
Clean Slate: A Secure Virtual File System
with Device Authentication for Mobile
Devices
Partha Sarathi Chakraborty*, Kaustubh** and Raghavendra Pratap Singh***

Abstract: This paper addresses the need of data access control and privacy on an occasion of device theft/loss or
any other scenario where the attacker gains physical access to the device. Theft/Loss of mobile storage devices is a
pressing issue as of present as the number of mobile devices’ users increase. Furthermore user’s ignorance towards
security only makes matters worse. Clean slate is an attempt at dealing with the after effects of such mishaps in a
way that’s easy and user friendly. Clean slate is a FUSE (File System in User Space) based cryptographic virtual
file system. It transparently encrypts the data locally, but stores the secret keys remotely, away from the device
itself, managed by a key service. We also include the concept of trusted device pairing, via the usage of digital
certificates so that the device itself can detect if it is lostorstolen and deny access to remotely stored decryption keys
and consequently the data. If all else fails we need to know if any data has been compromised and for that we propose
a logging service. This way we are able to take better informed decisions. If it is deployed correctly, this can be a
very effective solution, but with some impact on I/O performance, which we have attempted to address in this paper.

Keywords: Mobile, Secure, Theft, Device Pairing.

1.	 INTRODUCTION
Device theft/loss is a common and persisting problem as their usage grows more and more.56% of US
citizens misplace their cell phone or laptop each month.113 cell phones are lost or stolen every minute in
the U.S. About 12000 laptops are stolen each week in US airports alone. The fact that most of users don’t
understand security only makes the situation worse. A survey by Consumer Reports suggests that 36% of
users lock their mobile screens with a 4 digit PIN. Only 7% use security features such as encryption and
34% of users don’t take any security measures at all. According to the paper “Why Johnny can’t encrypt”
the reason why users avoid using encryption is simply because they don’t understand it and they can’t use
it as it is not user friendly. Also available solutions for mobile devices seem to be ineffective in a situation
where the attacker has physical access to the device as they can easily be uninstalled/disabled/bypassed.

Furthermore present security solutions make use of passwords in way or another. But the users usually
tend to use passwords that are easy to remember and often end up using easily guessable passwords. They
also don’t change them very often. A report by Splash Data compiled from a list of leaked compromised
passwords suggests that the most commonly used passwords are “123456”, “password”, “12345678”,
“qwerty”, “football”, “batman” and the likes.

Here, let’s consider a few scenarios where Clean Slate can be useful. Let’s assume Alice is an employee
at Mega Corp. She has a USB drive with critical financial details on it. The IT department had set it up
with Clean Slate. It gets stolen by a rival company while she was at a party. Somewhere Bob plugs it into
his laptop. The device refuses to pair with his laptop as he does not have a valid certificate installed on his
laptop. The logging service logs the IP address of the host machine and sends an email/SMS alert to Alice.

*	 Assistant Professor, Department of Computer Science & Engineering, SRM University, NCR Campus, Ghaziabad, India
**	 B. Tech. CSE, Department of Computer Science & Engineering, SRM University, NCR Campus, Ghaziabad, India. Email:

kaustubh0163@gmail.com
***	 B. Tech. CSE, Department of Computer Science & Engineering, SRM University, NCR Campus, Ghaziabad

I J C T A, 9(37) 2016, pp. 63-74
© International Science Press

64 Partha Sarathi Chakraborty, Kaustubh and Raghavendra Pratap Singh

Alice realizes that she has lost the device and informs the IT department as well as law enforcement that
can now use the IP address to locate Bob.

Let’s consider another situation like above, only this time Alice realizes the device is lost/stolen but
Bob is able to obtain Alice’s digital certificate and gets past host authentication. But since Alice has already
informed the IT department and the IT department has flagged the device as stolen, Bob is refused access
to the encryption keys. Again the logged IP address can be used to locate Bob.

In the worst case scenario when Alice isn’t aware and Bob has circumvented both pairing and data
access control, the logging system will at least inform the IT department when and what files were accessed.
Considering the issues above we have attempted at presenting a solution that tackles these issues in a user
friendly way by making the encryption and decryption process transparent to the user and minimizing the
user interaction required for it to work. We encrypt data locally, but store the encryption keys remotely,
thus controlling data access in occasion of theft or loss. We also propose device pairing, so that even when
the user is not aware of the theft/loss the device can detect it when it is used in an untrusted environment
and detect that it is stolen/lost based on which further actions can be taken.

