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ABSTRACT

Vibration is an important problem in engineering. There are desirable and undesirable vibrations and it is essential
to control undesirable vibrations. Vibrations are controlled either by active vibration control method or passive
vibration control method. In this work, the vibrations caused by the step input on a Cantilever beam is actively
controlled by piezoelectric actuators when it is placed very near to the fixed end of the cantilever beam. Vibrations
are very rapidly controlled when the length of the piezo electric actuator is fully along the length of the beam. The
results show that PID controller is more efficient than LQR controller for the same configuration.
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I. INTRODUCTION

Vibration is the most important problems in every part of engineering. There are desirable and undesirable
vibrations. For controlling the undesirable vibrations two strategies can be adopted. One is passive vibration
control and the other is Active vibration control. In Passive vibration control, dimensions and properties of
the material is altered in order to reduce the vibration effect. But this increased the weight of the structure
and the cost. Thus Active vibration cntro1 is preferred where the structure has additional materials like
actuator, sensors and controller. Hence in recent years, there has been an increase in the demand of smart or
intelligent structures in various engineering problems. The whole structure which comprises of the material,
actuator/sensor and controller is together called smart structures. This has the high efficiency of reducing
the vibration of a structure rapidly.

H. Karagulle, L Malagaca and H F Oktem [1] analyzed the active vibration control of a flexible beam
containing piezoelectric patches using ANSYS. They used PID controller for controlling the vibrations of
the cantilever beam and the circular plate. S. Narayanan and V. Balamurugan [2] proposed finite element
modeling of piezolaminated smart structures for active vibration control with distributed sensors and
actuators. Comparisons of various controllers which are used to reduce the vibrations were discussed *by
them. Also they discussed about the effect of temperatures on the piezoelectric materials. Active stiffening
of laminated composite beams using piezoelectric actuators was proposed by Haim Waisman and Haim
Abramovich [3]. They presented that mechanical performance such as natural frequencies and mode shape
can be significantly altered by inducing in-plane stresses due to piezoelectric actuators. They compared
their FEA result with the published result and gave a good match.

II. LITERATURE SURVEY

S.X. Xu and T.S. Koko [4] presented the Finite element analysis and design of actively controlled piezoelectric
smart structures. They developeda general purpose scheme, analyzing, designing actively controlled smart
structure with piezoelectric sensor and actuators. Control of beam vibrations by means of piezoelectric
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devices: theory and experiments was given by Paolo Gaudenzi, Rolando Carhonaro and EdoardoBenzi [5].
They analysed the vibration reduction for an active cantilever beam considering a SISO control system.
The sensing and actuating actions have been carried out by two identical PZT piezopatches connected at
the beam in a collocated way. Young-Hun Lim, Vasundara V Varadan and Vijay K Varadan [6] proposed the
closed loop finite element modeling of active structural damping in the frequency domain. They compared
constant velocity feedback control and constant displacement feedback control. They concluded that
resonance peak is altered without altering the structural mass or stiffness. S.H. Chen, Z.D. Wang and X.H.
Liu [7] presented the active vibration control and suppression for intelligent structures. They controlled the
vibration actively using negative feedback control law. Alsothey investigated the effect and dynamic stability
of active vibration control for the intelligent structure by introducing state space equation.

In the present study, vibrations of flexible beam caused by disturbing force are actively controlled by
using piezoelectric actuators. The controller used here is Linear Quadratic Controller (LQR). The LQR is
designed in such a way to minimize the cost function and reduce the unwanted disturbances actively. The
locations of the patches are varied and the optimal location is found out. Then the length of the patch is
varied and its optimal length is found out. And again another controller called PID Controller is used and
its performance is compared with that of the LQR controller.

