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ABSTRACT

Thispaper presents a new nonlinear controller design method for regional pole placement of uncertain discrete-

time systems. The constraint of control input saturation is considered in the design. A sufficient condition is derived

for the robust stabilization and the desireddynamic performance represented by the settling time and damping

ratio.The design is formulated in terms of linear matrix inequality (LMI) optimization.

The effectiveness of the proposed design isillustrated by two examples. The first one ishard disk drives,

whoseuncertainty is modeled bya norm-bounded form. The resulting controller does not violate the limits, and the

second example is on regional pole placement for an uncertain system with and without control saturation. Application

to vehicle active suspension to achieve comfortable dynamic performance by pole placement and avoiding actuator

saturation is also considered. The results are compared with passive suspension system.

Key words: constrained control, pole placement, linear matrix inequality (LMI) optimization, hard disk drives,

vehicle active suspension

1. INTRODUCTION

Manyphysical systems are inherently nonlinear and subject to variation in the operating point. To overcome

such difficulties, the system to be controlled isrepresented by an uncertain linear time-invariant model. The

uncertainty can be cast into either polytopic or norm-bounded form.The powerful robust control techniques

of liner systems can then be applied [1]. The poles of systems without uncertainty can be placed in desired

locations so as to achieve good dynamic behavior in terms of settling time and damping ratio [2].However,

for systems with uncertainties, the closed-loop poles can be assigned to a domain(D) or region, rather than

specific locations [3]. This is termed D-stability or regional pole placement by using robust controllers

against system uncertainty. Regional pole placement for continuous-time systems with polytopic uncertainty

using state feedback is presented in [4], while output feedback is presented in [5]. In addition to plant

uncertainty, another source of uncertainty is the controller itself, termed resilient control, which is tackled

in [6]. More improvement in robust pole placement by adding a guaranteed cost constraint and fault-

tolerant control is found in[7].

In many practical control problems, the actuator has limited output, called saturated (or constrained)

control [8]. Combining robust pole placement with saturated control is tackled in[9]. Another example is

the computer hard disk drive (HDD) servo system, which has major nonlinearities of friction and actuator

saturation. When the actuator saturation is not considered in the design phase, the performance of the

designed control system seriously deteriorates, as shown in [10] and the references therein.

The main contribution of this paper is the development of constrained robust controllers, which achieve

pole placement in a desired region in the complex plane. Consequently, a good dynamic performance is
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attained in the presence of system uncertainty. The practical limitation of the control signal is taken into

consideration in the design phase as well. A sufficient condition of the LMI frame is derived to carry out the

controller design. The system uncertainty is represented in the norm-bounded form. The model is then used

for the design of a discrete-time saturated robust pole placer in MATLAB simulation and applied to a hard

drive system.Note that the proposed method solves the regional poleplacement problem in an entirely

different and simpler approach than that given in [9]. To the best of the authors’ knowledge, no research

work is done for regional pole placement for discrete-time systems with state feedback control.

The ultimate goal of this paper is to present anew method to design saturating controllers for uncertain

systems. In this method, the control signal is allowed to saturate while guaranteeing asymptotic stability

to a bounded region which, obtained by the solution of a set of LMIs, is ellipsoidal and symmetric. The

main challenge in this approach is to obtain wide range domain of initial states that ensures asymptotic

stability for the system although the presence of saturations. To get around this problem, linearization of

the nonlinear saturation function is presented. The purpose of the present paper is to design a saturated

state feedback controller for uncertain system with pole region constraints. The proposed controller is

robust against system uncertainties in both the state and input matrices. Using the LMI method, a convex

optimization problem is formulated to find the controller matrix. Furthermore, the designed saturated

controller is applied to three examples. The first example is an uncertain hard disk drive system and the

proposed controller does not violate the design constraint. The second example shows the control limit

violation and how it can be avoided using the proposed design. The third example is avehicle active

suspension system in which a saturated controller is designed while achieving the best possible ride

comfort via pole placement.