2.	 RELATED WORK
Secure file systems have been around for some time now. Microsoft’s EFS, the FUSE based EncFS,
ecrypt file system for Linux platforms. “TransCrypt: Design of a Secure and Transparent Encrypting File
System” by Satyam Sharma presents a file system with operations transparent to the user. Here we present
the analysis of major cryptographic filesystems that are being used worldwide. We are mostly concerned
with their cryptographic features, ease of usage, and how well they work if the attacker gains physical
access to the data.

CryptFs: It is a virtual filesystem that is stacked on top of another virtual or real filesystem. It is
implemented as a Virtual Node interface.

Key management: The keys are derived from a user provided passphrase that must have a minimum
length of 16 characters. This is a pitfall, as a 16 character password, while strong is hard to remember and
a hassle to type as well. The user hence might note it down somewhere in a text file or a paper etc. The
password itself though is hashed using MD5, but if it’s a compromised password of some other user, it may
be cracked using rainbow tables. This is the only line of defense that prevents unauthorized decryption of
data and it seems it is highly vulnerable due to user’s mistakes. Also it is a hassle to enter the passphrase
to decrypt the data and remember the passphrase. This makes it unfriendly.

EncFS: This is a virtual filesystem in userspace implemented using FUSE and openssl. This is the closest
filesystem to ours, but still there are some shortcomings. It provides multiple cryptographic algorithms to
choose from, like AES, blowfish etc. But like most others, it too requires a password to allow for decryption.

Ecryptfs: This is more or less similar to the other cryptographic filesystems we have discussed yet, it is
run in kernel space as a virtual filesystem and the passphrase used to secure the keys is salted and iteratively
hashed 65,537 times by default. It makes use of the Linux kernel key ring service, the kernel cryptographic
API, the Linux Pluggable Authentication Modules (PAM) framework, OpenSSL/GPGME, the Trusted
Platform Module (TPM), and the GnuPGkey ring in order to make the process of key and authentication
token management seem seamless to the user.

TPM
The Trusted Platform Module is a hardware chip that restricts access to encryption keys based on a secure
state of the system it is used in. The definition of this secure state is stored in the Platform Configuration
Register at boot time. It is designed and maintained by the Trust Computing Group (TCG). Since it

65Clean Slate: A Secure Virtual File System with Device Authentication for Mobile Devices

recognizes a secure state, hence it becomes difficult for an attacker to access keys and its data even when
he has physical access, as TPM won’t give permission to an unknown application run by the attacker. But
it’s vulnerable to following attacks:

TPM Reset Attack
In this attack, it is assumed that the attacker is capable of monitoring the trusted state measurements sent
to PCR by the BIOS and thus zeroes out the PCR thus modifying the definition of the present trusted state
to be null. The system is accessed remotely as the keyboard and mouse are reset when this zeroing out
happens. Hence, they are unusable. The exploit is performed locally on the hardware by grounding the
LPC bus’ reset line.

Physical Tampering
Christopher Tarnovsky at 2010 Black Hat conference demonstrated how the electrical signals within the
chip can be manipulated and encryption can be bypassed by removing the chip’s protective plastic casing
and the RF-mesh. This attack is extremely sophisticated and requires a strong technical knowhow.

Conclusion: While all these technologies prevent unauthorized access to data in the event that an attacker
has gained remote access to the device or somehow has managed to transfer the encrypted data, they do
not provide security in an occasion where the attacker has stolen the device itself and has unlimited access
to it for an indefinite amount of time. This may be more than enough to break a weak password even if
it is strongly hashed. Here we again like to point out that none of these technologies take into account an
average person’s knowledge and motivation towards stronger security. Weak passwords currently plague
IT security, and we have tried to address that.

3.	 DESIGN ISSUES
Design Goals
1.	 Confidentiality and data protection
2.	 Ease of use
3.	 Requirement of no or minimum user intervention
4.	 Elimination of passwords
5.	 Secure against user’s negligence and lack of knowledge.
Not our design goals
1.	 Data Authentication: We choose to ignore data authentication as we don’t care if the attacker modifies data

or compromises its authenticity as long as he is not able to compromise security. Adding authentication
mechanisms like MACs etc impact the file system’s performance and aren’t really necessary in this
scenario.