III. METHODOLOGY

Lateral Vibrations of Beams

The beam is represented in r-y coordinates. M(x,t) is the bending moment, V(r,t) is the shear force and f(r,t)
is the external force per unit length of the beam. Euler- Bernoulli beam equation with external force is
given by following equations
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Piezoelectric Actuator

Active vibration control of flexible structures is done by using piezoelectric actuators. Piezoelectric materials
possess the property by which they experience a dimensional change when an electric voltage is applied to
them. Thenatural material is quartz crystal (S

i
O

2
). Artificial materials using ceramics and polymers such as

PZT (lead zirconium titanate), PVDF (polyvinylidene fluoride) and LS (Lithium sulfate) also exhibit the
piezoelectric phenomenon. When an electric voltage is applied to piezoelectric patch, it produces strain
both in longitudinal and transverse directions.

Piezoelectric Strain Constant

This is the ratio of developed free strain to the applied electric field. Of particular importance arethe strain
constants d

33
, d

32
 and d

31
. The subscript d

ij
 implies that the voltage is applied or charge is collected in the i

direction for the displacement or force in thej direction.

Consider a typical piezoelectric transducer, which has been poled in the three directions and is then
subjected to an electric field along that direction.

For one-dimensional motion, the strain of the piezoelectric element in the z direction is given by,
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While the transducer is in the actuator mode, it will deflect in the x and y directions with the resultant
strains
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t U(r,t) … (3)
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Considering the actuator mode strain along the x direction is given by the equation (3). Stress induced
in the piezoelectric patch along the length.
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Bending moment due to the stress along the piezoelectric patch is given by,
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Assumed Mode Approach

When the piezoelectric actuator is patched on the beam, then the equation of beam is given by,
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The main idea of the assumed modes approach is to expand the function y(r, t) as an infinite series in the
following form

y (r,t) = 
1
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where ( )i r�  are the Eigen functions or mode shapes satisfying ordinary differential equations and boundary
conditions of the cantilever beam. Substituting y(r,t) into the equation (10) then multiplying the Bernoulli-

Euler equation (1) by ( )i r�  and integrating over [0, L] we have,
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Orthogonal properties are given by the following equations
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Where �
ij
 is the kronecker delta function, that is, �

ij
= 0 for all i, j and is equals on if i = j. From these

orthogonal conditions and by using the following equation, beam equation derived.
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Bernoulli-Euler equation is modified to the following form,

EI
4

1 10 0

j(r) dr + A '' j(r) dr  ( ) ( ) ( ) ( )
L L

i i

i i i ir q t r q t
� �

� �

�� � � � �� �� �

=
2

2
0 0

j(r)
( , )

( , ) ( )
L L

j a dr
U r t

f r t r dr C
r

�
� � �

�� � … (16)

�A
2

1 10 0

j(r) dr + A '' j(r) dr  ( ) ( ) ( ) ( )i

L L

i i

i i i ir q t r q t
� �

� �

�� � � � �� �� �

=  
2

2
0 0

j(r)
( , )

( , ) ( )
L L

j a dr
U r t

f r t r dr C
r

�
� � �

�� � … (17)

2

2
0

( , )L

a
U r t

C
r

�
�� j(r) dr�

= 1 2

0

( ) ( )] ( ) ( )
L

jCa r r r U t dr� �� � � ��

= 1 2[ ( ) ( ) ( )Ca i r i r U t� �� �� … (18)

�AL3(q
i
’’(t) + w2q

i
(t)

= b
i
(r

w
)F(t)+C

a
[b

I
’(r

1
) - b

I
’(r

2
)]U(t) … (19)

Equation (19) is the equation of beam is a function of time variable. When the beam vibrations are
controlled the controller term will not be there in the equilibrium equation. When the modal damping of the
beam considered then the equation (19) transformed to the following form.
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Mode Shape

This gives the significance of the relative movement of each and every particle from its mean position at
respective natural frequency of the beam. Beam will be having infinite number of natural frequencies. But
only first four natural frequencies of the beams are considered and actively controlled. Considering equation
(20) it is an ordinary differential equation of the order four. Solution of the differential equation is given by
the complementary function of the equation. There are four roots for the above equation ±�

i
, ±�

i
 Therefore

the solution is given by,
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where C1, C2, C3 and C4 are the constant which are calculated from substituting the boundary conditions
of the beam.
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Where A, B, C and D are the constants which are calculated by using the boundary conditions of the
beam. Boundary conditions of the beam at the free and forced end are to be considered to find the mode
shape equation coefficients.