The paper organization is as follows: The problem formulation is presented in section 2. In section 3,

the design of a saturated robust regional pole placer is developed for uncertain discrete-time systems.

Section 4 is devoted to numerical simulation to demonstrate the effectiveness of the proposed design.

Finally, the conclusion is presented in section 5.

Notations: Capital, small, and Greek letters denote matrices, vectors, and scalars, respectively. I denotes

the identity matrix. W, W–1 denote the transpose and the inverse of any square matrix W, respectively. W >

0 (W < 0) denote a symmetric positive (negative)-definite matrix W. The symbol  is as an ellipsis for terms

in matrix expressions that are induced by symmetry. For example,

( ' ') ( )

'

L W N W N N L W N N

N M M

          
      

2. PRELIMINARIES AND PROBLEM FORMULATION

The following facts [1] are used in the sequel:

Fact 1 (congruence transformation): The definiteness of a matrix W does not change under the congruence

transformation HWH.

Fact 2 For any real matrices W
1
, W

2
 and (k) with appropriate dimensions and   I, , it

follows that

1

1 2 2 1 1 1 2 2           ,  0W W W W W W W W            

where (k) represents system uncertainty in the norm-bounded form. The use of this lemma is to eliminate

the uncertainty.

Fact 3 (Schur complement): This fact is useful in transforming a nonlinear matrix inequality into a

linear one.
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For constant matrices W
1
, W

2
, and W

3
, where W

1 
= W

1
 and 0 < W

2 
= W

2
, it follows that

'

1 31

1 3 2 3

3 2

  '   0 0
W W

W W W W
W W


 

    
 

Consider the discrete-time uncertain system

1 ( ) ( ). ( )k k kx A A x B B sat u       (1)

where x
k
, 

uk
 are the state and control vectors of dimension n, m, respectively. The pair (A, B) is assumed to

be controllable. A, B are time-varying matrices, which represent parametric uncertainty, unmodelled

dynamics, and/or nonlinearities, assumed to be norm-bounded as follows:

[ , ] [ , ]k bA B M N N    (2)

' 1k k kI      (3)

where M and N are known constant matrices with appropriate dimensions. 
k
 is an unknown matrix with

Lebesgue measurable elements, and I is the identity matrix.

The control signal is constrained due to practical limitation. The saturated controller to develop is

assumed to be state feedback and symmetric and normalized as follows:

 , 1 1, 1...

or

1       1

( )     1< 1

1    1

j

j

j j j

j

u F x u j m

if u

sat u u if u

if u

     

 


  

  

k ku Fx (4)

Note that if the control limits are different from ±1, it can always be normalized and cast in the form (4)

as shown in [8]. The saturation control system is shown in Fig. 1.

Figure 1: Feedback-saturated control systems

Controller Process

ref xu
sat

u

_

The closed-loop system is given by

1 { ( ) }k kx A A B B F x       (5)

The problem is to develop a saturated controller, which robustly stabilizes the closed-loop system (5)

and ensures a good dynamic performance, described by maximum settling time and minimum damping

ratio despite the system uncertainty. To achieve both constraints of max settling time and min damping

ratio, the closed-loop poles mustlie in the hatched area, asshown in Fig. 2. This is termed D-stability in

which the poles must lie inside the region D for all admissible uncertainties.
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3. PROBLEM SOLUTION

To design the abovementioned controller, the nonlinear saturated control function is first linearized in the

equivalent form using the following two lemmas [8]:

Lemma-1: For all u  Rm and  Rm such that |
j
| < 1, j [1, m],

( ) { ,  [1, ] },i isat u co D u D i    (6)

with co denoting the convex hull.

Equation (6) has the following equivalent form:

1( )   [  ],  0i i i i isat u D u D

      

Here, D
i 
is an m × m diagonal matrix with elements either 1 or 0 and 

iD  = (I – D
i
), which results in

= 2m possible matrices. The matrices D
i 
and 

iD  are introduced to model the saturation function as a

linear one. If D
i
 is selected as I, 

iD  becomes 0, and the resulting controller will be unsaturated. Recall that

these controllers (6)work in a linear region and do not allow saturation to occur.

