
NONPARAMETRIC REGRESSION WITH NON-GAUSSIAN

LONG MEMORY

MARIELA SUED, SOLEDAD TORRES*, AND CIPRIAN A. TUDOR**

Abstract. We consider a cointegrated regressor model where the regressor
is a fractional Brownian motion with self-similarity index H1 ∈ (0, 1) and the

errors are considered to be the increments of a Hermite process which is a long
memory non Gaussian H2- self-similar process with stationary increments,
where H2 ∈ ( 1

2
, 1). We prove that the estimator of the regression function is

consistent and asymptotically normal.

1. Introduction

We will consider the following regression model

y
t
(n)
i

= r(x
t
(n)
i

) + ε
t
(n)
i

, i = 1, ..., n;n ≥ 1; (1.1)

Here (t
(n)
i )i=1,..,n;n≥1 are points in the interval [0, 1] and r is the function to be

estimated based on the observations (y
t
(n)
i

, x
t
(n)
i

)i=1,..,n;n≥1.

Our model is a structural cointegrated regression model in the sense that the
regression vector (x

t
(n)
1

, x
t
(n)
2

, . . . , .., x
t
(n)
n

) has dependent components and the same

happens for the components of the dependent vector Y .
We will assume the following:

• the regressor x is a fractional Brownian motion with Hurst parameter
H1 ∈ (0, 1).

• the errors ε are the increments of a Hermite process XH2 (the increments
will be renormalized to have constant variance equal to 1) which is a self-
similar with index H2 ∈ ( 12 , 1), with stationary increments, possibly non
Gaussian process, that exhibits long memory. We refer to the next section
for the definition and the basic properties of these processes. We mention
that the class of Hermite process includes the fractional Brownian motion
with Hurst parameter H2 which is the only Gaussian Hermite process.
This class also includes the so-called Rosenblatt process (see e.g. [11], [3],
[10], [13]).

• the regressor x and the error ε are independent.
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• the point at which y and x are observed are equidistant. More precisely

we will assume that t
(n)
i = i

n for i = 1, ..., n and for every n ≥ 1.

To summarize, for every n ≥ 1 and i = 1, .., n

x
t
(n)
i

= BH1
i
n

and ε
t
(n)
i

= nH2

(
XH2

i+1
n

−XH2
i
n

)
(1.2)

where BH1 is a fBm with H1 ∈ (0, 1) and XH2 is a Hermite process with self-
similarity index H2 ∈ ( 12 , 1) independent by BH1 . The factor nH2 is included in
order to have constant variance for the error.

Models related to (1.1) have been the object of intensive study in the recent
scientific literature. In general the context is different in the sense that the obser-
vations are assumed to be at times 1, 2, ...., and the asymptotic behavior is studied
when the number n of the observations goes to infinity. In our situation, the ob-
servations are in the interval [0, 1] and the limit is taken when the discretization
step goes to zero. For related works we refer, among others, to [5] and [6] for the
case where xt is a recurrent Markov chain, to [14] for the case where xt is a partial
sum of a general linear process, and [15] for a more general situation. See also [8]
or [9]. An important assumption in the main part of the above references is the
fact that εi is a martingale difference sequence.

The novelty of our paper comes from the fact that the errors are increments of
a Hermite process and they are thus correlated. They are not related with any
martingale property and in addition, they are supposed to be in principle non-
Gaussian. Also the regressor is a fractional Brownian motion but this was also
allowed in [14] or [15]. The fact that we will suppose the observations time to be
contained in the interval [0, 1] and that we study the limit when the discretization
step goes to zero allow to use different techniques, somehow easier in order to
obtain the consistency of the estimator for the function r. We recall that the
conventional kernel estimate of r(x) is

r̂n(x) =

∑n
i=0 Kh(xi − x)yi∑n
i=0 Kh(xi − x)

where K is a nonnegative real kernel function satisfying
∫
R K(y)dy = 1 and∫

R yK(y)dy = 0 and Kh(s) = 1
hK( sh ). The bandwidth parameter h ≡ hn sat-

isfies hn → 0 as n → ∞. We will assume that

hn := h = n−α with 0 < α < 1. (1.3)

Our paper is structured as follows. Section 2 contains the definition and the
basic properties of the Hermite process. In Section 3 we prove the consistence
of the estimator r̂n for several choices of the kernel K (the Gaussian kernel, the
triangle kernel, the Epachnikov kernel and the quartic kernel). In Section 4 we
prove the asymptotic normality but we restrict to the situation when the errors
are given by the increments of the fractional motion which is, as mentioned above,
the only Gaussian Hermite process. As a final remark, we mention that we denote
by c, cst... a generic positive constant that may vary from line to line.
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NONPARAMETRIC REGRESSION WITH NON-GAUSSIAN LONG MEMORY 257

2. Preliminaries: Fractional Brownian Motion and Hermite Processes

The fractional Brownian motion (BH
t )t∈[0,1] with Hurst parameter H ∈ (0, 1)

is a centered Gaussian process starting from zero with covariance function

RH(t, s) :=
1

2

(
t2H + s2H − |t− s|2H

)
, s, t ∈ [0, 1].

As we already mentioned in the introduction, BH is a H-self-similar process with
stationary increments. Actually it is the only Gaussian process H-self-similar with
stationary increments.