At fixed end: y(0,t)= 0,
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After substituting the boundary condition into the solution of differential equation then the mode shapes
are given by the following equation (25)
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The roots of the equation represent the value of �i. This is used to find the mode shapes at different
points along the length of the beam at the respective natural frequencies of the beam.

1+cosh(�i L) cos (�i L) = 0 … (26)

Natural Frequencyofthe Beam

The natural frequency of the beam depends on the Young’s Modulus of the beam, moment of inertia of the
beam, mass density of the beam, cross sectional area of the beam and �i which is a factor depending on
mode shape of the beam. By substituting all material properties of the beam, the frequencies of the beam
are calculated. Using modal analysis in ANSYS 9.0 the frequency values are compared. The natural frequency
of the beam is given by,
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Sensor

Position sensors are used for active vibration control. Due to the external disturbances whatever the changes
occurred in the beam, can be sensed using position sensors. Accelerometers can also be usedfor measuring
end point acceleration. As the acceleration at the end point is a function of timeintegrating it, displacement
of the beam can be measured.

State Variable Approach

Rather than directly transforming the differential equations which describe a dynamic system in to the
Laplace domain, an alternative approach is to recast the time domain equations into a standard form, in
terms of the internal state variables of the system. It is then possible to manipulate this state variable
representation, using well established matrix methods, to derive a number of useful properties about the
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system, such as its stability, its controllability and observability and the effect of various forms of feedback
control.

State Space Representation

When the modal damping is not considered, then the equation of the beam for forced vibration is given as
follows.
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When the modal damping is also considered then the equation of beam for forced vibration condition is
given by the equation (28)
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Let state is represented by matrix form,
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When the controller is not presented in the system, then the controller term will be zero. Thenspace
equations are given as follows.

x’(t) = Ax(t) + B
f
F(t) … (30)

y(t,r) = C(r)x(t) ... (31)

y’(t, r) D(r)x(t) … (32)

When the controller is present in the system then the state space equations are given as follows.

x’(t) = Ax(t) +BU(t) + B
f
F(t) ... (33)

y(t,r) = C(r) x(t) ... (34)

y’(t,r) = D(r) x(t) ...(35)

Where y(t) and y’(t) are displacement at the free end of the beam and velocity at the free end ofrespectively.
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Due to the external force the state is going to change. These changes in the state due to external
disturbances are to be measured by the sensors and controlled by using actuators which are externally
controlled by control system. Control voltage given to actuating piezoelectric patch and corresponding
gain matrix are represented in state space form by the following equation. (37)
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U(t) = -Kx(t) ... (37)

Substituting equation (37) in equation (33) we get,

x’(t) = Ax(t) - BK
x
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f
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x’(t) = (A - BK)x(t) + B
f
F(t) … (39)

x’(t) = A
c
x(t) + B

f
F(t) … (40)

Equation (40) will represent the controlled state for the external disturbances. Equations(31) and (34)
will represent uncontrolled and controlled responses respectively for the same input. Equations (32) and
(35) will represent uncontrolled and controlled velocity at the free end of the beam for the same input.

Optimum Controller Design

Optimization refers to the science of maximizing or minimizing the objectives. Optimization requires a
measure of performance. When mathematically formulated, this measure of performance is called the
objective function. Optimization of control system is called optimal control.

