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SOLUTION OF THE DIRICHLET PROBLEM FOR

A LINEAR SECOND-ORDER EQUATION BY

THE MONTE CARLO METHOD

JOSÉ VILLA-MORALES*

Abstract. In this paper we study the Dirichlet problem corresponding to
an open bounded set D ⊂ Rd and the operator

A =
d∑

i=1

a
∂2

∂x2
i

+
d∑

i=1

bi
∂

∂xi
,

where a > 0 and b ∈ Rd. We define a mean value property and prove that
a function u has such property in D if and only if Au = 0 in D. Using

this characterization, and a drifted Brownian motion, we define a family of
random variables that converges almost surely and the limit is used to give
an explicit representation for the solution to the Dirichlet problem. This
immediately implies the uniqueness. On the other hand, the existence of the

solution is proved imposing a regular condition on the boundary of D.

1. Introduction

As usual, by (Rd, || · ||) we are going to denote the Euclidean norm space. For
G ⊂ Rd we denote by G and ∂G the closure and boundary (or frontier) of G,
respectively.

Given a non-empty, bounded, and open subset D of Rd and a continuous func-
tion f : ∂D → R, we are interested in finding a unique continuous function
u : D → R such that

u(x) = f(x), ∀x ∈ ∂D,

and moreover, the function u should have second partial derivatives on D which
satisfy the equation

d∑
i=1

a
∂2f

∂x2
i

(x) +
d∑

i=1

bi
∂f

∂xi
(x) = 0, ∀x ∈ D, (1.1)

where a > 0 and (b1, ..., bd) ∈ Rd.
Such a question is known in the literature as the Dirichlet problem. It has a

long history in pure and applied mathematics (see [11], [9], [8]), and there is a
variety of ways to solve such problem. For example, it can be solved by functional
analysis techniques (see [6]) or using complex analysis (see [2]).
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Here we are interested in solving the Dirichlet problem by probabilistic tech-
niques. The interplay between partial differential equations and probability theory
is an old subject and was initiated by Kakutani [9]. On the other hand, Metropo-
lis and Ulam introduced a statistical sampling technique, called the Monte Carlo
method, for solving physical problems. Such method is very helpful and there
are many studies of the Dirichlet problem using Monte Carlo techniques (see, for
example, [14] and the references there in).

The solution of the Dirichlet problem, that we are going to give, involves a
family of random variables. Next we describe how such a family is constructed.
Before we do it, we introduce some notations. By d(x,G) we design the distance
from the point x ∈ Rd to the set G ⊂ Rd, to be precisely

d(x,G) = inf{||x− y|| : y ∈ G}.

Let Br(x) = {z ∈ Rd : ||x − z|| < r} be the open ball of radius r > 0 centered at
x ∈ Rd, and ∂Br(x) = {z ∈ Rd : ||x− z|| = r}.

Let W x be a Brownian motion, defined on a probability space (Ω,F ,P), that
starts at x ∈ Rd, and consider the stochastic process Xx defined as

Xx
t = tb+ aW

x/a
t , t ≥ 0,

where a > 0, b = (b1, ..., bd). The stochastic process Xx is continuous and has
the strong Markov property inherited from W x. The strong Markov property of
X will be used frequently hereinafter, and it intuitively means that we can begin
afresh the stochastic process X at stopping times.

Given x ∈ D we would like to find the corresponding value u(x). To this end
we take 0 < ς ≤ 1, arbitrary and fixed, and construct the sequence (Y x

ς (n))n as
follows: Y x

ς (1) = x, we run the process X starting at Y x
ς (1) and stop the first time

it exits the ball Bςd(Y x
ς (1),∂D)(Y

x
ς (1)), then Y x

ς (2) is defined as the place where the

stochastic process XY x
ς (1) exits the ball Bςd(Y x

ς (1),∂D)(Y
x
ς (1)), we restart again the

processX starting now at the point Y x
ς (2), then we define Y x

ς (3) as the place where

the stochastic process XY x
ς (2) exits the ball Bςd(Y x

ς (2),∂D)(Y
x
ς (2)). Proceeding in

this way we obtain the desired sequence. We will prove in Lemma 3.2 that the
sequence (Y x

ς (n))n converges a.s. to a point Y x
ς (∞) ∈ ∂D. This allows us to define

the function u(x) = f(Y x
ς (∞)), x ∈ D.

