relate to the problem of
isometric imbedding of curves, suppose f0 : [0, 1] → R3 is a smooth curve with

(Y (u), Z(u)) a choice of orthonormal vectors perpendicular to ∂f0
∂u . If r(u) is a

given smooth positive function, we want to get a curve f1 such that∥∥∥∂f1
∂u

∥∥∥2 =
∥∥∥∂f0
∂u

∥∥∥2 + r(u)2.

For this in [3] we considered a Nash twist

∂fn
∂u

=
∂f0
∂u

+ r(u)[Y (u) cos 2πnu+ Z(u) sin 2πnu],

Received 2018-9-5; Communicated by the editors.
2010 Mathematics Subject Classification. Primary 60F17, 60H05.
Key words and phrases. Isometric maps, convex integration, Gaussian noise measure.

* Corresponding author.

215

           Serials Publications 
                 www.serialspublications.com 

Communications on Stochastic Analysis 
Vol. 12, No. 3 (2018) 215-223



216 A. DASGUPTA

from which fn can be obtained by integration. The corresponding set A in the
one dimensional lemma for this example can be taken as a thickening of the curve

∂f0
∂u

+ r(u)[Y (u) cos 2πs+ Z(u) sin 2πs], 0 ≤ s ≤ 1.

Explicit calculations now could be made to understand the structure of fn − f0.
For the problems discussed towards the end of this paragraph it was seen that

the cosine part would not contribute. Thus for r ≡ 1, we essentially needed to
study the part fn(s)− f0(s) =

∫ s

0
sin(2πnu)du, s ∈ [0, 1], n > 1. The graph of this

integral looks like a few functions similar to the delta function placed side by side
as can be seen from the graph of the sine function. If the signs over successive
subintervals of length 1/n are inverted randomly following a probabilistic proce-
dure, one further integration of fn(s)−f0(s) leads to a random walk after rescaling.
When the sine functions are multiplied by a smooth positive function r(u), more
analysis is required to capture the approximate periodicity. Weak convergence of
random walks then leads to processes, and their derivatives as noises. This is a
way of considering a random collection of isometric (or approximately isometric)
imbeddings around the function f0 and examining their weak convergence to a
measure after rescaling.

When we are dealing with
√
r21(u) + r22(u) sin(2πnu), the convex integration in

one step gives a similar result involving the function
√
r21(u) + r22(u). However one

can follow a two step convex integration (whose geometric description is given in
the beginning of section 3) first to achieve r1 and then to achieve r2, a procedure
that is essential in applications of convex integration to isometric imbedding of
surfaces rather than curves. An illustrative picture of how fi,ni from the ith step
wraps around fi−1,ni−1 from the (i − 1)th step for different i’s can be seen (in a
different context) on page 43 of Eliashberg and Mishachev [4]. After randomization
the rescaled differences of fi,ni

’s from various steps are our approximate noises,
but the directions depend on the previous steps. For this reason combining the
noises in a meaningful way becomes an important problem. In this article we
restrict to the Lipschitz case instead of C1 and discuss the problem of composition
of noises after reviewing the one step procedure. Restriction to the Lipschitz case
through the use of Haar functions helps us to use easily understandable geometric
constructions.

After reviewing the noise in the one dimensional case in section 2, in section
3 we examine the addition of such noises in Theorem 3.1. Immediately following
this theorem we consider a composition rule that projects the different direction
for the r2 increment onto the direction for the r1 increment and then combines
the noises suitably to relate to

√
r21 + r22. In section 4 we discuss an application to

approximate isometric imbeddings in the two dimensional case for surfaces. In the
concluding remarks we mention some further issues arising from the drift terms of
the noises.

2. One Step in the One Dimensional Case

Let H(u), u ∈ [0, 1), be the function that takes the value 1 on [0, 1/2), and
−1 on [1/2, 1). Suppose f0 : [0, 1) → R3 is a smooth curve with unit normal
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Z(u), u ∈ [0, 1). In that case for a smooth positive function r(u), u ∈ [0, 1), for
each u, the squared norm of the map

∂f0
∂u

+ r(u)Z(u)H(s), s ∈ [0, 1),

is bigger than that of ∂f0
∂u by r(u)2, and the above map satisfies the convex inte-

gration condition ∫ 1

0

{∂f0
∂u

+ r(u)Z(u)H(s)
}
ds =

∂f0
∂u

.