The fractional Brownian process (BH
t )t∈[0,1] with Hurst parameter H ∈ (0, 1)

can be written as

BH
t =

∫ t

0

KH(t, s)dWs, t ∈ [0, 1]

where (Wt, t ∈ [0, 1]) is a standard Wiener process, the kernel KH (t, s) has the
expression, if H > 1

2 ,

cHs1/2−H
∫ t

s
(u − s)H−3/2uH−1/2du for t > s (and it vanishes if s ≥ t), cH is an

explicit positive constant. The above integral is a Wiener integral with respect
to the the standard Wiener process W . For t > s, the kernel’s derivative is
∂KH

∂t (t, s) = cH
(
s
t

)1/2−H
(t− s)H−3/2. Fortunately we will not need to use these

expressions explicitly, since they will be involved below only in integrals whose
expressions are known.

THe Hermite processes appear as limit in the so-called Non Central Limit Theo-
rem (see e.g. [11]). The class of Hermite processes includes the fractional Brownian
motion which is the only Gaussian process in this class. Their practical aspects are
striking: they provide a wide class of processes from which to model long memory,
self-similarity and Hölder-regularity, allowing significant deviation from fBm and
other Gaussian processes . Since they are non-Gaussian and self-similar with sta-
tionary increments, the Hermite processes can also be an input in models where
self-similarity is observed in empirical data which appears to be non-Gaussian.

We will denote by (X
(q,H)
t )t∈[0,1] the qth Hermite process with self-similarity

parameter H ∈ (1/2, 1). Here q ≥ 1 is an integer. The Hermite process can
be defined as a multiple integral with respect to the standard Wiener process
(Wt)t∈[0,1]; details concerning the definition of multiple stochastic integrals can be
found in Chapter 1 in [7]. These multiple integrals can be viewed as iterated Itô
integrals. Concretely, we have the following definition.

Definition 2.1. The Hermite process (X
(q,H)
t )t∈[0,1] of order q ≥ 1 and with

self-similarity parameter H ∈ ( 12 , 1) is given, for t ∈ [0, 1], by

X
(q,H)
t = d(H)

∫ t

0

..

∫ t

0

dWy1 ..dWyq(∫ t

y1∨..∨yq

∂1K
H′

(u, y1) . . . ∂1K
H′

(u, yq)du

)
(2.1)
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where d(H) is a normalizing constant (it ensures that the variance at time one is

equal to one), KH′
is the usual kernel of the fractional Brownian motion and

H ′ = 1 +
H − 1

q
⇐⇒ (2H ′ − 2)q = 2H − 2. (2.2)

In order to avoid sophisticated and unnecessary elements from stochastic inte-
gration, we prefer to avoid more details on the construction of the above integrals.
We refer, as we said, to [7]. What we will actually need, are the properties of the
Hermite process.

First we mention that X
(q,H)
t is a centered process since it is defined by a multi-

ple stochastic integral. Of fundamental importance is the fact that the covariance
of X(q,H) is identical to that of fBm, namely for every s, t ∈ [0, 1]

E
[
X(q,H)

s X
(q,H)
t

]
=

1

2
(t2H + s2H − |t− s|2H).

The basic properties of the Hermite process are listed below:

• the Hermite process X(q,H) is H-self-similar and it has stationary incre-
ments.

• the mean square of the increment is given by, for s, t ∈ [0, 1]

E

[∣∣∣X(q,H)
t −X(q,H)

s

∣∣∣2] = |t− s|2H ; (2.3)

as a consequence, it follows will little extra effort from Kolmogorov’s con-
tinuity criterion that X(q,H) has Hölder-continuous paths of any exponent
δ < H.

• it exhibits long-range dependence in the sense that∑
n≥1

E
[
X

(q,H)
1 (X

(q,H)
n+1 −X(q,H)

n )
]
= ∞.

In fact, the summand in this series is of order n2H−2. This property is
identical to that of fBm since the processes share the same covariance
structure, and the property is well-known for fBm with H > 1/2. Of
course, this property holds for the processX(q,H) with time interval [0,∞).

• for q = 1, X(1,H) is standard fBm with Hurst parameter H, while for q ≥ 2
the Hermite process is not Gaussian. In the case q = 2 this stochastic
process is known as the Rosenblatt process.

3. The Model and the Consistency of the Estimator

Taking into account our choice for the regressor and the error (1.2) (and chang-
ing the index of the observations from 1, ..., n to 0, ..., n − 1) the model (1.1)
becomes

Yi/n = r(BH1

i/n) + nH2(XH2

i+1/n −XH2

i/n) , 0 ≤ i ≤ n− 1 and n ≥ 1 (3.1)

with BH1 a fractional Brownian motion with Hurst parameter H1 ∈ (0, 1) and
XH2 an independent Hermite process of order q ≥ 1 with self-similarity parameter
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H2 ∈ ( 12 , 1). As we mentioned, the factor nH2 is added in order to have the
constant variance equal to 1 for the error (see (2.3)). We will omit in the sequel
the order q in the notation of the process XH2 . We also mention that in the
particular case when q = 1, XH2 becomes a fractional Brownian motion and then,
the self-similarity parameter H2 is allowed to belong to the whole interval (0, 1).
The standard estimator of the function r can we written as

r̂n(x) =

∑n−1
i=0 Yi/nK

(
x−B

H1
i/n

h

)
∑n−1

i=0 K

(
x−B

H1
i/n

h

) . (3.2)

Note that by (3.1) the estimator r̂n(x) can be decomposed as

r̂n(x)

=

∑n−1
i=0 K

(
x−B

H1
i/n

h

)
r(BH1

i
n

)

∑n−1
i=0 K

(
x−B

H1
i/n

h

) +

∑n−1
i=0 K

(
x−B

H1
i/n

h

)
nH2

(
XH2

i+1
n

−XH2
i
n

)
∑n−1

i=0 K

(
x−B

H1
i/n

h

)
:= T

(n)
1 (x) + T

(n)
2 (x) (3.3)

for every x ∈ R. The regression kernel is supposed to be bounded and positive
throughout the paper. Also it satisfies

∫
R K(y)dy = 1 and

∫
R K2(y)dy < ∞.