Muller in [13] introduced this sequence taking ς = 1, when a = 1 and b = 0.
Muller also proved the convergence of the sequence (Y x

1 (n))n based on the fact
that such a sequence has the same distribution as that of a certain sequence which
depends on the Brownian paths starting at x. It was observed in [15] that the
ambiguity of the parameter ς is the key to show that u(x) = f(Y x

ς (∞)), x ∈ D,
has the mean value property (see (3.6) ahead). In the case A = ∆, it is well known
that, the mean value property is a useful characterization of harmonicity. Now we
are going to introduce the new version of these concepts, since they will play a
fundamental role.

By Iv(z) we denote the modified Bessel function of the first kind defined as

Iv(z) =

(
z
2

)v
π

1
2Γ

(
v + 1

2

) ∫ 1

−1

(1− t2)v−
1
2 e±ztdt, ∀z, v ∈ C, Re v > −1

2
.
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Iv(z) is real and positive when v > −1 and z > 0, see Section 9.6.1 and formula
9.6.18 in [1].

Definition 1.1. Let D be an open set. A function u : D → R has the mean value
property in D if u is locally integrable and for all x ∈ D and all r < d(x, ∂D),

u(x) = κ

(
r||b||
2a

)∫
∂Br(x)

u(y) exp

{
1

2a
b · (y − x)

}
µr(dy), (1.2)

where

κ(z) =
(z
2

) d
2−1 1

Γ
(
d
2

)
I d

2−1 (z)
, z > 0, (1.3)

µr(dy) is the Lebesgue surface on ∂Br(x), normalized to have total mass 1.

If u has the mean value property, then the Dominated Convergence Theorem
implies

lim
h→0

u(x+ h) = κ

(
r||b||
2a

)
lim
h→0

exp

{
− 1

2a
b · (x+ h)

}
× lim

h→0

∫
∂Br(x+h)

u(y) exp

{
1

2a
b · y

}
µr(dy)

= u(x).

Therefore, a function with the mean value property is continuous. As in the case
a = 1 and b = 0 we have more, as we will see in Theorem 2.3, a function u has the
mean value property if and only if it is harmonic, in the following sense.

Definition 1.2. Let D be an open set. A function u : D → R is called harmonic
in D if u is of class C2 and Af = 0 in D, where

Af(x) = a∆f(x) + b · ∇f(x)

=
σ2

2

d∑
i=1

∂2f

∂x2
i

(x) +

d∑
i=1

bi
∂f

∂xi
(x), (1.4)

here σ =
√
2a and b = (b1, ..., bd).

Notice that from (1.4) we recognize that A is the infinitesimal generator of the
strong Markov process X.

The expression u(x) = f(Y x
ς (∞)), x ∈ D, gives the uniqueness of the Dirichlet

problem, in fact we will see in Theorem 3.8 that any other solution has this rep-
resentation. The study of the existence of the solution is not so easy. Actually, in
the case a = 1 and b = 0, Zaremba observed in [16] that the Dirichlet problem is
not always solvable. In this case we need to impose some regularity condition on
the boundary of D.

Definition 1.3. Let D be an open set and ς ∈ (0, 1]. We say that v ∈ ∂D is a
regular point for (D, f) if

lim
x→v
x∈D

E
[
f(Y x

ς (∞))
]
= f(v),

where E is the expectation with respect to P.
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In our main result (Theorem 3.3) we will see that this regularity condition
ensures the existence of the Dirichlet problem.

It is worth mentioning that a second step in this work could be a computa-
tional implementation using the probability distribution of the random sequence
(Y x

ς (n))n, see the identity (3.2). When ς = (d(Y 0
ς (1), ∂D))−1 the random variable

Y 0
ς (1) has the von Mises-Fisher distribution, see [7].
The paper is organized as follows. In Section 2 we prove that a function has

the mean value property if and only if it is harmonic. Using the Convergence The-
orem for discrete martingales we prove, in Section 3, that the sequence (Y x

ς (n))n
converges a.s.. Also in this section we prove the uniqueness and existence of the
Dirichlet problem, and as an easy application of the uniqueness we prove a maxi-
mum principle. We also give in this section a criterion to determine when a point
is regular.