In convex integration one then makes s depend on u, for example ∂fn(u)
∂u = ∂f0

∂u +

r(u)Z(u)H({nu}) and shows that the C0-distance between fn and f0 is uniformly
small. In fact (consider with an abuse of notation r(u) only) over each [k/n, k+1/n)
interval we have using the mean value theorem for integrals∫ (k+1)/n

k/n

r(u)H({nu})du

=
1

2n

∫ 1

0

{
r(

k

n
+

z

2n
)− r(

k

n
+

1

2n
+

z

2n
)
}
dz

=
1

2n

{
r(

k

n
+

z1
2n

)− r(
k

n
+

1

2n
+

z1
2n

)
}
, 0 ≤ z1 ≤ 1. (2.1)

Using r′ we can now see that the above integral is O(1/n2), there are at most n
such integrals for fn(t)−f0(t), and the remaining integral over [[nt]/n, t) is O(1/n).
This is an illustration of Gromov’s one dimensional lemma with Lipschitz/Haar
type derivative instead of C1 derivative.

To consider a family of random maps let X1, X2, · · · be i.i.d. random variables
on a probability space (Ω,F , P ) taking values ±1 with equal probability. Consider
the following random function

Hn(u, ω) = X[nu]+1(ω)H({nu}), u ∈ [0, 1), (2.2)

which has the effect of randomly inverting the H({nu}) over each [k/n, (k+1)/n)
interval. Clearly the previous estimates on the C0-distance hold with this random
function replacing H({nu}). Noting that the H({nu}) look like the sine function
of our previous article, we now consider the similar integrated process∫ t

0

(fn(s)− f0(s))ds =

∫ t

0

∫ s

0

r(u)Z(u)Hn(u, ω)duds, t ∈ [0, 1). (2.3)

We abuse the notation to consider r(u) only. Over each [k/n, (k + 1)/n) interval
we decompose r(u) = r(k/n) + (r(u) − r(k/n)). The integral of r(k/n)H({nu})
over [k/n, (k + 1)/n) has the graph which is a triangle (whose base is on the X
axis) with area r(k/n)/4n2. After randomization and multiplication by n3/2 the
sum over the intervals for the double integral involves Xk over the k-th interval

and gives the process (1/4)
∫ t

0
r(u)dW (u).

The double integral for (r(u) − r(k/n))Hn(u, ω), u ∈ [k/n, (k + 1)/n), k =
0, 1, . . . , n− 1, needs a little more work, we refer to equation (3.3) and the subse-
quent discussion of our previous article [3] to bring out this hysteresis effect. First,
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the integrals ∫ (k+1)/n

(k/n)

(r(u)− r(k/n))H({nu})du

can be evaluated by using the mean value theorem for integrals as in equation (2.1).
Then the integral from 0 to s can be broken into a sum over the intervals [k/n, (k+
1)/n), and after randomization this sum over intervals leads to a random walk with
summands −Xkr

′(k/n+ z/n)/4n2 where z ∈ [0, 1). Thus the first integral from 0
to s normalized by n3/2 itself converges to −(1/4)

∫ s

0
r′(u)dW (u), this W being the

same W in the previous paragraph. The double integral converges to its integral,
and we then add the two parts. Bringing in Z(u) we get a restatement of the main
theorem of our article [3]:

Proposition 2.1. The process

4n3/2

∫ t

0

(fn(s)− f0(s))ds = 4n3/2

∫ t

0

∫ s

0

r(u)Z(u)Hn(u, ω)duds, t ∈ [0, 1)

converges weakly to∫ t

0

r(u)Z(u)dW (u)−
∫ t

0

∫ s

0

∂u(r(u)Z(u))dW (u)ds, t ∈ [0, 1).

This leads us to consider the noise

r(t)Z(t)dW (t)−
∫ t

0

∂u(r(u)Z(u))dW (u)dt

as the weak limit for 4n3/2(fn(t)− f0(t)). We refer to [8] for an interpretation.