2.	 Device Retrieval: We are not concerned with whether the device is returned to owner. Only that the
data is not compromised

3.	 Data Retrieval: We are again, not concerned with retrieval of data that was stored on the device.

4.	 ARCHITECTURE
Clean slate is a virtual filesystem, based in the FUSE API that runs in userspace. That means, it is mounted
over an on device pre-existing filesystem like EXTx, FAT etc. Any requests to the underlying filesystem
are first intercepted by Clean Slate, reinterpreted, and then passed on to the underlying filesystem.

66 Partha Sarathi Chakraborty, Kaustubh and Raghavendra Pratap Singh

Creating a new filesystem from scratch is a slow and daunting task. Here, we are not proposing a new
filesystem layout, or a new way to write and retrieve data. Clean slate is more like an add-on/extension to
present/future filesystems. This is why we present this as a virtual filesystem instead of a real filesystem.
Secondly we are developing it to be used in the userspace, and not kernel space. This is because developing
a kernel module is difficult and slow. A crashing kernel module results in a kernel panic and warrants
for a reboot. Also, a kernel module runs with administrative privileges. This opens door for some serious
security concerns, which defeats the purpose of this paper. A filesystem in userspace does not require to
be mounted by a privileged user. Thus even in a multiuser environment, it’s usage becomes pretty safe,
secure and hassle free, since the system administrator does not have to intervene at every interaction, and
a user’s privileges does not have to be elevated. This is especially useful in corporate/ industrial setups
where a multiuser setup is extremely common.

FUSE API: FUSE is an open source library to create virtual filesystems in userspace. The library is
available for many platforms (although more dominantly in Linux) and many languages like C, python
and Java.

The underlying architecture of the library is divided into two parts, the kernel module (fuse.ko) and the
userspacefilesystem itself. The kernel module is loaded at boot time/any time before the filesystem starts
and acts as a bridge between the filesystem and the actual kernel filesystem interface. Clean slate connects
to the kernel module through a socketpair, and establishes a server-client relationship, the server being the
kernel module, and Clean Slate the client.

Figure 1: FUSE library architecture

The architecture of Clean Slate consists of the following main components.

•	 The filesystem

•	 Key managing service

•	 Host Authentication Service

•	 Logging Service

The communication between the server and the filesystem happens via HTTPS in XML format.

67Clean Slate: A Secure Virtual File System with Device Authentication for Mobile Devices

Data Access Control
Data Access control is provided to control data access in case the device is stolen/lost. It needs to be
designed in such a way that encryption and decryption is transparent to the user. This ensures that even
an average user can use the file system without many hassles. We also need to protect the user from him/
herself. This is achieved through storing the keys in a remote key managing server. Storing the keys remotely
ensures that encryption keys cannot be discovered due to user’s ignorance or lack of technical skills and
knowledge. This also facilitates blocking access to data by denying access to the encryption keys. Data is
encrypted using a symmetric key AES 256 bit algorithm in cipher block chaining mode. We encrypt data,
file and directory names including file extensions. This means that the actual file and directory names
are not stored anywhere. This raises an issue that how do we know which key on the server belongs to
which file.

5.	 CRYPTOGRAPHIC PROPERTIES

Encryption
We use AES_256 in CBC mode using the openssl library. Openssl is a widely used and tested encryption
suite and so is AES_CBC mode. The cipher block size for AES is 16 bytes. If the input plaintext is not a
multiple of 16, necessary padding is appended to it to make it a multiple of 16 using the PKCS5 specification.
The incoming data to be encrypted is divided into block sizes. The default block size for a fuse filesystem
is 4096 bytes. But this can be tweaked depending upon the data that is mostly stored in the filesystem. For
example, if the data mostly consists of text document it can be tweaked down to 1024 bytes to allow for
more efficient I/O or if it involves mostly multimedia files like videos etc, that usually have a large size,
block size can be increased accordingly for that too.