The purpose of this section is to show that the estimator r̂n(x) given by (3.2)
is consistent, that is, r̂n(x) converges in probability as n → ∞ to r(x) for every

x ∈ R. We will handle succesively the two terms denoted by T
(n)
1 and T

(n)
2 above.

Actually we will prove that T
(1)
n (x) converges almost surely to r(x) and T

(2)
n (x)

converges almost surely to 0 when n → ∞. The results will be a consequence of
several lemmas.

3.1. The asymptotic behavior of T
(n)
1 . The first step is to study the conver-

gence of the denumerator and the numerator of T
(n)
1 in (3.3). This convergence

will be done in two parts: in a first result we approximate these sequence by other
sequences which can be easier handled and then we give the limit of these new
sequences.

Lemma 3.1. Consider a Hölder continuous function f : R → R, such that |f(x)−
f(y)| ≤ Cf |x − y|γf for every x, y ∈ R. Let (BH1

t )t≥0 be a fractional Brownian

motion with Hurst parameter H1 ∈ (0, 1). Then, if α <
H1γf

1+γf
, we get that

Rn := nα

{
1

n

n−1∑
i=0

f((x−BH1

i/n)n
α)−

∫ 1

0

f((x−BH1
s )nα)ds

}
→n→∞ 0

almost surely.

Proof. Note that
∑n

i=0 f((x − BH1

i/n)n
α) can be expressed as an integral in the

following way
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1

n

n−1∑
i=0

f((x−BH1

i/n)n
α) =

n−1∑
i=0

∫ i+1
n

i
n

f((x−BH1

i/n)n
α)ds

=
n−1∑
i=0

∫ i+1
n

i
n

f

(
(x−BH1

[sn]
n

)nα

)
ds

=

∫ 1

0

f

(
(x−BH1

[sn]
n

)nα

)
ds

and then Rn can be bounded as follows

|Rn| = nα

∣∣∣∣∫ 1

0

(
f((x−BH1

[ns]
n

)nα)− f((x−BH1
s )nα)

)
ds

∣∣∣∣
≤ Cfn

α+αγf

∫ 1

0

∣∣∣∣BH1
[ns]
n

−BH1
s ds

∣∣∣∣γf

ds.

We will now use the Hölder continuity of the fractional Brownian motion: for each
δ such that 0 < δ < H1, there exists a random variable W = Wδ positive such
that

|BH1
t −BH1

s | ≤ W |t− s|δ

almost surely for every s, t ∈ [0, 1]. Since for every s ∈ [0, 1]∣∣∣∣ [ns]n
− s

∣∣∣∣ ≤ 1

n
,

the above stated Hölder continuity of the trajectories of BH1
t guarantees that for

any 0 < δ < H1, ∣∣∣BH1

[ns]/n −BH1
s ds

∣∣∣γf

≤ W γfn−δγf

and so
Rn ≤ W γfCfn

α+αγf−δγf

almost surely. The conclusion is immediate. �

Remark 3.2. As can be seen throughout our paper, the above lemma will be applied
to the regression kernel K which will be Lipschitz in the examples we consider. In
this case the order γf is equal to 1.

We deal now with the numerator of the summand T
(n)
1 . We show that, after

suitable normalization, it has the same limit almost surely as another sequence.

Lemma 3.3. Suppose that the kernel K is Lipschitz continuous and the function
r is Hölder continuous of order γr. Assume α < min(H1γr,

H1

2 )
Let Ln be defined by, for every n ≥ 1

Ln = nα

{
1

n

n−1∑
i=0

(
r(BH1

i/n)− r(x)
)
K((x−BH1

i/n)n
α)

−
∫ 1

0

(
r(BH1

s )− r(x)
)
K((x−BH1

s )nα)

}
.
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Then Ln → 0 almost surely as n → ∞.

Proof. The sequence Ln is a difference of two sequences

Ln = L1n − L2n

where

L1n =

nα

{
1

n

n−1∑
i=0

r(BH1

i/n)K((x−BH1

i/n)n
α)−

∫ 1

0

r(BH1
s )K((x−BH1

s )nα)

}
ds

L2n = r(x)nα

{
1

n

n−1∑
i=0

K((x−BH1

i/n)n
α)−

∫ 1

0

K((x−BH1
s )nα)ds

}
.

It is obvious that L2n can be treated as in Lemma 3.1 (with γK = 1) and it is
clear that is converges to zero almost surely when n → ∞. Note that L1n can be
written as L1n = Mn + Tn, with

Mn = nα

∫ 1

0

(
r(BH1

[ns]/n)− r(BH1
s )
)
K((x−BH1

[ns]/n)n
α) ds (3.4)

and

Tn = nα

∫ 1

0

r(BH1
s )

(
K((x−BH1

[ns]/n)n
α)−K((x−BH1

s )nα)
)
ds. (3.5)

For Tn, we get

|Tn| ≤ nα

{∫ 1

0

r2(BH1
s ) ds

}1/2

×
{∫ 1

0

(
K((x−BH1

[ns]/n)n
α)−K((x−BH1

s )nα)
)2

ds

}1/2

.