3. Composition of Noises From More Than One Step
in the One Dimensional Case

Proposition 2.1 depends on the vector ∂f0
∂u (u) and Z(u) which are two orthogo-

nal vectors. We now consider a plane curve f0, draw
∂f0
∂u (u) and r1(u)Z1(u), where

for appropriate indexing Z1 is the unit normal to ∂f0
∂u (u), so that the squared

norm of ∂f1
∂u (u) = ∂f0

∂u (u) + r1(u)Z1(u) increases by r21. At the end of the vec-

tor ∂f0
∂u (u) + r1(u)Z1(u) we draw r2(u)Z2(u) perpendicular to ∂f1

∂u (u). Earlier,
over an interval of length 1/n, multiplying by H({nu})) we integrated r1(u)Z1(u)
and then using randomization by Xi’s derived Proposition 2.1. This proposition
involves ∂uZ1(u).

Now, each of these 1/n length intervals is further is divided into two equal parts
over which r2(u)Z2(u) is multiplied by H({2nu}) to apply the convex integration

method. We notice that when we multiply Z1(u) by H({nu}), ∂f1
∂u (u) already

depends on n and fluctuates rapidly. Consequently, Z2(u), also fluctuates rapidly
and it becomes quite difficult to consider the rescaled limit of the double integral
of

r1(u)Z1(u)X1,[nu]+1H1({nu}) + r2(u)Z2,n(u)X2,[2nu]+1H2({2nu}),
after randomization, where we have brought in appropriate subscripts to indicate
the two steps, and in the second step brought in 2n to indicate that the interval
length is 1/2n.
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Thus we consider an indirect way of composing the noises from the two steps
in a suitable way. The formula for noise from one step derived in section 2 was

r(t)Z(t)dW (t)−
∫ t

0
(r(u)Z(u))′dW (u)dt. The second term arises specifically from

convex integration and its precise form is an important feature of this noise. If
we omit Z from the above formula that means the normal component is inte-
grated ignoring the phase, and the entire integration is done on [0, 1]. If the entire

increment
√
r21 + r22 is obtained in one step then the noise is√

r21 + r22(t)dW (t)−
∫ t

0

r1r
′
1 + r2r

′
2√

r21 + r22
(u)dW (u)dt.

On the other hand if we perform two such successive operations involving

r1 and r2 we get two noises r1(t)dW1(t) −
∫ t

0
r′1(u)dW1(u)dt and r2(t)dW2(t) −∫ t

0
r′2(u)dW2(u)dt respectively. For the second noise, in Proposition 2.1 we multi-

ply by 4(2n)3/2 since the interval lengths are 1/2n. We need to compose the two
individual noises in a satisfactory manner to get the noise of the previous para-
graph. To visualize the main idea of the next proof, one can draw from the origin
of the XY plane a vector of length R0(u) = ||∂f0∂u (u)|| along the X axis, at the tip
draw positive and negative perpendiculars of length r1(u). This gives a circle of

radius R1(u) on the XY plane and the tips represent ∂f1
∂u (u). At these tips one can

draw perpendiculars to ∂f1
∂u (u) of length r2(u) which gives a bigger circle of radius

R2(u). The noises from the two steps can be visualized if at the tips of ∂f1
∂u (u)

we bring in three dimensions and draw positive and negative perpendiculars along
the Z axis of length r2(u).

Adding noises coming from independent steps is a standard practice. We first

try to understand the structure of r1dW1 + r2dW2 −
∫ t

0
(r′1dW1 + r′2dW2)dt and

prove (implicitly using matrix notation)

Theorem 3.1. The sum r1dW1 + r2dW2 −
∫ t

0
(r′1dW1 + r′2dW2)dt can be repre-

sented as √
r21 + r22NdW −

∫ t

0

(
√
r21 + r22N)′dW dt

where dW = (dW1, dW2)
T and N = (r1, r2)/

√
r21 + r22. This formula is similar

to the formula in Proposition 2.1 if we think of N as a unit vector driving two
dimensional Brownian noises.

Proof. With N = (r1, r2)/
√
r21 + r22 we get

N ′ =
r′1r2 − r1r

′
2

r21 + r22
(r2,−r1)/

√
r21 + r22.

We now transform the Brownian noises locally (u omitted from notation) by

dW̃ =
( r1√

r21+r22

r2√
r21+r22

r2√
r21+r22

−r1√
r21+r22

)
dW ,
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which gives after inverting

dW =
( r1√

r21+r22

r2√
r21+r22

r2√
r21+r22

−r1√
r21+r22

)
dW̃ .

