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Abstract: First, this paper announces a seven-term novel 3-D chaotic system with a quartic nonlinearity and also a
quadratic nonlinearity. The phase portraits of the novel chaotic system are displayed and the mathematical properties
are discussed. We show that the novel chaotic system has three unstable equilibrium points. The Lyapunov exponents
of the novel 3-D chaotic system are obtained as L

1
 = 0.64357, L

2
 = 0 and L

3
 = –1.74274. The maximal Lyapunov

exponent (MLE) for the novel chaotic system is obtained asL
1
 = 0.64357 and Lyapunov dimension as D

L
 = 2.3693.

Since the sum of the Lyapunov exponents of the novel chaotic system is negative, it follows that the novel chaotic
system is dissipative. Next, we derive new results for the adaptive control design of the novel chaotic system with
unknown parameters. We also derive new results for the adaptive synchronization design of the identical novel
chaotic systems with unknown parameters. The adaptive control and synchronization results for the novel chaotic
system have been established using Lyapunov stability theory. Numerical simulations with MATLAB have been
shown to validate and demonstrate all the new results derived in this paper.
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1. INTRODUCTION

A chaotic system is commonly defined as a nonlinear dissipative dynamical system that is highly sensitive
to even small perturbations in its initial conditions [1]. In other words, a chaotic system is a nonlinear
dynamical system with at least one positive Lyapunov exponent. Some paradigms of chaotic systems can
be listed as Arneodo system [4], Sprott systems [5], Chen system [6], Lü-Chen system [7], Liu system [8],
Cai system [9], Tigan system [10], etc.

In the last two decades, many new chaotic systems have been also discovered like Li system [11],
Sundarapandian systems [12-13], Vaidyanathan systems [14-33], Pehlivan systems [34-35], Pham systems
[36-37], Jafari system [38], etc.

Hyperchaotic systems are the chaotic systems with more than one positive Lyapunov exponent. They
have important applications in control and communication engineering.

Some recently discovered 4-D hyperchaotic systems are hyperchaotic Vaidyanathan systems [39-40],
hyperchaotic Vaidyanathan-Azar system [41], etc. A 5-D hyperchaotic system with three positive Lyapunov
exponents was also recently found [42].

Chaos theory has several applications in a variety of fields such as oscillators [43-44], chemical reactors
[45-58], biology [59-80], ecology [81-82], neural networks [83-84], robotics [85-86], memristors [87-89],
fuzzy systems [90-91], etc.

The problem of control of a chaotic system is to find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [92-93]. Some popular methods for chaos control are active control
[94-98], adaptive control [99-100], sliding mode control [101-103], etc.
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Chaos synchronization problem can be stated as follows. If a particular chaotic system is called the
master or drive system and another chaotic system is called the slave or response system, then the idea of
the synchronization is to use the output of the master system to control the slave system so that the output
of the slave system tracks the output of the master system asymptotically.

The synchronization of chaotic systems has applications in secure communications [104-107],
cryptosystems [108-109], encryption [110-111], etc.

The chaos synchronization problem has been paid great attention in the literature and a variety of
impressive approaches have been proposed. Since the pioneering work by Pecora and Carroll [112-113] for
the chaos synchronization problem, many different methods have been proposed in the control literature
such as active control method [114-132], adaptive control method [133-149], sampled-data feedback control
method [150-151], time-delay feedback approach [152], backstepping method [153-164], sliding mode
control method [165-173], etc.

In this paper, we derive a seven-term novel 3-D chaotic system with a quartic nonlinearity and also a
quadratic nonlinearity. The phase portraits of the novel chaotic system are displayed and the mathematical
properties are discussed. We show that the novel chaotic system has three unstable equilibrium points.
Explicitly, we show that one equilibrium point of the novel chaotic system is a saddle point, while the other
two equilibrium points are saddle-foci.

The Lyapunov exponents of the novel 3-D chaotic system are obtained as L
1
 = 0.64357, L

2
 = 0 and L

3
 =

–1.74274. The maximal Lyapunov exponent (MLE) for the novel chaotic system is obtained as L
1
 = 0.64357

and Lyapunov dimension as D
L
 = 2.3693.