2. Preliminaries

We begin by recalling that the Lebesgue integral of a function f over Br(0) can
be written in iterated form as∫

Br(0)

f(x)dx =

∫ r

0

Ss

∫
∂Bs(0)

f(x)µs(dx)ds, (2.1)

where

Ss =
2πd/2sd−1

Γ(d/2)
.

Lemma 2.1. If u has the mean value property in D (see Definition 1.1), then u
is C∞ in D.

Proof. Since Iv(z) is a holomorphic function of z through the z-plane, cut along
the negative real axis, we deduce that κ is a continuous function. Moreover, we
have (see [1], formula 9.6.7)

Iv(z) ∼
(z
2

)v 1

Γ(v + 1)
, as z → 0,

then limz↓0 κ(z) = 1. This implies that for each ε > 0 the integral∫ ε

0

Ssκ

(
s||b||
σ2

)−1

exp

{
1

s2 − ε2

}
ds

is well defined, let us denote its value by (c(ε))−1. Let us also define the function
hε : Rd → [0,∞), as

hε(x) = c(ε)gε(x) exp

{
1

σ2
b · x

}
,

where

gε(x) =

{
exp

{
1

||x||2−ε2

}
, ||x|| < ε,

0, ||x|| ≥ ε.

Since gε is a C∞ function, then hε is C∞ with support Bε(0).
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For each ε > 0 and x ∈ D such that Bε(x) ⊂ D, define the function

uε(x) =

∫
Bε(0)

u(y + x)hε(y)dy.

Using (2.1) the above expression can be written as, for 0 < ε < 1,

uε(x)

=

∫ ε

0

Ss

∫
∂Bs(0)

u(y + x)hε(y)µs(dx)ds

=

∫ ε

0

Ss

∫
∂Bs(0)

u(y + x)c(ε) exp

{
1

σ2
b · y

}
exp

{
1

||y||2 − ε2

}
µs(dy)ds

=

∫ ε

0

Ss exp

{
1

s2 − ε2

}
c(ε)

∫
∂Bs(0)

u(y + x) exp

{
1

σ2
b · y

}
µs(dy)ds

=

∫ ε

0

Ss exp

{
1

s2 − ε2

}
c(ε)

∫
∂Bs(x)

u(y) exp

{
1

σ2
b · (y − x)

}
µs(dy)ds,

and, the mean value property of u, (1.2) yields

uε(x) = u(x)c(ε)

∫ ε

0

Ssκ

(
s||b||
σ2

)−1

exp

{
1

s2 − ε2

}
ds.

By the definition of c(ε) we have

u(x) =

∫
Bε(0)

u(y + x)hε(y)dy =

∫
Rd

u(y)hε(y − x)dy.

Inasmuch as hε ∈ C∞ we can see, from this representation of u, that it is a C∞

function on the open set D (this is consequence of the Dominated Convergence
Theorem, see Proposition 8.10 in [5]). □

Let P be the Wiener measure on (Ω,F), where Ω = C([0,∞)d) and F is the
Borel σ-field B(C[0,∞)d). The coordinate proceses Wt(ω) = ω(t), ω ∈ Ω, is
the d-dimensional Brownian motion on (Ω,F ,P), starting at 0. If x ∈ Rd, then
W x = x+W will be the d-dimensional Brownian motion starting at x.

Let us consider the stopping time

τWBr(x)
= inf{t > 0 : W x

t /∈ Br(x)},

which is the first time the processW x exits the ball Br(x). It is worth remembering
that τWBr(x)

< ∞ a.s..

The d-dimensional Brownian motion has many important properties. It is a
martingale and a Markov process. Moreover, it has the strong Markov property,
as we remarked this means that the process begins afresh at stopping times. The
translation and rotational invariance of Brownian motion implies that (see Propo-
sition I.2.8 in [4])

P(x+Wτ(Br(x)) ∈ dy) = µr(dy), (2.2)

recall that µr(dy) is the Lebesgue surface on ∂Br(x), normalized to have total
mass 1.
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In order to find the Laplace transform of the distribution of τW (Br(0)) let us
consider the distance from the Brownian motion W to the origin 0,

Rt = ||Wt||, 0 ≤ t < ∞.