Let Ck denotes the Lipschitz constant of the kernel K. Then, for 0 < δ < H1∣∣∣K((x−BH1

[ns]/n)n
α)−K((x−BH1

s )nα)
∣∣∣2 ≤ C2

Kn2α
∣∣∣BH1

[ns]/n −BH1
s

∣∣∣2
≤ C2

Kn2αW̃n−2δ

and so for almost all ω

|Tn| ≤ X̃n2α−δ,

for some random variable X̃.
Working with Mn we can write

|Mn| =

∣∣∣∣nα

∫ 1

0

(
r(BH1

[ns]
n

)− r(BH1
s )

)
K((x−BH1

[ns]/n)n
α) ds

∣∣∣∣
≤ CY nα−γrδ

where 0 < δ < H1 and Y is the random variable given by the Hölder continuity of
the fractional Brownian motion and C is a positive constant (actually the product
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of the Lipschitz constant of r and of the constant that which bounds the kernel
K). �

At this point we need to introduce the local time of the fractional Brownian
motion. For any t ≥ 0 and y ∈ R we define LH1(t, y) as the density of the
occupation measure (see [1], [4])

µt(A) =

∫ t

0

1A(B
H1
s )ds, A ∈ B(R).

The local time LH1(t, y) satisfies the occupation time formula∫ t

0

f(BH1
s )ds =

∫
R
LH1(t, y)f(y)dy (3.6)

for any measurable function f . The local time is Hölder continuous with respect
to t and with respect to y (for the sake of completeness LH1(t, y) has Hölder
continuous paths of order γ < 1−H1 in time and of order δ < 1−H1

2H1
in the space

variable (see Table 2 in [4])). Moreover, it admits a bicontinuous version with
respect to (t, y).

Lemma 3.4. Let f : R → R be a measurable function such that∫
R
|f(z)||z|δdz < ∞ (3.7)

for some 0 < δ < 1−H1

2H1
. Then for every x ∈ R the sequence

nα

∫ 1

0

f
(
nα(x−BH1

s

)
ds

converges as n → ∞ to d1L
H1(1, x) with

d1 =

∫
R
f(y)dy. (3.8)

Proof. First we apply the occupation time formula (3.6) to get

nα

∫ 1

0

f
(
nα(x−BH1

s )
)
ds = nα

∫
R
f(nα(x− y))LH1(1, y)dy

and then by the change of variables nα(x− y) = z we obtain

nα

∫ 1

0

f
(
nα(x−BH1

s )
)
ds =

∫
R
f(z)LH1

(
1, x− z

nα

)
dz.

Finally we note that∣∣∣∣∫
R
f(z)LH1

(
1, x− z

nα

)
dz −

∫
R
f(y)dyLH1(1, x)

∣∣∣∣
≤ C(ω)

1

nαδ

∫
R
|f(z)|z|δdz

for every δ such that 0 < δ < 1−H1

2H1
due to the Hölder continuity of the local time.

Clearly the last expression tends to 0 as n → ∞. �

44



NONPARAMETRIC REGRESSION WITH NON-GAUSSIAN LONG MEMORY 263

Lemma 3.5. Assume that the function r is Hölder continuous with exponent γr
and ∫

R
|f(z)zδ|dz < ∞ (3.9)

for some δ with 0 < δ < γr +
1−H1

2H1
. Then for every x ∈ R the sequence

nα

∫ 1

0

r(BH1
s )f

(
nα(x−BH1

s )
)
ds

converges as n → ∞ to d1r(x)L
H1(1, x), with d1 given by (3.8).

Proof. Again by the occupation time formula (3.6) and making the change of
variable nα(x− y) = z we can write

nα

∫ 1

0

r(BH1
s )f

(
nα(x−BH1

s )
)
ds =

∫
R
r(x− z

nα
)f(z)LH1(1, x− z

nα
)dz

and ∣∣∣∣∫
R
dzr(x− z

nα
)f(z)LH1(1, x− z

nα
, )dz − d1r(x)L

H1(1, x)

∣∣∣∣
≤

∫
R
dz|f(z)|

∣∣∣r(x− z

nα
)LH1(1, x− z

nα
)− r(x)LH1(1, x)

∣∣∣
≤

∫
R
dz|f(z)|

∣∣∣(r(x− z

nα
)− r(x))LH1(1, x− z

nα
)
∣∣∣

+|r(x)|
∫
R
dz|f(z)|

∣∣∣LH1(1, x− z

nα
)− LH1(1, x)

∣∣∣
The second summand goes to zero using assumption (3.9) as in the proof of Lemma
3.4. Using the Hölder continuity of the local time in the space variable and the
Hölder assumption on r, the first summand can be bounded by

C(ω)n−αγr |x|δ
∫
R
|f(z)||z|γrdz + C(ω)n−αγr−αδ

∫
R
|f(z)||zδ+γr |dz

and it converges to zero due to (3.9). �

We can conclude the convergence of the sequence T
(n)
1 defined by (3.3).