Next, we derive new results for the adaptive control design of the novel chaotic system with
unknown parameters. We also derive new results for the adaptive synchronization design of the
identical novel chaotic systems with unknown parameters. The adaptive control and synchronization
results for the novel chaotic system have been established using Lyapunov stability theory. Numerical
simulations with MATLAB have been shown to validate and demonstrate all the new results derived
in this paper.

2. A NOVEL 3-D CHAOTIC SYSTEM

In this section, we propose a novel 3-D chaotic system modelled by the dynamics

1 2 1

2 2 1 3

4
3 2 3

( )x a x x

x x x x

x b cx px

� � �
� � ��
� � � ��

�

�

�
(1)

where x
1
, x

2
, x

3 
are the states and a, b, c, p are constant, positive parameters of the system.

The system (1) describes a strange chaotic attractor for the parameter values

2,   5,   2,   0.1a b c p� � � � (2)

For numerical simulations, we take the initial values of the system (1) as

1 2 3(0) 0.8,   (0) 0.8,   (0) 0.8x x x� � � (3)

Figure 1 shows the strange chaotic attractor of the system (1).

Figures 2-4 show the 2-D view of the chaotic attractor of the system (1) in (x
1
, x

2
), (x

2
, x

3
), and

(x
1
, x

3
) planes respectively.
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3. PROPERTIES OF THE NOVEL 3-D CHAOTIC SYSTEM

In this section, we detail the qualitative properties of the novel 3-D chaotic system (1), which is described
in Section 2.

3.1. Dissipativity

We write the system (1) in vector notation as

1 1 2 3

2 1 2 3

3 1 2 3

( , , )

( ) ( , , )

( , , )

f x x x

x f x f x x x

f x x x

� �
� �� � � �
� �� �

�
(4)

where

1 1 2 3 2 1

2 1 2 3 2 1 3

4
3 1 2 3 2 3

( , , ) ( )

( , , )

( , , )

f x x x a x x

f x x x x x x

f x x x b cx px

� � �
� � ��
� � � ��

(5)

Figure 4: 2-D view of the novel chaotic system in
(x

1
, x

3
) plane

Figure 3: 2-D view of the novel chaotic system in
(x

2
, x

3
) plane

Figure 2: 2-D view of the novel chaotic system in (x
1
, x

2
) planeFigure 1: Strange attractor of the novel chaotic system
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We take the parameter values as

2,   5,   2,   0.1a b c p� � � � (6)

The divergence of the vector field f on R3 is obtained as

31 2

1 2 3

div 1 ,
ff f

f a p
x x x

�
�� �

� � � � � � � � �
� � � (7)

where

1 1.1 0a p� � � � � � (8)

Let � be any region in R3 having a smooth boundary.

Let �(t) = �
t
 (�), where �

t
 is the flow of f.

Let V(t) denote the volume of �(t).

By Liouville’s theorem, it follows that

1 2 3 1 2 3

( ) ( )

(div )   ( )   
t t

dV
f dx dx dx dx dx dx V

dt
� �

� �

� � � � �� � (9)

Integrating the linear differential equation (9), we get the solution as

V(t) = V(0) exp(–�t) (10)

From Eq. (10), it follows that the volume V(t) shrinks to zero exponentially as t � �.

Thus, the novel 3-D chaotic system (1) is dissipative.

Hence, the asymptotic motion of the system (1) settles exponentially onto a set of measure zero, i.e. a
strange attractor.

3.2. Symmetry

The 3-D novel chaotic system (1) is invariant under the coordinates transformation

1 2 3 1 2 3( , , ) ( , , )x x x x x x� �� (11)

Since the transformation (11) persists for all values of the system parameters, the novel 3-D chaotic
system (1) has rotation symmetry about the x

3
–axis and that any non-trivial trajectory must have a twin trajectory.

3.3. Invariance

The x
3
–axis (x

1
 = 0, x

2
 = 0, x

4
 = 0) is invariant for the system (4). Hence, all orbits of the system (1) starting

on the axis stay in the axis for all values of time. Also, this invariant motion is bounded but not asymptotically
stable.

3.4. Equilibrium Points

The equilibrium points of the novel 3-D chaotic system (1) are obtained by solving the following nonlinear
system of equations

1 1 2 3 2 1

2 1 2 3 2 1 3

4
3 1 2 3 2 3

( , , ) ( ) 0

( , , ) 0

( , , ) 0

f x x x a x x

f x x x x x x

f x x x b cx px

� � � �
� � � ��
� � � � ��

(12)
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We take the parameter values as in the chaotic case, viz.