This defines the process R called the Bessel process. If we denote by τr the first
hitting time to r > 0 of the Bessel process, by the general theory of one-dimensional
diffusion processes we can evaluate the Laplace transform of the distribution of
τr by solving an eigenvalue problem. In fact, denoting by E the expectation with
respect to P, we have (see [12] or [7])

E
[
e−λτr

]
= κ

(
r
√
2λ

)
, (2.3)

where κ is defined in (1.3).
In what follows we are going to consider the process X,

Xx
t = x+ bt+ σWt, t ≥ 0. (2.4)

Such process will be the basic stochastic object to deal with the Dirichlet problem
for the operator A.

Proposition 2.2. A local integrable function u : D → R has the mean value
property in D if and only if

E
[
u
(
Xx

τX(Br(x))

)]
= u(x),

for all x ∈ D, and for all r < d(x, ∂D).

Proof. We set

Zt = exp

{
− 1

σ
b ·Wt −

1

2σ2
||b||2t

}
, t ≥ 0.

By Novikov condition (Corollary 5.13 in [10]) the stochastic process Z is a martin-

gale. Then Girsanov theorem (Theorem 5.1 in [10]) implies the process W̃ , defined
as,

W̃t = Wt +
t

σ
b, t ≥ 0,

is a d-dimensional Brownian motion on (Ω,F , P̃), where the probability measure

P̃ satisfies

P̃(A)= E[1AZT ], ∀A ∈ FT , 0 ≤ T < ∞.

In particular
dP
dP̃

= exp

{
1

σ
b ·WT +

1

2σ2
||b||2T

}
, on FT . (2.5)

Observe that

τXBr(x)
= inf{t > 0 : ||Xx

t − x|| ≥ r}

= inf

{
t > 0 :

∥∥∥∥ t

σ
b+Wt

∥∥∥∥ ≥ r

σ

}
= inf

{
t > 0 : ||W̃t|| ≥

r

σ

}
= τ W̃ (Br/σ(0)). (2.6)
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Let h : ∂(Br(x)) → R be any bounded B(∂(Br(x)))-B(R) measurable function,
then (2.5) brings about

E
[
h
(
Xx

τX(Br(x))

)]
= Ẽ

[
h
(
Xx

τX(Br(x))

) dP
dP̃

∣∣∣∣
τX(Br(x))

]

= Ẽ
[
h
(
Xx

τX(Br(x))

)
exp

{
1

σ
b ·WτX(Br(x)) +

||b||2

2σ2
τX(Br(x))

}]
= Ẽ

[
h
(
x+ σW̃τX(Br(x))

)
exp

{
1

σ
b · W̃τX(Br(x)) −

||b||2

2σ2
τX(Br(x))

}]
.

From (2.6), and using that W̃τW̃ (Br/σ(0))
and τ W̃ (Br/σ(0)) are P̃-independent, we

obtain

E
[
h
(
Xx

τX(Br(x))

)]
= Ẽ

[
h
(
x+ σW̃τW̃ (Br/σ(0))

)
exp

{
1

σ
b · W̃τW̃ (Br/σ(0))

− ||b||2

2σ2
τ W̃ (Br/σ(0))

}]
= Ẽ

[
h
(
x+ σW̃τW̃ (Br/σ(0))

)
exp

{
1

σ
b · W̃τW̃ (Br/σ(0))

}]
× Ẽ

[
exp

{
−||b||2

2σ2
τ W̃ (Br/σ(0))

}]
.

The equality τr/σ = τ W̃ (Br/σ(0)) allows us to use (2.2). Then (2.3) yields

E
[
h
(
Xx

τX(Br(x))

)]
=

∫
∂(Br/σ(0))

h(x+ σy) exp

{
1

σ
b · y

}
P̃
(
W̃τW̃ (Br/σ(0))

∈ dy
)
κ

(
r||b||
σ2

)
=

∫
∂(Br(x))

h(y) exp

{
1

σ2
b · (y − x)

}
µr(dy)κ

(
r||b||
σ2

)
. (2.7)

This means P
(
Xx

τX(Br(x))
∈ dy

)
is absolutely continuous with respect to µr(dy)

and its density is given by

P
(
Xx

τX(Br(x))
∈ dy

)
µr(dy)

= κ

(
r||b||
σ2

)
exp

{
1

σ2
b · (y − x)

}
.

This fact immediately implies the result. □

Theorem 2.3. A function u : D → R has the mean value property in D if and
only if it is harmonic in D (see Definition 1.2).