The following sets are defined:

   ( )  :  1   1  and ( , )  :    ; 0 n n TD F x R Fx P x R x Px           

where P is a symmetric positive-definite matrix. The sets D(F) and (P, ) represent, respectively, a

symmetrical polyhedral and an ellipsoidal one. The following result is recalled:

Lemma-2: For a given positive scalar , if there exist matrices Y Rmxn and Z Rmxn and a positive

definite matrix X = X Rnxn andsolutions to the following LMIs:

[AX + B(D
i
Y + D–

i
 Z)] + < 0, (7)

Figure 2: Desired region of closed-loop poles, hatched
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1/
0

jZ

X

 
  

(8)

i = 1, . . ., ; j = 1, . . ., m, then when A = 0 and B = 0, the closed-loop saturated control system is

asymptotically stable at the origin 0  ( , )x P     with

F = YX–1, (9)

H = ZX–1, (10)

P = X–1. (11)

It is worth mentioning that LMI (7) guarantees asymptotic stability, while LMI (8) ensures that

the ellipsoidal set  (P, ) is contained inside the polyhedral set D(H), allowing the control to be

saturated. As a special case, by selecting D
i
= I, the control works only in a linear region without

reaching saturation. In this case, 
iD  = 0 in LMI (7), and Z

i 
is replacedby Y

i 
in LMI (8) to have

( ,  ) ( )P D F   .

Our control targetis to design asaturated controllerthat maintains asymptotic stability against system

uncertainty, as well as to place the closed-loop poles in a desired region D-stability, if possible, so as to

achieve a good dynamic responsein terms of settling time t
s
 and damping ratio .

Pole placement in the region shown in Fig. 2 is difficult to solve.However, the problem can be easily

solved by approximating the spiral of the constant damping ratio as a circle, as shown in Fig. 3. The

problem is thus reduced to placing the poles in between the two circles, one for t
s 
and the other for 

approx
.

We will consider two design cases: without and with saturated inputs.

Design case 1: Unsaturated control

Consider the uncertain system with unsaturated control

1 ( ) ( ). k k kx A A x B B u      

Figure 3: (a)  circleapproximation and (b) desired region of poles, hatched

-approx.

t
s

(a) (b)
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Theorem 1: If there is a feasible solution to the following LMIs, then the closed-loop poles lie inside

the two circles of center q
1
 and radius r

1
, and center q

2
 and radius r

2
.

1 2 1 2

2

1

1 1 1

1

1

' 0, 0, 0, 0, 0,

( ) '
0

0

0 0b

X X

r X

AX BY q X X MM

NX I

N X I

         

    
 

          
  
 

  

(12)

2

2

2 2 2

2

2

( ) '
0

0

0 0b

r X

AX BY q X X MM

NX I

N X I

    
 

          
  
 

  

Moreover, the controller is given by

F = YX–1

Proof: It is well-known [3] that the eigenvalues ofmatrixA lie inside a circle of center -q and radius r if

and only if

2

1
' 0, 0

r P
P P

A qI P

  
   

  
(13)

Or equivalently,

''2 '

1

' 0,

0 ' 0 '
( ( ) ) ( ( ) ) 0

0 0

b

P P

Nr P F N
t t

M MA BF qI P

 

          
                

           

The last matrix inequality is satisfied if

'' ' '2 ' '

1 1

1

' 0,

0 0 ' ' 0 0 ' '
( ) ( ) 0

0 0 0 0

b b

P P

N Nr P F N F N

M M M MA BF qI P

 



 

                  
                        

                   

is satisfied, or

2

1 ( ) '
0

0

0 0b

r P

A BF qI P MM

N I

N F I



    
 

          
  
 

  

The last matrix inequality can be linearized by pre-and postmultiplying by [P-1, I, I, I], that is, applying

fact 1, and lettingP-1 = X, FX = Y.
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Note that the above condition is only a sufficient condition for regional pole placement in one circle.