2,   5,   2,   0.1a b c p� � � � (13)

Solving the equations (12) using the values (13), we obtain three equilibrium points:

1 2 3

0 1.2637 1.2637

0 ,   1.2637 ,  1.2637

50 1 1

E E E

�� � � � � �
� � � � � �� � � �� � � � � �
� � � � � �� �� � � � � �

(14)

The Jacobian matrix of the novel chaotic system (1) at any point X�R3 is obtained as

3 1 3 1
3 3
2 2

0 2 2 0

( ) 1 1

0 4 0 8 0.1

a a

J x x x x x

cx p x

� �� � � �
� � � �� �� � � �
� � � �� � � �� � � �

(15)

The Jacobian of the system (1) at E
1
 is obtained as

1 1

2 2 0

( ) 50 1 0

0 0 0.1

J J E

�� �
� �� � � �
� ��� �

(16)

The eigenvalues of J
1 
are numerically obtained as

1 2 30.1,   10.6119,   9.6119� � �� � � � � (17)

This shows that the equilibrium E
1 
is a saddle point, which is unstable.

The Jacobian of the system (1) at E
2 
is obtained as

2 2

2 2 0

( ) 1 1 1.2637

0 16.1444 0.1

J J E

�� �
� �� � �� �
� �� �� �

(18)

The eigenvalues of J
2 
are numerically obtained as

1 2,31.8615,   0.3809 4.6663i� �� � � � (19)

This shows that the equilibrium E
2 
is a saddle-focus, which is unstable.

The Jacobian of the system (1) at E
3 
is obtained as

3 3

2 2 0

( ) 1 1 1.2637

0 16.1444 0.1

J J E

�� �
� �� � � �� �
� ��� �

(20)

The eigenvalues of J
3 
are numerically obtained as

1 2,31.8615,   0.3809 4.6663i� �� � � � (21)

This shows that the equilibrium E
3 
is a saddle-focus, which is unstable.
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Thus, all the three equilibrium points of the novel 3-D chaotic system (1) are unstable.

3.5. Lyapunov Exponents

We take the parameter values of the novel system (1) as

2,   5,   2,   0.1a b c p� � � � (22)

We take the initial conditions of the novel system (1) as

1 2 3(0) 0.8,    (0) 0.8,    (0) 0.8x x x� � � (23)

The Lyapunov exponents of the system (1) are numerically obtained with MATLAB as

1 2 30.64357,    0,    1.74274L L L� � � � (24)

Thus, the system (1) is chaotic, since it has a positive Lyapunov exponent.

Also, the maximal Lyapunov exponent (MLE) of the system (1) is obtained as L
1
 = 0.64357.

Since L
1
 + L

2
 + L

3
 = –1.0992 < 0, it is immediate that the system (1) is dissipative.

The MATLAB plot of the Lyapunov exponents of the novel chaotic system (1) is depicted in Figure 5.

3.6. Lyapunov Dimension

The Lyapunov dimension of the chaotic system (1) is determined as

1 2

3

2 2.3693
| |L

L L
D

L

�
� � � (25)

which is fractional.

Figure 5: Lyapunov exponents of the novel 3-D chaotic system
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4. ADAPTIVE CONTROL OF THE NOVEL 3-D CHAOTIC SYSTEM WITH  UNKNOWN
PARAMETERS

In this section, we design new results for the adaptive controller to stabilize the novel 3-D chaotic system
with unknown parameters for all initial conditions.

Thus, we consider the novel 3-D chaotic system with controls given by

1 2 1 1

2 2 1 3 2

4
3 2 3 3

( )x a x x u

x x x x u

x b cx px u

� � � �
� � � ��
� � � � ��

�

�

�
(26)

where x
1
, x

2
, x

3 
are state variables, a, b, c, p are constant, unknown, parameters of the system and u

1
, u

2
, u

3

are adaptive controls to be designed.