Proposition 3.6. Assume that the regression function r is Hölder continuous

with exponent γr. Take α < min(H1

2 , H1γr) and for h = n−α, let T
(n)
1 be given by

(3.3), with a Lipschitz kernel K satisfying conditions (3.7) and (3.9). Then for
every x ∈ R

T
(n)
1 (x) →n→∞ r(x)

Proof. The proof is a consequence of Lemmas 3.1, 3.3, 3.4 and 3.5. �

Example 3.7. Let us consider some kernels K that satisfies the Lipschitz conti-
nuity assumption (see [12]).
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• The Gaussian kernel given by

K(x) =
1√
2π

e−
x2

2 , x ∈ R. (3.10)

• The triangle kernel

K(x) = (1− |x|)1[−1,1](x). (3.11)

• The Epanechnikov kernel

K(x) =
3

4
(1− x2)1[−1,1](x). (3.12)

• The quartic kernel

K(x) =
15

16
(1− x2)21[−1,1](x). (3.13)

Remark 3.8. Except the Gaussian kernel, all the other kernel listed above have
compact support J = [−1, 1]. Using this fact we can avoid the Hölder continuity
assumption for the regression function r. For example, in Lemma 2 the term
denote (3.4) can be handled as follows

Mn = nα

∫ 1

0

(
r(BH1

[ns]/n)− r(BH1
s )
)
K((x−BH1

[ns]/n)n
α) ds

≤ nα

∫ 1

0

(
r(BH1

[ns]/n)− r(BH1
s )
)
1
(x−n−α≤B

H1
[ns]/n

≤x+n−α)

≤ sup
|a−b|≤ 1

n

∣∣∣r(BH1
a )− r(BH1

b )
∣∣∣ ∫ 1

0

dsnα1
(x−n−α≤B

H1
[ns]/n

≤x+n−α)

and if we assume the uniform continuity of r the first summand

sup
|a−b|≤ 1

n

∣∣∣r(BH1
a )− r(BH1

b )
∣∣∣

converges to zero almost surely and the second is almost surely bounded because

Enα1
(x−n−α≤B

H1
[ns]/n

≤x+n−α)
= nαP

(
x− n−α ≤ BH1

[ns]/n ≤ x+ n−α
)
≤ 1√

2π
.

But in order to have an unitary approach for all the kernels listen above we prefer
to keep the Hölder continuity assumption for the regression function (which in
particular holds for linear functions).

3.2. The asymptotic behavior of the term T
(n)
2 . We will handle now the

summand denoted by T
(n)
2 in (3.3). We will treat first the numerator of T

(n)
2 .

Let us show that the sequence

nα−1
n−1∑
i=0

K
(
nα(x−BH1

i
n

)
)
nH2

(
XH2

i+1
n

−XH2
i
n

)
converges to zero in L2(Ω) as n → ∞. It is trivial that the term with i = 0
converges to zero for α < 1. Therefore it suffices to check that the following
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converges to zero in L2

An := nα−1
n−1∑
i=1

K
(
nα(x−BH1

i
n

)
)
nH2

(
XH2

i+1
n

−XH2
i
n

)
(3.14)

The L2 norm of An can be expressed as

EA2
n = n2α−2+2H2

n−1∑
i,j=1

EK
(
nα(x−BH1

i
n

)
)
K
(
nα(x−BH1

j
n

)
)

×E
(
XH2

i+1
n

−XH2
i
n

)(
XH2

j+1
n

−XH2
j
n

)
= n2α−2

n−1∑
i,j=1

EK
(
nα(x−BH1

i
n

)
)
K
(
nα(x−BH1

j
n

)
)
ρH2(i− j),

where we denoted by

ρH2(x) =
1

2

(
|x+ 1|2H2 + |x− 1|2H2 − 2|x|2H2

)
. (3.15)

The sequence EA2
n can be decomposed into two parts: a diagonal part con-

taining the terms with i = j and a non-diagonal part containing the terms with
i 6= j

EA2
n = n2α−2

n−1∑
i=1

EK2
(
nα(x−BH1

i
n

)
)

+n2α−2
n−1∑

i,j=1;i6=j

EK
(
nα(x−BH1

i
n

)
)
K
(
nα(x−BH1

j
n

)
)
ρH2(i− j)

:= a(1)n + a(2)n . (3.16)

In order to compute explicitly the expectation appearing in the above formula
we will consider particular choices for the kernel K. We will concentrate on the
situations when K is the Gaussian kernel and the triangle kernel.

3.2.1. The case of the Gaussian kernel. The expectation of the product

EK
(
nα(x−BH1

i
n

)
)
K
(
nα(x−BH1

j
n

)
)

can be computed using the Gaussian law of the process BH1 . We will distinguish
the cases i = j and i 6= j. If i = j we have

EK2
(
nα(x−BH1

i
n

)
)

=
1

2π
Ee

−n2α

(
x−B

H1
i
n

)2

=
1

2π

1√
2π

∫
R
dye−n2α(x−y)2e

− y2

2( i
n )

2H1

=
1

2π

1√
2π

e−n2αx2

∫
R
dye

− 1
2y

2
(
2n2α+(n

i )
2H1

)
e2n

2αxy.
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Let us use the notation

an,i := 2n2α +
(n
i

)2H1

.

We can write

EK2
(
nα(x−BH1

i
n

)
)

=
1

2π

1√
2π

e−n2αx2

∫
R
dye−

1
2y

2an,ie2n
2αxy

=
1

2π

1√
2π

e−n2αx2

∫
R
dye

−
an,i

2

(
y− 2xyn2α

an,i

)2

e
2n4αx2

an,i

=
1

2π

1
√
an,i

e
−x2n2α

(
1−2 n2α

an,i

)
.