Since we have to achieve pole placement in the area between the two circles, one for t
s 
and the other for ,

we have theorem 1.

Design case 2: Saturated control

Consider the uncertain system with saturated control

1 ( ) ( ). ( )k k kx A A x B B sat u      

Theorem 2: The regional pole placement with robust saturated state feedback control (4) for the uncertain

system (1) can be achieved if there exist 
1 2 1 2' 0,  0,  0,  0,  0,  X X Y          , and a feasible

solution to the following LMIs:

2

1

1 1 1

1

1

( ) ( ) '
0

0

( ) 0 0

i i

b i i

r X

AX B DY D Z q X X MM

NX I

N DY D HX I

    
 

           
  
 

   

(14)

2

2

2 2 2

2

2

( ) ( ) '
0

0

( ) 0 0

i i

b i i

r X

AX B DY D Z q X X MM

NX I

N DY D HX I

    
 

           
  
 

   

1/
0

jZ

X

 
  

for i = 1, . . ., ; j = 1, . . ., m.

Moreover, the saturated robust pole placer is given by

F = YX”1

Proof: From (13), the poles of the closed-loop uncertain system (1) lie inside the circle of center (-q, 0)

and radius r if and only if there is a feasible solution to the following LMI:

2

1

' 0

0
( )( )i i

P P

r P

A A B B D F D H qI P 

 

  
 

        

(15)

Equation (15) is satisfied if the following inequality is satisfied:

 
'2

1

1

'

1

' 0

0 0 '
0

0( )

0 0 ( ) ' '
( ) 0 0

0

i i

i i b

b i i

P P

Nr P
N

M MA B D F D H qI P

D F D H N
N D F D H

M M

 

 



 



 

        
         

          

    
         

     
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or equivalently,

2

1( ) ( ) '
0

0

( ) 0 0

i i

b i i

r P

A B D F D H qI P MM

N I

N D F D H I

 







    
 

         
  
 

   

(16)

By post-and premultiplying (16) by P-1, that is, by applying the congruence transformation, and

substituting P-1 = X, one gets (14). This completes the proof.

4. SIMULATION RESULTS

The effectiveness of the proposed controller is illustrated by the following two examples:

Example 1: Hard disk drive (HDD)

The computer’s HDDis used to store information efficiently on its tracks.Consider the basic diagram of

a disk drive, as shown in Fig.4.Information is read as the HDD rotates. The control objective of the disk

drive reader is to position the reader accurately on the desired track and to move from one track to another

within 4 ms, if possible. For the typical parameters given in [2], the disk drivesystem can be approximated

as

5
( )

( 20)
G s

s s



(17)

To cope with the approximations and the neglected dynamics in the nominal model (17), we consider

the parameters of the numerators and denominators as time-varying over the intervals [4.55.5], [1624].

We select the two state variables as x
1
(t) = the position y(t) and x

2 
= dx

1
/dt.Discretizing the system at

sampling time T = 1 ms withthe zero-order hold method, we get the norm-bounded uncertain system.

1 0.0009901 2.483 6 0 0
, , , ' , 0.0065

0 0.9802 0.00495 0.0742 0.0524
b

e
A B M N N

       
            

       

Figure 4: Closed-loop control of HDD
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The control objective is to design a controller to achieve a settling time t
s 
of about 4 ms and a damping

ratio of >0.5. To achieve the first objective, we select r
1 
= 0.37; q

1 
= 0 for the first circle, and r

2
 = 0.53; q

2

= -0.34 for the second circle.

The obtained controller using theorem 1 is

F= [-144070 -260].

The open-loop and closed-loop poles with admissible uncertainties are shown in Fig. 5. Although the

uncontrolled system is unstable, the proposed controller succeeds in allocatingthe poles in the desired

region, between the two circles.

(a) Open-loop poles  (b) Closed-loop poles

Figure 5: Poles of the disk drive uncertain system

Figure 6: Step response of the disk drive head position reader x
1
at extreme uncertainties, (k)=±1
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It is evident in Figs. 6 and 7 that the proposed controller achieves the desired dynamic response, >0.5

and t
s
<4 ms, without violating the control constraints, 3u   volts [10].