Using the above r1dW1 + r2dW2 =
√
r21 + r22dW̃1 =

√
r21 + r22NdW . Also

−r′1dW1 − r′2dW2 = −r1r
′
1 + r2r

′
2√

r21 + r22
dW̃1 −

r′1r2 − r1r
′
2√

r21 + r22
dW̃2

= −(
√

r21 + r22)
′NdW −

√
r21 + r22N

′dW

= −(
√

r21 + r22N)′dW .

This completes the proof. □

As N is a unit vector N ′ is orthogonal to N , hence N ′dW carries the noise in-
dependently of NdW . A look at N ′ also indicates that it depends asymmetrically
on r1 and r2 and can even be zero if r1 = r2 (for all u). Thus a suitable compo-
sition can be obtained by taking only the radial NdW part giving the following
rule

(r1(t)dW1(t)−
∫ t

0

r′1(u)dW1(u)dt) ◦ (r2(t)dW2(t)−
∫ t

0

r′2(u)dW2(u)dt)

= (r1(t)dW1(t)−
∫ t

0

r′1(u)dW1(u)dt) + (r2(t)dW2(t)−
∫ t

0

r′2(u)dW2(u)dt)

+

∫ t

0

√
r21 + r22N

′dW (u)dt.

From the representation in Theorem 3.1, the distribution of the resulting noise is
consistent with the distribution of the noise if the entire increment is done in one
step with

√
r21 + r22. Also if a third step is taken with r3, then another composition

with the above composition for the first two steps can be done similarly.
Finally the noises from the components of r1Z1 and r2Z1 composed according

to the rule above gives the noise from
√
r21 + r22Z1 for the curve f0.

Remark 3.2. Removing noises selectively is a useful practice in acoustic engineer-
ing, called Active Noise Cancellation. For an example of how our noises can be

isolated, suppose G(u, v) is a Volterra kernel and Yt = Wt +
∫ t

0

∫ v

0
G(u, v)dWudv.

The relevant problem of recovering W from Y is discussed on page 259 of Kallian-
pur and Sundar [6].

4. An Application of the Composition Rule in Two Dimensions

Nash’s proof of isometric imbedding for surfaces proceeds by starting with a
short map f0 : M → Rq where q > n = dim(M). Here shortness means that
f0 ⋆ h < g where h is the euclidean metric and g is a Riemannian metric that one
wants to achieve by a new map f∞ starting from f0. This difficult proof begins

with decomposing g−f0 ⋆h =
∑k

i=1 αi(ui, vi)
2dli(ui)

2 where ui, vi are orthogonal,
li is a linear function with constant coefficients and dli(vi) = 0, k bounded. First,
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approximately half of g − f0 ⋆ h is achieved, then an iterative technique achieves
the isometric imbedding by always remaining short at any finite step. Below we
discuss only one step in a simple case and then examine the corresponding noises.

Suppose V = [0, 1]× [0, 1] with the euclidean metric h, f0 : V → R3 is a smooth
surface and g is a metric on T (V ) such that f0 ⋆ h < g. We first consider the
case when g − f0 ⋆ h = α1(x, y)

2dx2 + α2(x, y)
2dy2 where x, y are the standard

euclidean coordinates on V . To get a surface which approximately achieves g,
suppose n(x, y) is the unit normal at (x, y) to f0 and drop perpendicular lines
from (x, y) to the X and Y axes respectively on V where the integration is to be
done. The following construction uses the simple structure of the euclidean metric
on V and illustrates Nash’s technique of increasing norms to achieve approximate
isometry, the claim is that for large n1 and n2 the following map is approximately
isometric:

f1,n1,n2(x, y) = f0(x, y) +

∫ x

0

α1(u1, y)n(u1, y)H({n1u1})du1

+

∫ y

0

α2(x, u2)n(x, u2)H({n2u2})du2.

For the proof, differentiating we get

∂xf1,n1,n2(x, y) = ∂xf0(x, y) + α1(x, y)n(x, y)H({n1x})

+

∫ y

0

∂x(α2(x, u2)n(x, u2))H({n2u2})du2.

Values of H are ±1, the first two terms are perpendicular, and the third term
can be made small by making n2 large as we have discussed earlier. Similarly for
the y-derivative. To understand the noise, f1,n1,n2(x, y) − f0(x, y) is to be made
random and rescaled.