We notice that an,i ≥ 2n2α for every n, i so 1 − 2 n2α

an,i
≥ 0. This implies that

the quantity e
−x2n2α

(
1− n2α

an,i

)
can be bounded by 1. Thus

a(1)n ≤ n2α−2
n−1∑
i=1

1
√
an,i

≤ cnα−1

and this goes to zero if α < 1 which is always true.

Remark 3.9. The convergence of the diagonal term can be proven using Lemmas

3.1 and 3.4. Using these two results it follows that nα−1
∑n−1

i=0 K2
(
nα(x−BH1

i
n

)
)

converges to a non-trivial limit when α < H1 when the function K2 is Lipschitz
continuous. This is for example the case of the Gaussian kernel. This implies

that n2α−2
∑n−1

i=0 K2
(
nα(x−BH1

i
n

)
)
because α < 1. We prefer to keep the above

computations because they give the convergence to zero of the diagonal term in
L2 and under the weaker condition α < 1 instead of α < H1.

Consider now the case i 6= j. The vector
(
BH1

i
n

, BH1
j
n

)
is Gaussian with covari-

ance matrix given by 1
n2H1

Γ where

Γ =

(
i2H1 RH1(i, j)

RH1(i, j) j2H1

)
which implies that the density of the vector is

n2H1

2π
√
det Γ

e−
n2H1
2 det Γ (j

2H1u2−2RH1
(u,v)uv+i2H1v2)

Thus

EK
(
nα(x−BH1

i
n

)
)
K
(
nα(x−BH1

j
n

)
)

=
n2H1

2π
√
det Γ

1

2π

×
∫
R2

dudve−
1
2n

2α(x−u)2e−
1
2n

2α(x−v)2e−
1
2

n2H1
det Γ (j

2H1u2−2RH1
(i,j)uv+i2H1v2)

=
n2H1

2π
√
det Γ

1

2π
e−n2αx2

∫
R2

dudve−
1
2u

2bn,je−
1
2 v

2bn,ien
2αxuen

2αxve
RH1

(i,j)uvn2H1

det Γ
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where we denoted

bn,i = n2α +
n2H1i2H1

det Γ
.

We will get

EK
(
nα(x−BH1

i
n

)
)
K
(
nα(x−BH1

j
n

)
)

=
n2H1

2π
√
det Γ

1

2π
e−n2αx2

∫
R
due−

1
2u

2bn,jen
2αxu

×
∫
R
dve

− 1
2 bn,i

[
v2− 2v

bn,i
(n2αx+

RH1
(i,j)un2H1

det Γ )

]

=
n2H1

2π
√
det Γ

1

2π
e−n2αx2

∫
R
due−

1
2u

2bn,jen
2αxu

×
∫
R
dve

− 1
2 bn,i

[
v− 1

bn,i
(n2αx+

RH1
(i,j)un2H1

det Γ )

]2

e
1

2bn,i
(n2αx+

RH1
(i,j)un2H1

det Γ )2

=
n2H1

2π
√
det Γ

1√
2π

1√
bn,i

e−n2αx2

∫
R
due

1
2bn,i

(n2αx+
RH1

(i,j)un2H1

det Γ )2

e−
1
2u

2bn,jen
2αxu

=
n2H1

2π
√
det Γ

1√
2π

1√
bn,i

e−n2αx2

e
1

2bn,i
n4αx2

∫
R
due−

1
2u

2cn,i,je
xun2α(1+

RH1
(i,j)n2H1

bn,i det Γ )

with

cn,i,j = bn,j −
R2

H1
(i, j)n4H1

bn,i(det Γ)2
.

So

EK
(
nα(x−BH1

i
n

)
)
K
(
nα(x−BH1

j
n

)
)

=
n2H1

2π
√
det Γ

1√
2π

1√
bn,i

e−n2αx2

e
1

2bn,i
n4αx2

e
− 1

2cn,i,j
x2n4α

(
1+

RH1
(i,j)n2H1

bn,i det Γ

)2

×
∫
R
e
− 1

2 cn,i,j

[
u− xn2α

cn,i,j

(
1+

RH1
(i,j)n2H1

bn,i det Γ

)]2

du

=
n2H1

2π
√
det Γ

1
√
cn,i,j

1√
bn,i

e−n2αx2

e
1

2bn,i
n4αx2

e
− 1

2cn,i,j
x2n4α

(
1+

RH1
(i,j)n2H1

bn,i det Γ

)2

e−n2αx2

e
1

2bn,i
n4αx2

e
− 1

2cn,i,j
x2n4α

(
1+

RH1
(i,j)n2H1

bn,i det Γ

)2

≤ 1
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(this follows from the fact that bn,i is bigger than n2α). Then a standard calculation
shows that

cn,i,j =
(n2α det Γ + n2H1j2H1)(n2α det Γ + n2H1i2H1)−R2

H1
(i, j)n4H1

det Γ(n2α det Γ + n2H1i2H1)

and

1√
bn,icn,i,j

=
det Γ√

(n2α det Γ + n2H1j2H1)(n2α det Γ + n2H1i2H1)−R2
H1

(i, j)n4H1

.