Example 2: Consider the following example, which shows the control limit violation and how it can be

avoided using theorem2.

Given the uncertain discrete-time system with sampling time T = 0.2 sec,

  2.,
5.0

0
',

5.0

0
,0,0176.00154.0,

1

0
,

6700.16703.0

10






































 bNNMDCBA  

The control objectives are the settling time <1.34 sec and the damping ratio >0.5, which require the

designing of a state feedback robust pole placer without and with control limit 1u  .

The settling time constraint is achieved by a circle r
1 

= 0.55, q
1 
= 0, anda damping ratio r

2 
= 0.53,

q
2 
= -0.34.

Using theorem 1, the unsaturated controller is

F = [0.6776 -1.5500]

The open-loop and closed-loop poles with the admissible uncertainties are shown in Fig.8.The system

without a controller is unstable, while the poles are in the desired region, between the two circles, with the

proposed controller.

For initial conditions x
0 
= [2 2]’, the system response and the control signal are shown in Figs. 9 and 10,

respectively.

It is evident that the proposed controller achieves the desired dynamic response.Since the control signal

violates the limit±1, the design has to be modified using theorem 2. The feedback gain of the saturated

robust pole placer is given by

Figure 7: Control signalof the disk drive at extreme uncertainties,  (k) =±1
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(b) Open-loop poles (b) Closed-loop poles

Figure 8: Poles of the uncertain system

Figure 9: State response x
1
, x

2
 using unsaturated control Figure 10: Unsaturated control signal

Figure 11: Stateresponse x
1
, x

2
using saturated control Figure 12: Saturated control signal
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F = [0.3193 -0.7518]

For the same initial conditions, the system response and the control signal are shown in Figs. 11 and 12,

respectively. As shown, the control objectives are satisfied without control violation.

5. APPLICATION TO VEHICLE ACTIVE SUSPENSION CONTROL

Vehicle suspension systems are widely investigated and elaborated in the literature. For example, continuous-

time control, adaptive, fault tolerant, robust, switched control techniques are studied in [11], [12], [13], and

[14], respectively. Robust H  approach and linear matrix inequality optimization approach is used to

design an active suspension control is given [15].

Unlike the previous approaches, the proposed design introduces a digital computer or a microprocessor

into the control loop as given in theorem 2. It is used to design an active suspension system for the quarter-

vehicle model shown in Fig.13 [16].

The dynamics of the quarter-vehicle model can be described by [16]

0 1 0 1 0

0
0

0
  +    

0 0 0 1 1 0

0

s s s s

s s s s

s s u s s

u u u u u

k c c u

m m m m
x x u

k c k c u

m m m m m



   
   
   
   

 
   

     
    
 

          
      


(18)

Figure 13: Quarter-vehicle model with an active suspension
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where ( ,  )s sk c  are the parameters of the so-called passive suspension; uk stands for the tire stiffness; sm and

um  represent sprung and un-sprung masses, respectively. Moreover, s ux x  is the suspension stroke, 0ux x

is the tire deflection and 0x  is the vertical ground displacement caused by road unevenness and fu  is the

scalar active force generated by a hydraulic actuator. The state variables of the model (18) are defined as

1 s ux x x  , 2 sx x  , 3 0ux x x  , and 4 ux x  . The control input u is the normalized active force f su u u

and 0x    is the disturbance due to the road roughness. Note that, active forces generated by hydraulic

actuators and considered as control inputs, are bounded because of actuator saturation. The system parameters

and nominal values are shown in Table 1.

Table 1

Quarter-vehicle active suspension parameters

Parameter Value

m
s

320 kg

m
u

40 kg

k
s

18 kN/m

k
u

200 kN/m

C
s

1 kN.s/m

u
s

1.5 KN

The normalized input is bounded as ( ) 1u t   and the active force is bounded by u
s 
= allowable spring

stroke (±0.08 m) * spring constant.

