V. Chandrasekar and D. Sobana

SOME RESULTS OF INTUITIONISTIC FUZZY e-CONNECTEDNESS

Abstract: In this paper, the Intuitioninistic fuzzy e-connectedness between Intuitioninistic fuzzy semi opensets are introduced.

Keywords: IF e-closed sets, IF e-connectedness between IF semi open sets α and β , IF P-connectedness.

AMS 2000 Mathematics subject classification: 54A40.

1. INTRODUCTION AND PRELIMINARIES

In Zadeh [6] introduced the fundamental concept of a fuzzy set. Chang extended the concept of pointset topology to fuzzy sets. Atanassov [1] introduced intuitionistic fuzzy set. After the introduction of intuitionistic fuzzy topology by Cocker [2] in 1997. V. Chandraseker, A. Vadivel and D. Sobana [3,4] introduced the concept of Intuitionistic fuzzy e-open set in IFTS. The concept of connectedness between sets was first introduced by kuratowski [5] in Topology. A space X is said to be connectedness between subset A and B if and only if there is no clopen set F in X such that $A \subseteq F$ and $A \cap F$ is empty [Kuratowski 1968].

2. INTUITIONISTIC FUZZY E-CONNECTEDNESS BETWEEN INTUITIONISTIC FUZZY SEMI OPEN SETS

Definition 2.1

An IFTS X to be IF connected between IF semi open sets α and β if and only if there exists no IF clopen γ of X such that $\alpha \subseteq \gamma$ and $\neg \gamma q\beta$.

Definition 2.2

An IFTS *X* is said to be IF e-connected between intuitionistic semi open sets α and β of *X* if and only if there exists no IF e-clopen subset γ of *X* such that $\alpha \subseteq \gamma$ and $\neg \gamma q\beta$.

Theorem 2.1

If an IFTS X is IF e-connected between IF semi open sets α and β , then α and β are non empty.

Proof: If any IF set α is empty, then α being an IF e-clopen set of *X*, *X* cannot be IF e-connected between IF semi open sets α and β . This proves the theorem.

Theorem 2.2

If X is IF e-connected between IF semi open sets α and β and if $\alpha \subseteq \alpha_1$ and $\beta \subseteq \beta_1$, then X is IF e-connected between IF semi open sets α_1 and β_1 .

Proof: Suppose *X* is not IF e-connected between semi open sets α and β , then there is an IF e- clopen subset γ of *X* such that $\alpha_1 \leq \gamma$ and $\neg \gamma q \beta_1$. Then *X* is not IF e-connected between IF semi open sets α_1 and β_1 .

Example 2.1

Let $X = \{a, b\}, \alpha = \langle x, (0.2, 0.1), (0.7, 0.5) \rangle, \beta = \langle x, (0.3, 0.5), (0.7, 0.2) \rangle, \gamma = \langle x, (0.3, 0.2), (0.2, 0.5) \rangle, \delta = \langle x, (0.6, 0.1), (0.4, 0.5) \rangle$, then the family $\sigma = \{0^{\circ}, 1^{\circ}, \alpha\}$ is an IF topology on *X*. Then (X, τ) is IF e-connected between IF semi open sets γ and δ .

Theorem 2.3

An IFTS (*X*, τ) is IF e-connected between IF semi open sets γ and δ if and only if there is no IF e-clopen set Fin X such that $\gamma \subseteq F \subseteq \delta^c$.

Proof: It follows from the definition 2.1

Theorem 2.4

An IFTS (X, τ) is Intuitionistic fuzzy e-connected between IF semi open sets α and β if and only if it is IF e-connectedness betweencl_a(α) and cl_a(β).

Proof: Necessity: Follows from Theorem 2.1 because $\alpha \subseteq cl_e(\alpha)$ and $\beta \subseteq cl_e(\beta)$.

Sufficiently: Suppose (X, τ) is not IF e-connected between IF semi open sets α and β then there is an IF e-clopen set *F* of *X* such that $\alpha \subseteq F$ and $\neg (Fq\beta)$ which

implies that $F \subseteq \beta^c$. Therefore, $F = \operatorname{int}_e(F) \subseteq \operatorname{int}_e(\beta^c) = (\operatorname{cl}_e(\beta))^c$. Hence $\exists (\operatorname{Fqcl}_e\beta)$ and X is not IF e-connected betweencl_e(α) and cl_e(β).

Theorem 2.5

If X is IF e-connected between IF semi open sets α and β then it is IF e-connected between cl (α) and cl (β).

Proof: Suppose *x* is not IF e-connected between α and β then there is an IF eclopen set *F* of *X* such that $\alpha \subseteq F$ and $\exists (Fq\beta)$. But $cl(\alpha) \subseteq F$ and $\exists (Fqcl \beta)$. Hence X is IF e-connected between $cl(\alpha)$ and $cl(\beta)$.

Theorem 2.6

X is not IF e-connected between IF semi open sets α and β if and only if there exists IF e-clopen disjoint sets F_1 and F_2 such that $X = F_1 \cup F_2$ and $\alpha_i \subseteq F_i$ for i = 1, 2.

Proof: Obvious.

Theorem 2.7

If an IFTS (X, τ) is IF e-connectedness between IF semi open sets α and β , then it is IF connected between IF semi open sets α and β .