Proof. Let us suppose u has the mean value property in D, hence Lemma 2.1
implies u is C∞. Suppose Au(x0) > 0 for some x0 ∈ D. The continuity of Au
implies there exists r < d(x0, ∂D) such that Au > 0 on Br(x0). Let us consider
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the stochastic process X = Xx0 , defined at (2.4). By Itô’s formula (see Theorem
3.6 in [10]) we obtain

u
(
Xt∧τX(Br(x0))

)
− u(X0) = martingale +

1

2

∫ t∧τX(Br(x0))

0

Au(Xs)ds. (2.8)

Now taking expectations and letting t → ∞ we get

E
[
u
(
XτX(Br(0))

)]
− u(x0) =

1

2
E

[∫ τX(Br(x0))

0

Au(Xs)ds

]
> 0.

By Proposition 2.2 we have that the lef hand side, of the above equality, is 0. This
contradiction implies Au(x0) ≤ 0. If we suppose Au(x0) < 0 and proceeding as
before we deduce Au(x0) ≥ 0. In this way, Au = 0 in D.

Reciprocally, assume u is harmonic in D. Let x0 ∈ D and r < d(x0, ∂D). By
Itô’s formula u

(
Xt∧τX(Br(x0))

)
− u(X0) is a martingale, this is due to the fact

that the second term in (2.8) is 0, since Au = 0 in D. If we take expectation
we get u(x0) = E

[
u
(
Xt∧τX(Br(x0))

)]
, and letting t → ∞ turns out u(x0) =

E
[
u
(
XτX(Br(x0))

)]
. Therefore, by Proposition 2.2, the function u has the mean

value property. □

3. The Monte Carlo Method

Let ς ∈ (0, 1] be fixed. For every x ∈ D ⊂ Rd, we define the sequence (Y x
ς (n))n

as

Y x
ς (1) = x,

Y x
ς (n+ 1) = X

Y x
ς (n)

τX(Brn (Y x
ς (n)))

, n ≥ 1, (3.1)

where rn = ςd(Y x
ς (n), ∂D). The state space of the random variable Y x

ς (n + 1) is

∂Brn

(
Y x
ς (n)

)
and the strong Markov property of X implies

P
(
Y x
ς (n+ 1) ∈ dz|Y x

ς (n) = y
)
= κ

(
rn||b||
σ2

)
exp

{ rn
σ2

b · (z − y)
}
µrn(dz), (3.2)

for each n ∈ N.

Lemma 3.1. If g : D → R is a continuous function and has the mean value
property in D, then for each x ∈ D the sequence (g(Y x

ς (n)))n is a martingale
with respect to Fn = σ(Y x

ς (1), ..., Y x
ς (n)), which is the minimal σ-algebra such that

Y x
ς (1), ..., Y x

ς (n) are measurable.

Proof. First observe that, for each n ∈ N, Y x
ς (n+ 1) ∈ D, this is because Y x

ς (n+

1) ∈ ∂Brn

(
Y x
ς (n)

)
. Since D is compact and g continuous in D, then (g(Y x

ς (n)))n
is an integrable sequence of random variables. Using the strong Markov property
of X (see Proposition 2.6.6 in [10]) we obtain

E
[
g(Y x

ς (n+ 1))|Fn

]
= E

[
g(Y x

ς (n+ 1))|Y x
ς (n)

]
= E

[
g
(
Xy

τX(Brn (y))

)]∣∣∣
y=Y x

ς (n)

= g(y)|y=Y x
ς (n) = g(Y x

ς (n)).
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To obtain the third equality we have used Proposition 2.2. □

Lemma 3.2. For each x ∈ D, the sequence (Y x
ς (n))n converges a.s. to a point

Y x
ς (∞) ∈ ∂D.