Figure 2: Data block representation

A problem that arises when using CBC mode is the use of IVs. Using the same key+IV to encrypt two
messages sharing a common prefix (of one or more blocks) will reveal the presence and length of that
prefix, since the ciphertexts will be identical up to the point where the first plaintext difference occurs.
Thus facilitating the attacker in retrieval some parts of data. This is especially dangerous when the data in
question is textual. Thus we will have to generate a new IV for every new block of data that we have to
write. Storing the IVs as well in the remote server will severely downgrade the file system’s performance
as we will have to transfer IVs to and fro over the network again and again. So, to avoid this, instead of
using a unique IV per data block of a single file, we use a single unique IV for the entire file. Then we
generate a random 16 byte data block to be used as the first data block.

68 Partha Sarathi Chakraborty, Kaustubh and Raghavendra Pratap Singh

Figure 3: AES CBC architecture

As you can see in the AES_CBC operation diagram above, IV is against the first plaintext block. This
encrypted block is then used to encrypt the blocks that follow it. Thus, if the first block itself is random and
unique we can guarantee that the issue of same data block and same IV is resolved as we can guarantee that
the first data block will be random. This way we overcome the problem of generating and storing different
IVs for different blocks within the same file.

The entire process can be summarized as follows:

1.	 Csfs_write(path, buf, size, offset, fuse_file_info fi)

a.	 Remaining_bytes = size+16

b.	 Prepend random 16 bytes to buffer

c.	 File_size = get_size(fi->fh)

d.	 While(remaining_bytes> 0)

i.	 If(remaining_bytes<=BLOCK_SIZE)

ii.	 Encrypt(buf)

iii.	 Write(buf)

iv.	 Remaining_bytes = 0

v.	 Return bytes_written

e.	 Elseif(remaining_bytes>BLOCK_ZIE)

i.	 E_buf=encrypt(buf[offset],BLOCK_SIZE)

ii.	 Write(e_buf)

iii.	 Remaining_byte=Remaining_bytes-BLOCK_SIZE

2.	 Return bytes_written

Decryption
To decrypt the data, we need the key used to encrypt the data (Kd), the IV (IVd), used along with it. Both
key and IV are unique to the file. Kd, IVd are all stored in the remote server. To get the required data, we

69Clean Slate: A Secure Virtual File System with Device Authentication for Mobile Devices

decrypt a block and remove the first 16 bytes that we prepended during the encryption process, and then
return the data to the calling program.

The cryptographic structure can be described as follows:

	 Data = D (Edata, Keydata, IV data)–Random_First_16_Bytes

We get following information when a read request is made. File path,offset, and no of bytes to read.
Offset%BLOCK_SIZE gives us the block number that we have to start reading from. The number of bytes
to be read tells us how many consecutive blocks the data is requested from. Since the data was encrypted a
block at a time, it can only be decrypted a block at a time. So we will have to decrypt all blocks corresponding
to the data requested as the data can span several complete and a partial block, remove the first random 16
bytes from each block and return the required data to the calling program.

This is achieved as follows:

We first see how many bytes are to be read. Then we determine how many blocks the data spans to by
dividing the number of bytes with block size. We find the offset block by dividing the given byte offset
with the BLOCK_SIZE. We read the calculated number of blocks, decrypt them and then return the data
starting from the offset byte.

The entire process can be summarized as follows:

1.	 Csfs_read(path, buf, size, offset, fuse-file_info fi)

a.	 Pending_bytes = size

b.	 Offset_block_no = offset/BLOCK_SIZE

c.	 Block_offset=offset_block_no*BLOCK_SIZE

d.	 If(size%BLOCK_SIZE == 0)

i.	 Pending_blocks = size/BLOCK_SIZE

e.	 Else

i.	 Pending_blocks=(size/BLOCK_SIZE)+1

f.	 While(pending_blocks> 0)

i.	 Read(BLOCK_SIZE bytes)

ii.	 Decrypt(data)

iii.	 Remove_First_16_Bytes

iv.	 Store data

2.	 Return plaintext_data

6.	 HOSTAUTHENTICATION
For host authentication, we need a mechanism that is both light on the resources and secure. For this,
we propose using digital certificates. The host authentication service is responsible for handling these
operations and also acts as the Certificate Authority. When the device is first set up with clean slate, a
certificate sign request is issued by the host system. The authentication service generates a digital certificate
by signing it with its private key. This certificate is then stored in the platforms certificate store (Windows
Certificate Store and /etc/ssl/certs in linux). Now every time that the filesystem is to be mounted, the
remote authentication service asks for the certificate, if the certificate is valid, filesystem is mounted, if

70 Partha Sarathi Chakraborty, Kaustubh and Raghavendra Pratap Singh

the certificate is invalid, or not present, mounting is denied and the storage device is considered as lost
or stolen. Along with this an alert is sent to the user through email or SMS that a failed attempt on data
access was made. The SMS or email can also contain the address of the host that failed authentication if
possible.