Linear Quadratic Regulator

Optimal controller called linear quadratic regulator is considered, which is having a quadratic cost function
of states and controls. The formulation of the linear quadratic regulator for a linear quadratic regulator for
a linear system is as follows.

x’ = Ax+Bu … (41)

y = Cx … (42)

A control function u(t) has to be found that will minimize the cost function, J given by the equation (43)

J = 
0

�

� {x(t)T Q x(t) + u(t)TR u(t) }dt … (43)

The function inside the integral in equation (43) is a quadratic form and then matrices Q and R are
usually symmetric. It is assumed that R is positive definite and Q is Positive semi definite. If R is very
relative to Q, which implies that the control energy is penalized heavily, the control effort will diminished
at the expense of larger values for the state. When Q is very relative to R, which implies that the state is
penalized, the control effort rises to reduce the state, resulting in a damped system. Q and R respective
weights on different states and they control channels respectively.Several procedures are available to solve
the LQR problem. One approach to find a controller that minimizes the LQR cost function is based on
finding the positive-definite solution of the following, Algebraic Riccati Equation (ARE).

A’P - PA+Q – PBR-1’B’P=O … (44)

U=-KX, K=R-1B’P … (45)

Spatial LQR Controlofa Laminate

The main concept behind this is to utilize the spatial property of the model of the laminate derived using the
assumed mode approach. The system described by the equilibrium equation has a finite dimensional state
vector since we consider the first ‘N’ modes of the beam. A spatial LQR controller attempts to minimize the
vibration of the entire structure by minimizing a cost function that relates to the spatial behavior of the
composite system.

The vibration of the beam Y
tip

is measured by using a position sensor on the beam. This information is
feedback to the controller, which applies control voltage u(t) to the actuating piezoelectric patch.
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Cost Function Relatedto Total Energy of the Beam

LQR problem corresponds to the following cost function equation which is related to minimizing the total
deflection of the beam. Therefore, by minimizing the elastic deflection cost function, it is possible to bring
the beam to the rest position quickly and as smoothly as possible.

J = 
0

�

� {
0

L

� [y(t,r)]2dr + R[u(t)]2} dt ... (46)

If only vibrations on a certain redion of the beam are of importance, then the quadratic cost function
could be modified as follows.
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Where �(r) is a weighing function emphasizing the region where the vibrations are to be minimized. In
this case, the cost function will be,

J = 
0

�

� {x(t)]TQx(t) + u(t)T R u(t)} dt … (48)

where Q = C(L)Tf(r) C(L) … (49)

Based on the �(r) value, the vibrations can be reduced at a particular point or throughout the length of
the beam. When �(r)=1, then the vibrations are controlled throughout the length of the beam, and the value
of is given by

Q = diag (L3,0,…. L3,0) … (50)

This type of controller design is superior to standard techniques, when the vibration reduction in a
global sense is required. It attempts to design a controller which minimizes the elastic deflection along the
length of the beam.

Table 1
Parameters of the Beamand Patch

Beam material Aluminum

Young’s Modulus (N/m2) 6.75e10

Beam Length (m) 500e-3

Beam widhth (w
b
)(m) 30e-3

Beam thickness (t
b
)(m) 1.5e-3

Mass Density (kg/m3) 2752.3

Moment of Inertia I = w
b
 t

b
3 / 12 (m4) 8.4375E-012

Area of cross section of Beam 4.5E-005
A = w

b
 t

b
3 (m2)

Figure 1: Cantilever beam with Actuator, Sensor and Control System
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Piezoelectric material PZT

Young’s Modulus (N/m2) 139 x 109

Patch Length (m) 50e-3

Patch width (w
p
) (m) 30e-3

Patch thickness (t
p
) (m) 0.5e-3

Charge constant (d31) (m/V) 11 x 10-11

Voltage Constant (g31)(Vm/N) 0.010

Maximum electric Field (V/mm) 1

Initially we use Lead ZirconateTitanate (PZT) as a piezoelectric patch. The given values are to be
substituted into the state space equation. Then it is transformed into transfer function in orderto plot the
response curves. The transfer function is calculated by generating code in MATLAB.

First the response at the free end of the beam due to step input at free end without the controller is
plotted.Then the patch is placed in the beam. The location of the patch is varied continuously and the
corresponding response in plotted. For all the variation of locations the Controller weighting matrix [R] is
taken as [6 x l0-10].

