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Abstract: The main aim of this research work is to track a target using unmanned aerial vehicle (UAV). UAV range,
bearing and elevation measurements are used to find out the target path. Unscented Kalman filter is explored in this
process. The estimated information about range, bearing and elevation is communicated to weapon guidance station
by means of personal communication system. Unscented Kalman filter is able to find out the target path with course
error < 30, speed error < 1m/s and elevation error < 10.
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1. INTRODUCTION

Unmanned aerial vehicle (UAV) is the safest airborne warfare system existing in the world today. UAV is a
robot like system flying in air mainly used in target tracking. It sends radio waves to track the target parameters
like range, bearing and elevation. UAV now-a-days are GPS equipped so that weapon guidance system of UAV
will have knowledge about position of UAV [1-3]. Weapon guidance system may be a ship on the surface or an
aircraft in air. Data received from UAV is sent to weapon guidance system by means of a personal communication
system so that weapon guidance system will be able to know the position and motion of target and releases
weapon in that direction. Target tracking is achieved by Unscented Kalman filter (UKF). Target motion parameters
particularly at long ranges are nonlinear. So, UKF is considered based on rapidly convergent and unbiased filter
problems in Extended Kalman Filter and MGEKF.

Section 2 deals with mathematical modeling and section 3 describes generalized simulator. Section 4 deals
about the simulation results and then concluded in section 5.

2. MATHEMATICAL MODELLING

Consider state vector

1 ( ) [ ( ) ( ) ( ) ( ) ( ) ( )]T
S x y zX k x k y k z k R k R k R k� � � � (1)
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where ( ), ( ), ( )x k y k z k� � �  (velocity components) and ( ) ( ) ( )x y zR k R k R k (range components) of target in 3D axes.

The state equation becomes4

X1s (k + 1) = �w(k) + Ø X1s(k) + B(k + 1) (2)

Ø is given by
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Here t is the measurement interval. B(k + 1) is deterministic matrix

� �)1())(())()1(())1()((000)1( 000000 ������������� kzkzkykykxkxkB (4)

where x0 y0 z0 are the observer position components.

where w(k) is plant noise

w(k) = [wx wy wz]
T (5)

variance of w(k) is

E[ �(k) w(k) wT(k) �T(k) ] = S�ij (6)

here �ij = 2
W� (i is equal to j) (7)

 = 0 othercase
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Measurement matrix is Z(k) and it is

Z(k) = [Rm(k) Bm(k) Em(k) ]T (10)

here Rm(k) Bm(k) and Em(k) are measured Range Bearing and Elevation

Rm(k) = �R(k) + R(k) (11)

Bm(k) = �B(k) + B(k) (12)

Em(k) = �B(k) + E(k) (13)

where R(k) is true range and B(k), E(k) are, true bearing and true elevation.

2 2 2( ) ( ) ( ) ( )x y ZR k R k R k R k� � � (14)
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Measurement vector is

Z(x) = �(k) + H(k) X3 (k) (17)

here H(k) is 
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and �(k) = [�R �B �E]
T (19)

The unscented Kalman filter is a combination of classical filter and an unscented transformation, which is
made in order to transmit transformation in the model through a non-linear process. UKF gives adequately
precise solution.

An easy method is adapted to evaluate the statistical properties of a random variable, enduring a
transformation which is not linear is called an unscented transformation. Suppose a random variable x, having an
expected value x, covariance Px and dimension L, imparting through y=g(x). 2L+1 sigma vectors are used to
compute statistics of y as follows:

x�0�

ixi PLx ))(( �� ���  i = 1, 2, 3………, L

Lixi PLx ���� ))( ��  i = L+1,……, 2L

)/()(
0 �� �� LW m
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)1()/( 2)(
0 ���� ����� LW c

)}(2/{1)()( ���� LWW c
i

m
i  i=1,2,3……, 2L

where )(2 ��� ���� LL (20)

� is a parameter used for scaling. Here the values of �, �, � are 0.001,0 and 2 respectively. Using �i the following
are written.

)( ii gy ��  i = 1, 2, 3…..,2L (21)
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UKF implementation is as follows [5-8] Table 1.

UKF algorithm implementation

1. Sigma state vectors are presented as

� �)(
1s

X)()()()()(
1s

X)(
1s

X)(1 kkpnkpnkkkX ������ �� (24)

2. The same are modified with the help of eqn. (2),

3. State vector is anticipated as
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4. The covariance matrix is predicted as
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5. The state vectors are updated as

� �)|1()()|1()|1()()|1()|1()|1( 1111 kkpnkkXkkpnkkXkkXkkX SSS ����������� �� (27)

6. Then measurement is anticipated as
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7. Covariance of innovation is

� �� �
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8. The cross covariance is

� �� �
2n T(c)P W X(i,k 1|k) X(k 1|k) Y(i,k 1|k) y(k 1|k)xy i

i 0
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(30)



103 International Journal of Control Theory and Applications

Target Tracking Using Unmanned Aerial Vehicle

9. Kalman gain is

)()1( yyxy PinvPkG �� (31)

10. The state is estimated as

)|1()1|1()(1()|1()1|1( kkykkykGkkXkkX ���������� (32)

11. Covariance is represented by

( 1 | 1) ( 1 | ) ( 1) ( 1)TP k k P k k G k P G k
yy

� � � � � � � (33)

Initial target state vector, target velocity components are computed using first and second measurement
sets of range bearing and elevation measurements. The detailed processing of Kalman filter is shown in
Figure 1.