Usage of certificates also makes it possible to use the same device on multiple hosts by exporting the
digital certificate to multiple hosts.

Certificate content:

•	 Serial Number

•	 Certificate algorithm identifier

•	 Valid After

•	 Device’s public key information

•	 Digital signature made with host’s private key.

For mobile phones the same can be used in addition to the change of the SIM card.

Logging and Alerts
Encryption like every other technology isn’t perfect, and can be compromised if the attacker is motivated
enough or some other unforeseen vulnerability in the encryption scheme exists. Assuming an attacker is
able to circumvent all the above security measures somehow, and gains access to data, we mean to able to
identify that as we wouldn’t like to operate under an illusion that the security has not been compromised
when it really has. Hence for this we propose a logging and alert system, which will log file system
activities before they are performed, such that no operation can take place without it getting logged
first. This logging system will provide us with crucial information like which particular files have been
compromised, the IP address of the machine that attempted to access data etc. The logging data needs
be precise containing only the needed information, like file that was accessed, time of access, and the IP
address used to access the file. Along with this, an alert is sent to the user via an email or SMS whenever
the filesystem is mounted. So that even when the user isn’t aware of the theft or loss immediately, he/she
can quickly take countermeasures such as report of the theft and locking the access to the keys. When we
know what data may have been compromised we are able to take better informed decisions for damage
control.

7.	 PERFORMANCE IMPROVEMENTS

Key Prefetching
Fetching a key for a single file from the server introduces a significant overhead on file system’s read
performance. Both network latency and bandwidth limitations impact our read performance. Thus we need
to reduce the number of requests we make to the server during read operations. This means we have to
get multiple keys in a single request, rather than a request per file. But this opens us to main memory read
attack vectors like cold boot attacks. If we have too many keys in the main memory, an attacker might be
able to get his/her hands on them. Also, what if the attacker steals a laptop with an authenticated session,
the attacker will be able to access files that already have their keys present in the cache. We thus, need
to keep just enough keys that improve our I/O performance while not severely impacting the security.
For this we propose a key prefetching algorithm that uses a weighted directed graph and maximum
heap.

71Clean Slate: A Secure Virtual File System with Device Authentication for Mobile Devices

Figure 4: Example directory structure

The algorithm can be described as follows. The above figure represents a directory structure within
the filesystem.

Figure 5: Prefetching graph visualization

The files are considered as nodes in a graph, the edges bear a weight, which is the frequency the file
has been accessed with i.e. the frequency with which the particular edge has been traversed in the past. We
then prefetch the key corresponding to the destination node of the edge. A modified breadth first traversal
algorithm is used. We also define the depth and breadth of prefetching/traversal.

Figure 6: Initial graph edges before filesystem usage

72 Partha Sarathi Chakraborty, Kaustubh and Raghavendra Pratap Singh

Figure 7: Graph edges after some usage

The prefetching graph G (V, E) can be described as follows:

V → Set of all file ids in the filesystem

E (fi fj) → Set of all edges connecting two nodes. fi being the source node and fj the destination node.

All edges as mentioned before are assigned a weight with is initially 0, and is incremented every time
an open request is issued on the file. We then apply a modified breadth first traversal using the heap based
priority queue to get the maximum weight edges, hence, traversing the longest path instead of the shortest
path.

This graph data, is stored locally on the system, and is encrypted to prevent the attacker from guessing
the possible importance of the encrypted files. As this structure can thoroughly reveal the usage pattern of
encrypted files. The key for this structure is also stored remotely. The cache as well is encrypted and created
only after the file system has been mounted during initialization. It is destroyed immediately afterwards.

Assuming we are coming from file with id n1 we will be working with n1’s adjacency list which is a
max heap priority queue.

