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LOCATION OF TRIANGULAR EQUILIBRIUM POINTS IN
THE PERTURBED PHOTOGRAVITATIONAL
RESTRICTED THREE BODY PROBLEM

Sumbodh Kumar and A. K. Choudhary

Abstract: In this paper we have found the location of triangular equilibrium points in the
perturbed photogravitational restrict three body problem. We find that the position of
equilibrium points are affected with the introduction of perturbation in coriolis and
centrifugal forces and taking the more massive primary as radiating one. We have found
the characteristic equation of motion and the critical value of the mass parameter.
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I. INTRODUCTION

It is well known that the restrical problem possesses five equilibrium points. Two of them
make equilateral triangles with the primaries. They are stable for the mass ratio & of the
finite bodies of p < p = 0.03852[5].

In one of his papers Szebehely [6] established that the coriolis force is the stabilizing
force when the centrifugal force is kept constant, Bhatnagar and Hallan [1] considered the
effect of perturbations in coriolis and centrifugal forces in the restricted problem of three
bodies, they proved that the equilibrium points L, and L5 form nearly equilateral triangles
with the primaries.

Hence we thought to examine the restricted problem of three bodies in which the effect
of perturbations in coriolis and centrifugal forces are taken into consideration along with
the more massive primary as radiating one. As such our problem is called perturbed
photogravitational restricted problem of three bodies.

In the second section we have found the co-ordinates of triangular equilibrium points.
We find that the co-ordinates are affected with the introduction of perturbations and radiating
factor. We get the generalized result problem of Bhatnagar and Hailan [1].

In the third section we have found out the characteristic equation of motion. From this
we have calculated the characteristics roots ignoring, the second and higher order terms in
perturbations. Finally we find the critical value of the mass parameter which contains
perturbations and radiating factor.
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2. THE LOCATION OF EQUILIBRIUM POINTS

Using non-dimensional variables and synodic co-ordinate system (x, y) the equations of
motion of the restricted problem are

o F F
X —2y =X and y+2x—y=§y (1)
1-u H
Where F= +
H I
= (x—p)®+y? and 1’ = (x+1-p)* + y? @)

and 4 is the ratio of the mass of the smaller primary to the total mass of the primaries and

0<u<y.

Now, we introduce the perturbations in the coriolis and the centrifugal forces with the
help of the parameters o and 3. The unperturbed value of each is unity. Also we consider
the more massive primary as the radiating one. The radiation repulsive force Fp exerted on
a panicle can be represented in terms of gravitational attraction, Fg [4] as

Fp= Fg(-qg. 3)
Here g =1 — (Fp/Fg) is a constant.

The assumption g = constant is equivalent to neglecting fluctuations in the beam of
solar radiation and the effect of planet shadow.

Hence, the equations of motion of our problem can be written as

2 . 12.9)
55_20‘)"=55—x and Y+205X_y=5 4)
Where =L 4y 302 L 1 5
2 .

Hence a, B and ¢ may be taken as

a=1+¢|¢e|<<1,
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B=1+¢;]e <<,
g=1+¢";| " << 1,

where €, €’ represent the perturbations in the corolis and centrifugal forces and €” radiation

parameter.
At equilibrium points
X 129
—=0and — =0
X %
The triangular points are the solution of the equations
qQ-)(X=p)  p(x+1-u)
(6)
n r;
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From these equations
_14q % r = .
rl—(EJ and 1 (ﬁ)%‘ (7
From equations (2) and (7), we get
N

B

e,

= 2,3%

X
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,B% 2'3% 2,3% 4

J

These are the coordinates of the triangular equilibrium points L, s,

3. CRITICAL MASS

Putting X=a+¢&,b=7(&,17 <<1) in equation (4), where (a,b) are of co-ordinates points

of equilibrium under study, we get the variational equation as
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E—2an=Q % +Q°%,
n—2af =Q%E+Q°%, )

Here only linear terms m & and 1 have been taken. The second partial derivatives of
O are denoted subscripts and the superscript O indicates that the derivatives are to be evaluated
at the point under study. The characteristic equation corresponding to equation (9) is

A= (% + Q% —4a) 12 + Q%% — (Q°%)* =0 (10
We have, for L,

2 2/ 2 2 4 -2

0 % [)é (3u(1—q)3j+2uﬂ{q3—q3j+uﬂ{1—q3j (11)

4 2 2 2 2 2 nagec:
-1 =g )+(q3 —q3j—2+2uﬂ{1—q3j+ﬁ3q3

2 2 2 2 2 4 4
Q°y, =gﬁi{4‘1%3+[1—Q3J+2ﬂ3—[1—2q3+q3J—ﬁ3} (12)
=2
~uq?(@l-u)+ u}
9 2 2 2)? 2 2

22 2 22 2Y?
PR
Therefore, the characteristic equation becomes

. ) A9 8 22
2= 2 (38— 4a )+Zﬂ{4—ﬂ3q3Jy(1—y)=o.
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Its roots are

8 2 2

2 4 2 3 % 7\
A~ (3p—-4a )i\/3ﬁ—4a -9p° k4—ﬁ3q3Ju(l—u)

2

24 =

Putting ¢ =1+ ¢, 8 =1+ ¢&',q =1+ &" and ignoring the second and higher order terms

ing, &', &" we have

/12(—1+3g'—8$)i\/(—1+65'—16s)—9[3+2325'+ie”)u(l—,u)
At =

2

The discriminant is zero if p satisfies the equation
3(9+225'+25") — 39+ 225'+2¢" ) + (1- 65'+165) = 0 (14)

Thus the critical value of the mass parameter.

9[368 +19¢'+ ; g"j

=ty + I (15)
27(69)2
1, (69)2
Where e=2/" g

Hence the equilibrium point L, is stable for all mass ratios p = .. If the term within one

bracket is +ve, range at stability increases (i, = u,) and if it is —ve it decreases (yc = ﬂo)‘

This will depend upon the perturbations &, &', " . This means coriolis force is not always

a stabilizing force as claimed by Szebehcly [6]. It happens so because Szebehcly has taken
perturbations only in the coriolis forces keeping the centrifugal force constant. We may
also note that coriolis and centrifugal forces in general over the equations of motion when
written in a synodic system of coordinates and if we write the equations of motion, in a
problem where coriolis force is perturbed (for example if we take one of the primaries as an
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oblate body) then the centrifugal force is also perturbed. Szebehely’s model in that sense is
not consistent. If we ignore the radiation effect then the range of stability increases or

decreases depending upon whether the perturbation point (g, g') lies on one or the other

side of the line 36¢ — 39¢'= 0 which confirms the result of Bhatnagar and Hallan[1].
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