Due to different passenger load variation, it is assumed that the mass m
s
 varies between 250 to 390 kg.

The system is discretized with the zero order hold method at a sampling time Ts = 0.001 sec. Therefore, the

discrete time norm-bounded model is obtained as

0.9997 0.000986 0.002476 0.0009852

0.05546 0.9969 0.007783 0.003106

0.0002228 1.245 5 0.9975 0.0009867

0.4433 0.02485 4.934 0.9727

A
e

 
 
 

 
 
 

 

 2.089 5 0.004622 1.857 5 0.03694 'B e e    

With uncertainty matrices

 0.0004 0.1367 0 0.0016 'M    

 0.0729 0.0037 0.0102 0.0041 ,N    

N
b
= 0.0061

For passenger comfort, the oscillations due road bumps should be damped out within 1 sec with a

minimum damping ratio = 0.25 [17]. To achieve the first objective, we select r
1 
= 0.9960; q

1 
= 0 for the

first circle, while for the second, r
2
 = 0.68; q

2 
= -0.31.

The LMIs (14) are solved to get the saturated control gain matrix as

F = [-402.7340 -47.9208 546.4541 16.1682]
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As shown in Fig. 14, all the closed loop poles lie inside the desired domain.

The proposed controller is tested for two cases: step, and bump road.

Case 1. Step road test

For simulation, we assume that the vehicle is subject to a 500 N unit step input due to a step road change.

With passive suspension, the vehicle will oscillate for an unacceptable long time, about 3.5 s, with large

overshoot. This might damage the suspension system.

Figure 14: Closed loop poles with system uncertainties using saturated control

Figure 15: Step response at light load
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Whereas the active suspension damps the oscillations in about 0.3 sec without overshoot.

Case 2. Road bump test

In order to study the system response due to road bump, the case of an isolated bump in an otherwise

smooth road surface is considered [16]. The corresponding ground displacement in this case is given

by

0

2
(1 cos( )), 0

2

0,

A V L
t t

L V
x

L
t

V


  

 
 


(19)

where A and L are the height and the length of the bump and V is the vehicle forward velocity. These values

are chosen as A = 0.1 m, L = 5 m and V = 27 km/h. The bump response, namely the suspension stroke (m)

and the active force (kN) are shown in Fig. 14 and Fig. 15. In comparison with the passive suspension case,

the proposed robust saturated control gives better dynamic performance in terms of less overshoot and

faster damping of the suspension stroke. Moreover, the normalized control signal is bounded between ±1

as shown in Fig. 16.

Passengers comfort:

The ride comfort is usually measured by the body acceleration sx  that is given by

0s s s s
s

s s s s

k c c u
x x u

m m m m

 
    
 



This acceleration is shown in Figure 19

Figure 16: Step response at heavy load
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Figure 17: Road bump Response at light load

Figure 18: Road bump response at heavy load
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Figure 19: Passenger comfort due to road bump:light load(left), heavy load(right)

It is evident from Figs. 15-19 that the active suspension outperforms the passive one since it satisfies

the control objectives (damps out the oscillationsin < 1 sec, and damping ratio >0.25) as well as it does not

violate the constraints of suspension stroke (8 cm), and hydraulic actuator force limit of 1.5 KN. Active

suspension also provides better passenger comfort than the passive one as it has lower body acceleration.

6. CONCLUSION

Thispaper considers placing the poles in a desired region of uncertain linear digital systems in the presence

of input saturation. The new scheme is developed to design robust controllers, taking into consideration the

effect of saturation nonlinearity. The proposed controller is based on LMI optimization and requires the

uncertainty of model parameters to be cast in the norm-bounded form. The designed controller is applied to

two numerical examples. Simulation results have also been presented to show the effectiveness of the

proposed design. Moreover, the proposed control is applied to an active suspension of a quarter vehicle

model. Analysis and simulation results have confirmed the potential benefit of the proposed constrained

active suspension in achieving the best possible ride comfort, while keeping suspension strokes and control

inputs within bounds.
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