Figure 1: Unscented Kalman filter process

3. GENERALIZED SIMULATOR

Let initial position of the target be (xt, yt, zt) and the target moves with velocity vt. After time t seconds, observer
position changes and the change in the observer position is given by

0 0 sin( ) sin( )dx v ocr oph t� � � � (34)

0 0 cos( ) sin( )dy v ocr oph t� � � � (35)

0 0 cos( )dz v oph t� � � (36)

where ocr and oph are observer course and pitch respectively.Now the new observer position becomes

x0 = x0 + dx0 (37)

y0 = y0 + dy0 (38)

z0 = z0 + dz0 (39)
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From Figure 2.

xt = Rxy � sin (B) (40)

yt = Rxy � cos (B) (41)

sin(�) = Rxy / R (42)

Substituting equations (40) in (41) and (42)

xt = R � sin (�) � sin (B) (43)

yt = R � sin (�) � cos (B) (43)

zt = R � cos (�) (44)

Figure 2: Target and observer positions

Figure 3: Target and observer velocities
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When the target is in motion with velocity vt, change in target position after t seconds, from Figure 3.

sin( ) sin( )t tdx v tcr tph t� � � � (45)

cos( ) sin( )t tdy v tcr tph t� � � � (46)

cos( )t tdz v tph t� � � (47)

where tcr and tph are target course and pitch respectively.

Now the new target position is

xt = xt + dxt (48)

yt = yt + dyt (49)

zt = zt + dzt (50)

Tareget true bearing, range and elevation are

1 0

0

tan t

t

x x
truebearning

y y
� � ��
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(51)

2 2 2
0 0 0( ( , ) ( ( , ) ( ( , )t t ttruerange diff x x diff y y diff z z� � � (52)
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(53)

Figure 4: Block diagram of TMA in simulation mode

Block diagram of target motion analysis in simulation mode is shown in Figure 4. Corrupted measurements
are applied to estimate target motion parameters (TMP) using EKF. Estimated TMP are compared with that of
true values.

4. SIMULATION RESULTS

It is assumed that the experiment is conducted in favorable conditions. This simulation is carried out on a
personal computer using Matlab. The scenario chosen for evaluation of algorithm is shown in Table 2. For
example, scenario 1 describes a target moving at an initial range of 3000m with bearing and elevations of 450. Its
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initial course is 2550 moving with a speed of 10m/s. The range, bearing and elevation measurements are corrupted
with 10m (1�), 0.330(1ó) and 0.330(1ó) respectively.

In simulation mode, estimated and actual values are available and hence the validity of the solution is based
on certain acceptance criterion is possible. The following acceptance criterion is chosen based on weapon control
(this topic is not discussed here) requirement. The solution is converged when error in course <= 30, error in
speed estimate <= 1m/s and error in elevation estimate <= 10.

The estimates and true paths of target are shown in Figure 5 and Figure 9 for scenario1 and 2 respectively.
For clarity of the concepts, estimated speed, course and elevation errors for scenario1 are presented in Figure 6,
7 and 8 respectively. For scenario 2 errors in speed, course and elevation are presented in Figure 10, 11 and 12
respectively. The solution is converged when the course, speed elevation are converged. The convergence time
(seconds) for the scenarios is given in Table 3. In simulation, it is observed that the solution is converged at 28th

sample for course, 26th sample for speed and 3rd sample for elevation respectively for scenario1. So, for scenario
1, the total solution is obtained at 28 samples. Similarly for the other scenario the convergence time is shown in
Table. Similarly for scenario 2, it is observed that the estimated course, speed and elevation are converged at
13th, 25th and 3rd samples respectively. So the convergence time for scenario 2 is obtained at 25th sample.

Table 2
Input scenarios chosen for the algorithm

Scenario Target Target Target Target Target Noise in Noise in Noise in
range bearing Course speed Elevation bearing Range bearing
(m) (deg) (deg) (m/s) (deg)  (1�)(deg) (1�)(m) measurements

(1 �)(deg)

1 3000 45 255 10 45 0.33 10m 0.33

2 3000 135 315 8.5 135 0.33 10m 0.33

Table 3
Convergence time in samples for the chosen scenarios

Scenario1 Course Speed Elevation Total solution

1 28 25 3 28

2 13 25 3 25

Figure 5: Simulated and estimated target paths
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Figure 6: Error in speed estimate

Figure 7: Error in course estimate

Figure 8: Error in elevation estimate
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Figure 9: Simulated and estimated target paths

Figure 10: Error in speed estimate

Figure 11: Error in course estimate
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Figure 12: Error in course estimate

5. CONCLUSION

Based on the results obtained in simulation, Unscented Kalman filter is recommended to estimate target course,
speed in active target tracking from UAV systems.
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