Proof. Let hj : D → R be defined as

hj(x1, ..., xd) =

{
exp

{
−2bj

σ2 xj

}
, bj ̸= 0,

xj , bj = 0,

for each j ∈ {1, ..., d}. A direct calculation shows

Ahj(x) = 0, x ∈ D, (3.3)

for each j ∈ {1, ..., d}. Then Theorem 2.3 implies hj has the mean value prop-
erty, hence (hj(Y

x
ς (n)))n is a martingale, by Lemma 3.1. Since D is bounded

then (hj(Y
x
ς (n)))n is a bounded martingale, therefore the Convergence Theorem

for martingales implies limn→∞ hj(Y
x
ς (n)) = Hx,j

ς (∞) a.s.. If bj ̸= 0 from the
boundedness of D we deduce Hx,j

ς (∞) > 0 a.s.. Then (Y x
ς (n))n converges a.s. to

Y x
ς (∞) =

(
Y x,1
ς (∞), ..., Y x,d

ς (∞)
)
, where

Y x,j
ς (∞) =

 −
σ2

2bj
log

(
Hx,j

r (∞)
)
, bj ̸= 0,

Hx,j
ς (∞), bj = 0,

for each j ∈ {1, ..., d}.
On the other hand, since Y x

ς (n+ 1) ∈ ∂Brn

(
Y x
ς (n)

)
then

||Y x
ς (n+ 1)− Y x

ς (n)|| = ςd(Y x
ς (n), ∂D), ∀n ∈ N.

Letting n → ∞ we have

ςd(Y x
ς (∞), ∂D) = ||Y x

ς (∞)− Y x
ς (∞)|| = 0,

therefore, Y x
ς (∞) ∈ ∂D, this is because ∂D is a closed set. □

Theorem 3.3 (Existence). Let D ⊂ Rd be an open bounded set and f : ∂D → R be
a continuous function. If every point in ∂V is regular, then the function u : D → R
defined as

u(x) =

{
f(x), x ∈ ∂D,
E
[
f(Y x

ς (∞))
]
, x ∈ D,

(3.4)

is continuous on D and satisfies the partial differential equation

σ2

2
∆u(x) + b · ∇u(x) = 0, ∀x ∈ D. (3.5)

Proof. By Dr we mean the set {x ∈ Rd : d(x,D) < r}, r > 0. The Tietze-

Urysohn theorem implies there exists a continuous function f̃ : D2 → R such that
f̃ |∂D = f . Hence, f̃ is bounded in D1 ⊂ D2, so f̃ ∈ L1(D1). Let us take the
function h : Rd → R defined as

h(x) =

{
c exp

{
− 2

σ2 b · x
}
, x ∈ D1,

0, x /∈ D1,
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where

c−1 =

∫
D1

exp{−2σ−2(b · x)}dx.

For ε > 0 we set

hε(x) =
1

εd
h

(
1

ε
x

)
, x ∈ Rd.

Using that A
(
f̃ ∗ hε

)
= f̃ ∗A (hε) and (3.3) we conclude, by Theorem 2.3, that the

sequence (f̃ ∗ hε)ε>0 has the mean value property in D1. Moreover, (see Theorem
8.14 in [5])

lim
ε↓0

(f̃ ∗ hε)(x) = f̃(x), uniformly in D ⊂ D1.

Lemma 3.1 and the Dominated Convergence Theorem yield, for each x ∈ D,

E
[
f(Y x

ς (∞))
]

= E
[
f̃(Y x

ς (∞))
]

= lim
ε↓0

E
[
(f̃ ∗ hε)(Y

x
ς (∞))

]
= lim

ε↓0
lim
n→∞

E
[
(f̃ ∗ hε)(Y

x
ς (n))

]
= lim

ε↓0
lim
n→∞

(f̃ ∗ hε)(x) = f̃(x).

This means the definition (3.4) of u does not depend on ς, so u is well defined.
Let x ∈ D and r < d(x, ∂D). Let us take

ς =
r

d(x, ∂D)
≤ 1. (3.6)

The definition (3.1) implies Y x
ς (n + 1) = Y

Y x
ς (2)

ς (n), for all n ≥ 2. The strong
Markov property of X (see Section 5.4 in [3]) implies

E
[
f̃(Y x

ς (n+ 1))|Y x
ς (2)

]
= E

[
f̃(Y y

ς (n))
]∣∣∣

y=Y x
ς (2)

, ∀n ≥ 2.

Letting n → ∞ in the above equality we have, by the Dominated Convergence
Theorem for conditional expectations,

E
[
f̃(Y x

ς (∞))|Y x
ς (2)

]
= E

[
f̃(Y y

ς (∞))
]∣∣∣

y=Y x
ς (2)

.