We aim to solve the adaptive control problem by considering the adaptive feedback control
law

1 2 1 1 1

2 2 1 3 2 2

4
3 2 3 3 3

ˆ( )( )

ˆ ˆ ˆ( ) ( ) ( )

u a t x x k x

u x x x k x

u b t c t x p t x k x

� � � � �
�

� � � ��
�

� � � � ��
(27)

where ˆˆ ˆ( ),  ( ),  ( )a t b t c t , ˆ ( )p t are estimates for the unknown system parameters a, b, c, p respectively, and

k
1
, k

2
, k

3 
are positive gain constants.

The closed-loop system is obtained by substituting (27) into (26) as

1 2 1 1 1

2 2 2

4
3 2 3 3 3

ˆ[ ( )]( )

ˆ ˆ ˆ[ ( )] [ ( )] [ ( )]

x a a t x x k x

x k x

x b b t c c t x p p t x k x

� � � � �
�

� ��
�

� � � � � � ��

�

�

�
(28)

To simplify (28), we define the parameter estimation error as

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

p

e t a a t

e t b b t

e t c c t

e t p p t

� ��
�

� ��
�

� ��
� � ��

(29)

Substituting (29) into (28), we obtain

1 2 1 1 1

2 2 2

4
3 2 3 3 3

( )a

b c p

x e x x k x

x k x

x e e x e x k x

� � � �
�

� ��
� � � � ��

�

�

�
(30)

Differentiating the parameter estimation error (29) with respect to t, we get
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ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

p

e t a t

e t b t

e t c t

e t p t

� � �
�
� � ��
�

� ��
�

� ���

��

�
�

��

��

(31)

Next, we find an update law for parameter estimates using Lyapunov stability theory.

Consider the quadratic Lyapunov function defined by

� �2 2 2 2 2 2 2
1 2 3 1 2 3

1
( , , , , , , ) ,

2a b c p a b c pV x x x e e e e x x x e e e e� � � � � � � (32)

which is positive definite on R7.

Differentiating V along the trajectories of (30) and (31), we obtain

2 2 2 4
1 1 2 2 3 3 1 2 1 2 2 3

2
3

ˆˆ ˆ( )

ˆ      

a b c

p

V k x k x k x e x x x a e x b e x x c

e x p

� �� � � �� � � � � � � � � � � �� � � �� �� �
� �� � �� �

�� ��

� (33)

In view of (33), we define an update law for the parameter estimates as

1 2 1

2

4
2 3

2
3

ˆ ( )

ˆ

ˆ

ˆ

a x x x

b x

c x x

p x

� � �
�
� ��
�
� ��

�
� ���

�

�

�

�

(34)

Theorem 1. The novel chaotic system (26) with unknown system parameters is globally and exponentially
stabilized for all initial conditions by the adaptive control law (27) and the parameter update law (34),
where k

i
, (i = 1, 2, 3)  are positive constants.

Proof. The result is proved using Lyapunov stability theory [174]. We consider the quadratic Lyapunov
function V defined by (32), which is a positive definite function on R7.

Substituting the parameter update law (34) into (33), we obtain V� as

2 2 2
1 1 2 2 3 3V k x k x k x� � � �� (35)

which is a negative semi-definite function on R7.

Therefore, it can be concluded that the state vector x(t) and the parameter estimation error are globally
bounded, i.e.

1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) .
T

a b c px t x t x t e t e t e t e t L�� � �� � (36)

We define

� �1 2 3min , , .k k k k� (37)
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Then it follows from (34) that

2
V k x� ��  or 

2
.k x V� � � (38)

Integrating the inequality (38) from 0 to t, we get

2

0

( )    ( ) (0) ( )
t t

o

k x d V d V V t� � � �� � � �� � � (39)

From (39), it follows that x(t) � L
2

Using (30), we can conclude that ( ) .x t L���

Hence, using Barbalat’s lemma [174], we can conclude that x(t) � 0 exponentially as t � � for all
initial conditions x(0)�R3. This completes the proof. �

4.1. Numerical Results

For the novel chaotic system (26), the parameter values are taken as in the chaotic case (2).

We take the feedback gains as k
i
 = 6 for i = 1, 2, 3.

The initial values of the chaotic system (13) are taken as

1 2 3(0) 3.1,  (0) 5.4,  (0) 7.6x x x� � � (40)

The initial values of the parameter estimates are taken as

ˆˆ ˆ ˆ(0) 3.4,  (0) 10.1,  (0) 6.9,   (0) 4.2a b c p� � � � (41)

Figure 6 depicts the time-history of the controlled novel chaotic system.