Consequently

EK
(
nα(x−BH1

i
n

)
)
K
(
nα(x−BH1

j
n

)
)

≤ n2H1

2π

√
det Γ√

(n2α det Γ + n2H1j2H1)(n2α det Γ + n2H1i2H1)−R2
H1

(i, j)n4H1

=
1

2π

√
det Γ√

(n2(α−H1) det Γ + j2H1)(n2(α−H1) det Γ + i2H1)−R2
H1

(i, j)

At this time we can use the estimation in [2] to see that

n−1∑
i,j=0;i6=j

EK
(
nα(x−BH1

i
n

)
)
K
(
nα(x−BH1

j
n

)
)
|i− j|2H2−2 ≤ cn− 3α

2 +2H2

using the fact that ρH2(n) behaves as H2(2H2 − 1)n2H−2 for n close to infinity.
This implies that

a(2)n ≤ cn2α−2n− 3α
2 +2H2 = n

α
2 −2+2H2

which converges to zero under condition (3.17).

Lemma 3.10. Suppose K is the Gaussian kernel and

α < 4− 4H2. (3.17)

Let An be given by (3.14). Then

An →n→∞ 0 in L2(Ω).

Remark 3.11. There is another immediate way to treat the term a
(2)
n . Actually if

we bound the Gaussian kernel by 1√
2π

we obtain that

a(2)n ≤ cn2α−2−2H2

which leads to the condition α < 1 − H2. The computations in the proof of the
above lemma allows to obtain four times more space for the bandwidth parameter
α.

Let us now state the result concerning the convergence of the term T
(n)
2 in (3.3).
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Proposition 3.12. Suppose that the kernel K is the Gaussian kernel (3.10) and
the bandwidth parameter α satisfies

α < min

(
H1

2
, 4− 4H2

)
. (3.18)

Then T
(n)
2 →n→∞ 0 in probability.

Proof. We have

T
(n)
2 =

nα−1
∑n−1

i=0 K

(
x−B

H1
i/n

h

)
nH2

(
XH2

i+1
n

−XH2
i
n

)
nα−1

∑n−1
i=0 K

(
x−B

H1
i/n

h

) .

Lemma 3.1 implies the convergence of the denumerator to a non zero constant
almost surely while Lemma 3.10 gives the convergence of the denumerator to zero
in L2(Ω). The conclusion is obtained easily. �

Theorem 3.13. Suppose r is Hölder with exponent γr and K is the Gaussian
kernel. Assume

α < min

(
H1

2
, 4− 4H2,H1γr

)
.

Then for every x ∈ R
r̂(x) →n→∞ r(x)

in probability.

Proof. The proof follows from Proposition 3.6, Proposition 3.12 and the decom-
position (3.3). �

3.2.2. The case of the triangle, Epanichnikov and quartic kernel kernel. We as-
sume in this part that K is given by (3.11), (3.12) or (3.13). We will prove an
analogous of Proposition 2.

Proposition 3.14. Suppose that the kernel K is either (3.11), (3.12) or (3.13)
and the bandwidth parameter α satisfies

α < min

(
H1

2
, 2− 2H2

)
. (3.19)

Then T
(n)
2 →n→∞ 0 in probability.

Proof. Recall that the L2 norm of the numerator of T
(n)
2 given in (3.16). The term

denoted by a
(1)
n can be easily handled. Indeed

a(1)n = n2α−2
n−1∑
i=0

Eg2(nα(x−BH1
i
n

))1[−1,1](n
α(x−BH1

i
n

))

≤ Cn2α−2
n−1∑
i=0

E1[−1,1](n
α(x−BH1

i
n

))
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where g(x) = 1 − |x| in the case of triangle kernel, g(x) = 3
4 (1 − x2) in the case

of the Epachnikov kernel and g(x) = 15
16 (1− x2)2 in the case of the quartic kernel.

Since

E1[−1,1](n
α(x−BH1

i
n

)) =
1√

2π
(
i
n

)2H1

∫ x+ 1
nα

x− 1
nα

e
− u2

2( i
n )

2H1

≤ C√
2π
(
i
n

)2H1

n−α (3.20)

we have

a(1)n ≤ Cnα−2
n−1∑
i=0

1√
2π
(
i
n

)2H1

≤ Cnα−1

which goes to zero for α < 1.

Let us now compute the term a
(2)
n . Let us now compute the term a

(2)
n . We have

a(2)n = n2α−2
n−1∑

i,j=0;i6=j

Eg(nα(x−BH1
i
n

))g(nα(x−BH1
j
n

))

×1[−1,1](n
α(x−BH1

i
n

))1[−1,1](n
α(x−BH1

j
n

))ρH2
(i− j)

≤ cst.n2α−2
n−1∑

i,j=0;i6=j

E1[−1,1](n
α(x−BH1

i
n

))ρH2(i− j)

where we bounded the quantity g(nα(x−BH1
i
n

))g(nα(x−BH1
j
n

))1[−1,1](n
α(x−BH1

j
n

))

by a constant (the constant is 1, 3
4 ,

1
16 in the three cases respectively). Then

a(2)n ≤ cst.n2α−2
n−1∑
i=0

E1[−1,1](n
α(x−BH1

i
n

))
n−1∑
j=0

ρH2(i− j)

= cst.n2α−2
n−1∑
i=0

E1[−1,1](n
α(x−BH1

i
n

))

n−1∑
j=0

ρH2(i− j).

By (3.20) we get

a(2)n ≤ cst.nα−2
n−1∑
i=0

1√
2π
(
i
n

)2H1

n−1∑
j=0

ρH2(i− j)

≤ cst.nα−2+2H2

and this converges to zero when α < 2− 2H2. �

Theorem 3.15. Suppose that the assumptions in Theorem 3.13 hold with (3.19)
instead of (3.18). Then in the case when K is the triangle, Epachnikov or quartic
kernel, the estimator r̂n(x) converges in probability as n → ∞ to r(x) for every
x ∈ R.