Figure 2: Step Response at the free end of the beam when the actuator (PZT) is placed at different locations
along the length of the beam

Inference from the Graph

Without the controller, considering modal damping for the step input response plot is drawn. This response
will decay after certain interval of time due to the material damping. But by considering controller with the
minimization of the elastic deflections of the beam cost function these vibrations will be controlled in short
interval of time. Also the effect of varying the location of the PZT patch is carried out and its effect can be
clearly viewed from the response plot. At the particular time of 0.5 sec the amplitude will beControlled
Vibration Decay.
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Table 2
For 0.5 sec the amplitude for various distance from fixed end

Distance from fixed end (in meters) Amplitude (mm)

250E-3 0.993
150E-3 0.827
100E-3 0.779
75E-3 0.757
25E-3 0.714
1E-3 0.698

Hence from the above table we can clearly conclude that when the actuator is placed nearer to the fixed
end the vibrations can be controlled very rapidly and the amplitude is reduced to a significant extent. The
length of the piezoelectric patch is varied and the optimal length can be concluded from the obtained
response plot. Here the piezoelectric patch used is PZT only. The Controller Weighting Matrix [R] is taken
as [6 X 10-8] for all cases.

Figure 3: Step Response at the free end of the beam when the actuator (PZT) size is varied along the length of the beam

Inferencefromthe Graph

Here the length of the piezoelectric actuator is varied along the length of the beam and its corresponding
response is plotted and it can be clearly viewed that when the actuator length is more the vibrations are
damped more frequently. For a particular time the amplitude is measured and it is tabulated.

Table 3
For 1 sec the amplitude for various patch length

Length of the patch (in meters) Amplitude (in meters)

100E-3 0.422

300E-3 0.256

500E-3 0.0746
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From the tabulated value, it can be inferred that the amplitude is very less in case of more patch length.
Therefore full length patch can be used for rapid damping of vibrations.In this section, the length of the
patch is fixed to be 50 mm and the location of the patch is placed from 10 mm from the fixed end. But here
the piezo electric patch material is varied and its performance is measured from the response plot.

Figure 4: Step Response at the free end of the beam when the different actuator are along the length of the beam

Hence, it can be concluded from the response plot that PZT G-1195 is more efficient than other patches
taken into consideration.In all the previous simulations the controller used is LQR and all the above are
simulated using MATLAB using SIMULINK option. The Block diagram is shown below.

Figure 5: Simulink Block used for Simulation
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In this section, instead of LQR controller PD controller is used and its performance is studied. For this
controller the simulation is performed using ANSYS. The working of the PID controller is explained below.
The strain is calculated at the selected sensor location and it is multiplied by K

s
, and then it is subtracted

from zero. The zero value is the reference input value to control the vibration. The difference between the
input reference and the sensor signal is called the error signal. The error value is multiplied by K

c
 and K

v

and it is feed back into the actuator to damp the vibrations. Now for the same material parameters and using
the same PZT patch the response is plotted in ANSYS.

Figure 6: Response plot for PID Controller

The graph is plotted in POST 26 and the response can be viewed. From the graph it can beconcluded
that the amplitude is less than in LQR controller. Similarly for the same case the amplitude is less. Hence it
can be concluded that PID controller is better than LQR controller.

IV. CONCLUSIONS

In this paper, the vibration caused by the step input on a Cantilever beam is controlled by using different
piezoelectric actuators and based on the obtained result the conclusions are vibrations are actively controlled
at the free end of cantilever beam using piezoelectric actuators.Optimal Linear Quadratic Regulator is
designed for active vibration control based on the cost function related to minimization of elastic deflections
of the beam.Vibrations are very rapidly controlled when the piezoelectric actuator is placed very near to the
fixed end of the cantilever beam.Vibrations are very rapidly controlled when the length of the piezo electric
actuator is fully along the length of the beam.Different piezo electric materials have been used and PZT G-
1195 is found to be efficient than other actuators taken into consideration. When two controllers are used
for the same configurations, LQR and PID controller, it is found from obtained result that PID controller is
more efficient than LQR controller.
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