Proof: If (X, τ) is not IF connected between semi open sets α and β , there exists an IF clopen set *F* in *X* such that $\alpha \subseteq F$ and $\exists (Fq\beta)$. Since every IF set is an IF e-open set then F is an IF e-clopen set in X such that $\alpha \subseteq F$ and $\exists (Fq\beta)$. Hence (X, τ) is not IF e-connected IF semi open sets α and β . which contradicts the hypothesis.

Example 2.2

From Example 2.1, (X, τ) is IF p - Connected between IF semi open sets γ and δ . 0^{\sim} is IF pre clopen set satisfying $\gamma \not\leq 0^{\sim}$ and $0 \leq d^{c}$.

Theorem 2.8

If an IFTS (X, τ) is Intuitionistic fuzzy P-connected between IF semi open sets α and β , then it is IF e-connected between IF semi open sets α and β .

Proof: If (X, τ) is not IF P-connected Intuitionistic semi open sets α and β . Then there exists an IF P-clopen set *F* in *X* such that $\alpha \subseteq F$ and $\exists (Fq\beta)$. Since every IF P- open set is Intuitionistic fuzzy e-open set on *X*. Hence (X, τ) is not IF e-connected between α and β .

Theorem 2.9

Let (Y, τ_Y) be an IF clopen subspace of a IFTS (X, τ) and A,B be IF subsets of Y. If (X, τ) is IF e-connected between IF semi open sets α and β , where $\alpha \subseteq A, \beta \subseteq B$, then so does (Y, τ_Y) .

Proof: If (Y, τ_Y) is not IF e-connected between α and β , then there exists an IF eclopen set *F* of *Y* such that $\alpha \subseteq F$ and $\neg (Fq\beta)$. Since *Y* is IF in *X*, *F* is an IF e-clopen set in *X*. Hence *X* cannot be IF e-connected between α and β .

Theorem 2.10

Let (Y, τ_Y) be a subspace of a IFTS (X, τ) and A, B be IF subsets of Y. If (Y, τ_Y) is IF e-connected between IF semi open sets α and β , where $\alpha \subseteq A$, $\beta \subseteq B$, then so does (X, τ) .

Proof: Suppose (X, τ) is not IF e-connected between α and β , then there exists an IF e-clopen set *F* in *X* such that $\alpha \subseteq F$ and $\exists (Fq\beta)$.Put $F_{\gamma} = F \cap Y$. Then F_{γ} is IF eclopen set *F* of *Y* such that $\alpha \subseteq F_{\gamma}$ and $\exists (F_{\gamma}q\beta)$. Hence (Y, τ_{γ}) is not IF e-connected between α and β .

Theorem 2.11

If an IFTS (*X*, τ) is Intuitionistic fuzzy semi connected IF open sets α and β then it is IF e-connected α and β .

Proof: If (X, τ) is not IF P-connected between IF α and β . Then there exists an IF P-clopen set *F* in *X* such that $\alpha \subseteq F$ and $\exists (Fq\beta)$. Since every IF semi-open set is IF e-open set on *X*. Hence (X, τ) is not IF e-connected between α and β .

Theorem 2.12

Let (X, τ) be an IFTS and α and β be two intuitionistic fuzzy sets in *X*. If $\alpha q\beta$, then (X, τ) is IF e-connected between α and β .

Proof: If *F* is any Intuitionistic fuzzy e-clopen set of *X* such that $\alpha \subseteq F$ and since $\alpha q\beta$. Hence $Fq\beta$. There is no intuitionistic fuzzy e-clopen set *F* in *X* such that $\alpha \subseteq F$ and $\neg (Fq\beta)$. Hence (X, τ) is Intuitionistic fuzzy e-connected between α and β .

Theorem 2.13

If IFTS (*X*, τ) is neither IF connected between α and β_0 , nor IF e- connected in α and β_1 , then (*X*, τ) is not intuitionistic fuzzy e-connected α and $\beta_0 \cup \beta_1$.

Proof: (X, τ) is not IF connected α and β_0 , there is a IF clopen set *F* in *X* such that $\alpha \subseteq F$ and $\exists (Fq\beta_0)$ and (X, τ) is not IF e-connected α and β_1 , there exists a clopen set F_1 in *X* such that $\alpha \subseteq F$ and $\exists (Fq\beta_1)$. Define $F = F_0 \cap F_1$. Since intersection of IF clopen *F* is IF clopen in *X* and satisfies $\alpha \subseteq F$ and $\exists (Fq\beta_0 \cup \beta_1)$.

REFERENCES

- [1] Atanassov, K., S. Stoeva. Intuitionistic Fuzzy Sets, In Polish Symposium on Interval and Fuzzy Mathematics, Poznan, 1983, 23–26.
- [2] Çoker, D. An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets and Systems, Vol. 88, 1997, 81–89.
- [3] D. Sobana, V. Chandraseker, and A. Vadivel, Intuitionistic fuzzy e-open set in Intuitionistic fuzzy Topological spaces [submitted]
- [4] D. Sobana, V. Chandraseker, and A. Vadivel, on intuitionistic fuzzy e-compactness, Scientia Magna, Vol. 12 (2017), No. 1, 107-114.
- [5] Kuratowski, K. (168). Topology, vol.II (transl.) Academic Press, New York.
- [6] Zadeh, L. A. Fuzzy Sets, Information and Control, Vol. 18, 1965, 338–353.

V. Chandrasekar and D. Sobana

Department of Mathematics Kandaswamikandar's College, Velur 638182, India. *E-mail: dsmaths*82@gmail.com

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/