Proof. We obtain the result using Propositions 3.6 and 3.14. �
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At this point let us make some comments. The proofs of the convergence of

T
(n)
1 uses the Lipschitz continuity of the kernel considered. We mention that

that is possible because we situate ourselves in the discretization context, that
means to have observation equidistant between [0, 1]. This technique leads to
some restriction for the interval where the bandwidth parameter α is allowed to
belong. On the other hand, using our proof is technically less sophisticated and
easier to understand that in e.g. [2], [14] or [15]. It is plausible that the conditions
imposed on the bandwidth parameter α can be improved with a different approach.

4. Asymptotic Normality

We study here the asymptotic normality of the estimator (3.2). More concretely,
we will prove that after suitable normalization, the difference r̂n(x)−r(x) converges
as n → ∞ to a normal random variable. We will actually restrict to the following
situation: the error are supposed to be the increments of the fractional Brownian
motion with Hurst parameter H2 ∈ (0, 1).

We will start with the following lemma.

Lemma 4.1. Let An be given by (3.14) with XH2 = BH2 and let us denote by

Bn := nα−1
n−1∑
i=0

K
(
nα(x−BH1

i
n

)
)
.

Assume that α < H1

2 . Then the vector (n−(α−1)/2An, Bn) converges in distribution
to the random couple

(d2Z(LH1(1, x))
1
2 , d1L

H1(1, x))

where LH1 is the local time of the fractional Brownian motion BH1 , Z is a standard
normal random variable independent by BH1 , d1 is given by (3.8) and

d2 =

∫
R
K2(y)dy. (4.1)

Remark 4.2. We already proved that Bn converges in probability the the local
time LH1 and following the ideas in [2] we can show that An converges in law

to Z(LH1(1, x))
1
2 . But in order to obtain our result we need joint convergence of

(An, Bn).

Proof. We will compute the characteristic function of the vector

(n−(α−1)/2An, Bn).

Take λ1, λ2 ∈ R.Then

Eeiλ1n
−α−1

2 An+iλ2Bn = E

(
Eeiλ1n

−α−1
2 An+iλ2Bn/BH1

)
= Eeiλ2BnE

(
eiλ1n

−α−1
2 An+iλ2Bn/BH1

)
.

Using again the independence of BH1 and BH2

E

(
eiλ1n

−α−1
2 An+iλ2Bn/BH1

)
= e

−λ2
1
2 nα−1 ∑n−1

i,j=0 K

(
nα(x−B

H1
i
n

)

)
ρH2

(i−j)
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with ρH2 defined by (3.15) and therefore

Eeiλ1n
−α−1

2 An+iλ2Bn = Eeiλ2Bne
−λ2

1
2 nα−1 ∑n−1

i=0 K2

(
nα(x−B

H1
i
n

)

)

×e
−λ2

1
2 nα−1 ∑n−1

i,j=0;i6=j K

(
nα(x−B

H1
i
n

)

)
.ρH2 (i−j)

(4.2)

Using exactly the same calculations as in the proof of Theorem 2 in [2], we can
show that

e
−λ2

1
2 nα−1 ∑n−1

i,j=0;i6=j K

(
nα(x−B

H1
i
n

)

)
ρH2

(i−j)
= 1 + Cn

where
E|Cn| →n→∞ 0.

Using the above relation and (4.2) we have

lim
n→∞

Eeiλ1n
−α−1

2 An+iλ2Bn = lim
n→∞

Eeiλ2Bne
−λ2

1
2 nα−1 ∑n−1

i=0 K2

(
nα(x−B

H1
i
n

)

)

which converges (due to Lemma 3.1 and to the fact thatK2 is a Lipschitz functions
for our choice of K) to

Eeiλ2d1L
H1 (1,x)−id2

λ2
1
2 LH1 (1,x)

which is exactly the characteristic function of the vector
(d2Z(LH1(1, x))

1
2 , d1L

H1(1, x)). �

We can state our result concerning the asymptotic normality of the estimator.

Theorem 4.3. We have that(
nα−1

n−1∑
i=0

K
(
nα(x−BH1

i
n

)
)) 1

2

(r̂(x)− r(x)) →n→∞ N(0, d1).

Proof. By (3.3)(
nα−1

n−1∑
i=0

K
(
nα(x−BH1

i
n

)
)) 1

2

(r̂(x)− r(x))

= (Bn)
1
2
n−α−1

2 An

Bn
+

(
nα−1

n−1∑
i=0

K
(
nα(x−BH1

i
n

)
)) 1

2

×

∑n−1
i=0 K

(
nα(x−BH1

i
n

)
)
(r
(
BH1

i
n

)
− r(x))∑n−1

i=0 K
(
nα(x−BH1

i
n

)
) .

The first summand converges in distribution to the desired limit. It suffices to show
that the second converges to zero in probability. This second summand above is
equal to

nα−1
∑n−1

i=0 K
(
nα(x−BH1

i
n

)
)
(r
(
BH1

i
n

)
− r(x))

B
1
2
n
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and the result follows if we proof that

nα−1
n−1∑
i=0

K
(
nα(x−BH1

i
n

)
)
(r
(
BH1

i
n

)
− r(x))

converges to zero in probability as n → ∞. But this is a consequence of Lemma
3.3. �
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