1.	 on open(file id n1, file id n2) request

a.	 if file id n1 has file id n2 in it’s adjacency list

i.	 increase n1[n2[weight]] by 1

b.	 else

i.	 insert n2 in adjacency list

ii.	 initialize n1->n2’s weight to 0

c.	 fetch keys(int breadth, int width)

d.	 update key_cache()

2.	 during read(file id n2)

a.	 if(key_present_in_cache)

i.	 read_data()

ii.	 decrypt_data()

73Clean Slate: A Secure Virtual File System with Device Authentication for Mobile Devices

b.	 else

i.	 fetch_key()

ii.	 read_data()

iii.	 decrypt_data()

c.	 return data

Replacement Policy
Considering the probable size of the key cache which cann range from 5-20, we require an algorithm that
is easy to implement and also effective. The CLOCK replacement policy seems ideal for our needs. It’s
easy to implement as it uses only a circular queue and a single pointer (the hand). This makes it ideal for
use where there isn’t too much of data to process through. It is based on the Last Recently Used policy.

The circular list contains bits for the cache indices (0, 1).When the cache becomes full and there’s more
incoming keys, it checks for the bit that is under the hand currently, if it is 0, the particular index in the cache
is emptied and a new key is stored. If it is one, it is set to 0 and the hand is incremented onto the next index.

8.	 CONCLUSION
Clean slate understands the need of normal user’s data safety measures, privacy and makes an attempt at
making security available and usable by all no matter the level of technical expertise. The solution works
at the heart of the problem i.e. data management by implementing these security measures at the file
system level. Data access control is achieved by storing keys remotely and providing access only when
the host is authenticated. Device pairing is achieved via certificate authentication of the host machine. The
logging system helps make informed decisions when the above security measures have been breached.
These security measures do not ensure data retrieval after loss/theft but they do attempt at ensuring that no
unauthorised access should be possible in such an occasion. The storage of secret keys on a remote server
impacts I/O performance, and hence the filesystem cannot be used where performance is a requirement. But
the filesystem is usable and the addition of the proposed prefetching algorithm can improve performance.
Performance in an informal, real life scenario was usable without excessive delays.

Figure 8: Clean Slate file system architecture

74 Partha Sarathi Chakraborty, Kaustubh and Raghavendra Pratap Singh

Figure 9: Host authentication mechanism

References
1.	 Czeskis, D. Hilaire, K. Koscher, S. Gribble, T. Kohno and B. Schneier, ‘Defeating encrypted and deniable file systems:

TrueCrypt v5.1a and the case of the tattling OS and applications’, Proceedings of the 3rd conference on Hot topics in
security, p. 7, 2008.

2.	 Studer and A. Perrig, ‘Mobile user location-specific encryption (MULE)’, Proceedings of the third ACM conference on
Wireless network security - WiSec ‘10, pp. 151-162, 2010.

3.	 Fuse documentation and source hosting page: https://github.com/libfuse/libfuse
4.	 Whitten and J. Tygar, ‘Why Johnny can’t encrypt: a usability evaluation of PGP 5.0’, Proceedings of the 8th conference

on USENIX Security Symposium - Volume 8, pp. 14-14, 1999.
5.	 GlobalSign White Paper: GlobalSign Authentication Achieving a comprehensive information security strategy using

certificate based Network Authentication by John B Harris, Security Specialist On behalf of GMO GlobalSign Ltd.
6.	 Identity Management: Consumer’s Habits & the Potential Backlash Faced by Business: Winmark Research (commissioned

by RSA Security)April2004. URL: http://www.rsasecurity.com/go/ntk/idmreport/IDManagement.pdf
7.	 Kukec, S. Gros and V. Glavinic, ‘Implementation of Certificate Based Authentication in IKEv2 Protocol’, 2007 29th

International Conference on Information Technology Interfaces, pp. 697 - 702, 2007.
8.	 Micro-Trax Statistics: http://micro-trax.com/statistics.
9.	 S. Sharma, R. Moona and D. Sanghi, ‘Transcrypt: A Secure and Transparent Encrypting File System for Enterprises’

Proceedings of the 8th International Symposium on Systems and Information Security (SSI 2006), Sao Paulo, Brazil,
November 8-10, 2006.

10.	 W. Wen, T. Saito and F. Mizoguchi, ‘Security of Public Key Certificate Based Authentication Protocols’, Public Key
Cryptography, pp. 196-209, 2000.