From (3.6) we see that Y x
ς (2) has values in ∂Br(x), then (3.2) turns out

E[f(Y x
ς (∞))] = E

[
E[f(Y x

ς (∞))|Y x
ς (2)]

]
= E

[
E
[
f(Xz

ς (∞))
]∣∣

z=Y x
ς (2)

]
= κ

(
r||b||
σ2

)∫
∂Br(x)

E[f(Xz
ς (∞))] exp

{ r

σ2
b · (z − x)

}
µr(dz).

This means the function x 7→ E[f(Y x
ς (∞))] has the mean value property in D,

then by Theorem 2.3 we have that u is harmonic in D. The continuity of u follows
immediately from the Definition 1.3 of regular points. □

A sufficient condition to analyze the regularity of the boundary points of D is
given through the following condition.
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Definition 3.4. Let v ∈ ∂D. A continuous function qv : D → R is called a barrier
at v if qv is harmonic in D, qv(v) = 0, and

qv(x) > 0, ∀x ∈ D\{v}. (3.7)

Proposition 3.5. If v ∈ ∂D is a point with a barrier qv, then it is regular.

Proof. Let M = sup{|f(x)| : x ∈ ∂D}. The continuity of f in ∂D implies that for
each ε > 0, there exists δ > 0, such that

x ∈ ∂D, ||x− v|| < δ ⇒ |f(x)− f(v)| < ε.

On the other hand, from (3.7) we have

K = inf{qv(z) : ||z − v|| ≥ δ, z ∈ D} > 0,

this allows us to get

K−1qv(z) ≥ 1, ∀z ∈ D, ||z − v|| ≥ δ.

Therefore,

|f(x)− f(v)| ≤ ε+ (2MK−1)qv(x), ∀x ∈ ∂D.

Let (vk) be an arbitrary sequence in D such that limk→∞ vk = v. Define Y vk
ς (∞)

as we did in (3.1). Lemma 3.1 implies,

|f(v)− E
[
f(Y vn

ς (∞))
]
| = |E

[
f(v)− f(Y vn

ς (∞))
]
|

≤ E
[
|f(v)− f(Y vn

ς (∞))|
]

≤ ε+ (2MK−1)E
[
qv(Y

vn
ς (∞))

]
= ε+ (2MK−1)qv(vn).

From the continuity of qv we get the desired result. □

Definition 3.6. We say that a point v ∈ ∂D satisfies the Poincaré condition if
there exists a ball Bs(u) ⊂ Rd\D such that D ∩Bs(u) = {v}.

Next we give an application of the barrier condition.

Corollary 3.7. If a = 1 and b = 0, then each point in ∂D, that satisfies the
Poincaré condition, is a regular point.

Proof. Let v ∈ ∂D for which there existsBs(u) ⊂ Rd\D such thatD∩Bs(u) = {v},
then qv : D → R, defined as,

qv(x) =

{
log

(
||x−u||

s

)
, d = 2,

s2−d − ||x− u||2−d, d ≥ 3,

is a barrier at v. □

Now let us deal with the uniqueness of the Dirichlet problem, here we do not
need to assume any type of regularity on the boundary of D.

Theorem 3.8 (Uniqueness). Let D ⊂ Rd be an open bounded set and f : ∂D → R
be a continuous function. There exists at most one continuous function u : D → R
such that u|∂D = f and u satisfies the partial differential equation (3.5) in D.
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Proof. If h : D → R is a solution for the Dirichlet problem, then h is continuous
in D. For each x ∈ D we have by Lemma 3.2,

lim
n→∞

h(Y x
1 (n)) = f(Y x

1 (∞)), a.s..

Otherwise, Lemma 3.1 implies that (h(Y x
1 (n)))n is a martingale and, by the Dom-

inated Convergence Theorem,

h(x) = E [h(Y x
1 (1))] = lim

n→∞
E [h(Y x

1 (n))] = E [f(Y x
1 (∞))] .

Therefore, h(x) = E[f(Y x
1 (∞))] = u(x), for each x ∈ D. This identity gives us

the sought uniqueness of the Dirichlet problem. □

Corollary 3.9. If D is a bounded open set and u is harmonic in D and continuous
in D, then

sup
x∈D

u(x) = sup
x∈∂D

u(x). (3.8)

Proof. Let x ∈ D, then the previous result implies

u(x) = E [f(Y x
1 (∞))]

≤ E

[
sup
y∈∂D

f(y)

]
= sup

y∈∂D
f(y).

From this (3.8) follows easily. □
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