If the two convex integrations are randomized as in section 2 but independently
of each other, then using Hn1(u1, ω1) and Hn2(u2, ω2) locally at (x, y) one gets
two independent Gaussian noises,

α1(x, y)n(x, y)dW1(x)−
∫ x

0

∂u1(α1(u1, y)n(u1, y))dW1(u1)dx,

in the ∂xf0(x, y) direction and

α2(x, y)n(x, y)dW2(y)−
∫ y

0

∂u2(α1(x, u2)n(x, u2))dW2(u2)dy,

in the ∂yf0(x, y) direction respectively. We take n1 = n2 and finally add the noise
components as is required by the formula for f1,n1,n2

(x, y)− f0(x, y). For a clear
picture we recall that f1,n1,n2 and f0 are C0-close, and this noise at each (x, y) is
a rescaled weak limit of this difference in an appropriate sense.

Now suppose g − f0 ⋆ h =
∑3

i=1 αi(ui, vi)
2dli(ui)

2 where ui, vi are orthogo-
nal, li is a linear function with constant coefficients and dli(vi) = 0, but dif-
ferent li’s are not necessarily orthogonal to each other. Since we have the eu-
clidean metric on V , at any point in V we decompose αi(ui, vi)

2dli(ui)
2 into

horizontal and vertical components, say αi(ui(x, y), vi(x, y))
2dli(ui((x, y)))

2 =
αi(x, y)

2 cos2 θi(x, y)dx
2+αi(x, y)

2 sin2 θi(x, y)dy
2. Then the composition rule over
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i gives a process which has same distribution as the process obtained from one
step involving

∑
αi(x, y)

2 cos2 θi(x, y) in the dx direction and similarly for the dy
direction. With an abuse of notation composition of noises from successive com-
ponents of αi cos θin, i = 1, 2, 3, can be done first for αi cos θi, i = 1, 2, 3, in the
dx direction and similarly for the dy direction. These two components describe
the final noise and different ways of decomposing g − f0 ⋆ h lead to the same
(in distribution) component gaussian noises, since (

∑
α2
i (x, y) cos

2 θi(x, y))dx
2 +

(
∑

α2
i (x, y) sin

2 θi(x, y))dy
2 is the same for any decomposition.

Finally the composition rule for successive components of αi cos θin, i = 1, 2, 3,
and αi sin θin, i = 1, 2, 3, gives the noises from the increments

√∑
α2
i cos

2 θin and√∑
α2
i sin

2 θin for the surface f0.

Remark 4.1. In the discussion above we have chosen to perform the convex in-
tegrations always in the dx and dy directions. This gives the drift terms which
depend on the paths along those directions. If one performs convex integrations
along the different dli directions, then one gets noises along different dli’s along
with drifts along those lines. In that case we don’t know how to compose the
noises.

Even in our way of doing things, the drifts are nonlocal. One may add the drifts
to the noises we have considered and be left with the noises α1(x, y)dW1(x) and
α2(x, y)dW2(y) along the dx and dy directions respectively. In that case a radial
component from a composition like that in the section 3 (no partial derivatives
of α1(x, y), α2(x, y) are involved any more) may give a satisfactory noise that is
local.

5. Concluding Remarks

Our consideration of the composition rule has one more purpose. Successive
increments in norm in successive steps may also relate to a Markov like property
as mentioned in [1]. However the drifts with the noises that we have found do not
immediately reveal any such feature yet.

In another direction, for a case where differentiability of ∂f1
∂u and increment of

dimension by 1 (which is 2 for the Nash twist) both can be realised consider the

following picture: on the plane, drawing ∂f0
∂u along the X axis, at the tip draw

perpendiculars of height ±r1(u) where g − f0 ⋆ h = r21(u)du
2. Then on the circle

of radius

R1(u) =
(∥∥∥∂f0

∂u

∥∥∥2 + r21(u)
)1/2

one can construct a function

∂f1
∂u

(u, s) = R1(u)e
iΘ1(s), 0 ≤ s ≤ 1,

where Θ1(s) goes smoothly from 0 to θ1, to 0, to −θ1, to 0, over successive subin-
tervals of length 1/4 of [0, 1] and such that the convex integration condition is
satisfied: ∫ 1

0

∂f1
∂u

(u, s)ds =
∂f0
∂u

(u).
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