Figure 6: Time history of the controlled novel chaotic system
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5. ADAPTIVE SYNCHRONIZATION OF THE NOVEL 3-D CHAOTIC SYSTEMS WITH
UNKNOWN PARAMETERS

In this section, we derive new results for the adaptive synchronization of the identical novel chaotic systems
with unknown parameters.

As the master system, we take the novel 3-D chaotic system

1 2 1

2 2 1 3

4
3 2 3

( )x a x x

x x x x

x b cx px

� � �
� � ��
� � � ��

�

�

�
(42)

where x
1
, x

2
, x

3
 are state variables and a, b, c, d, p are constant, unknown, parameters of the system.

As the slave system, we take the controlled novel 3-D chaotic system

1 2 1 1

2 2 1 3 2

4
3 2 3 3

( )y a y y u

y y y y u

y b cy py u

� � � �
� � � ��
� � � � ��

�

�

�
(43)

where y
1
, y

2
, y

3
 are state variables and u

1
, u

2
, u

3
 are adaptive controllers to be designed.

The synchronization error is defined by

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

� ��
� � ��
� � ��

(44)

The error dynamics is easily obtained as

1 2 1 1

2 2 1 3 1 3 2

4 4
3 2 2 3 3

( )

( )

e a e e u

e e y y x x u

e c y x pe u

� � � �
� � � � ��
� � � � � ��

�

�

�
(45)

We consider the adaptive control law defined by

1 2 1 1 1

2 2 1 3 1 3 2 2

4 4
3 2 2 3 3 3

ˆ( )( )

ˆ ˆ( )( ) ( )

u a t e e k e

u e y y x x k e

u c t y x p t e k e

� � � � �
� � � � � ��
� � � � ��

(46)

where k
1
, k

2
, k

3
 are positive gain constants.

Substituting (46) into (45), we get the closed-loop error dynamics as

1 2 1 1 1

2 2 2

4 4
3 2 2 3 3 3

ˆ[ ( )]( )

ˆ ˆ[ ( )]( ) [ ( )]

e a a t e e k e

e k e

e c c t y x p p t e k e

� � � � �
� � ��
� � � � � � � ��

�

�

�
(47)
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To simplify the error dynamics (47), we define the parameter estimation error as

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

c

p

e t a a t

e t c c t

e t p p t

� � �
� � ��
� � ��

(48)

Using (48), we can simplify the error dynamics (35) as

1 2 1 1 1

2 2 2

4 4
3 2 2 3 3 3

( )

( )

a

c p

e e e e k e

e k e

e e y x e e k e

� � � �
�

� ��
� � � � � ��

�

�

�
(49)

Differentiating the parameter estimation error (36) with respect to t, we get

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

c

p

e t a t

e t c t

e t p t

� � �
�� � ��
� � ���

��

��

��
(50)

Next, we find an update law for parameter estimates using Lyapunov stability theory.

Consider the quadratic Lyapunov function defined by

� �2 2 2 2 2 2
1 2 3 1 2 3

1
( , , , , , ) ,

2a c p a c pV e e e e e e e e e e e e� � � � � � (51)

which is positive definite on R6.

Differentiating along the trajectories of (49) and (50), we obtain

2 2 2 4 4 2
1 1 2 2 3 3 1 2 1 3 2 2 3ˆ ˆ ˆ( ) ( )a c pV k e k e k e e e e e a e e y x c e e p� � � � � �� � � � � � � � � � � � � �� � � � � �

� � �� (52)

In view of (40), we define an update law for the parameter estimates as

1 2 1

4 4
3 2 2

2
3

ˆ ( )

ˆ ( )

ˆ

a e e e

c e y x

p e

� � �
�� � � ��
� � ���

�

�

�
(53)

Theorem 2. The identical novel chaotic systems (42) and (43) with unknown system parameters are
globally and exponentially synchronized for all initial conditions by the adaptive control law (46) and the
parameter update law (53), where k

i
, (i = 1, 2, 3) are positive constants.

Proof. The result is proved using Lyapunov stability theory [174]. We consider the quadratic Lyapunov
function V defined by (51), which is a positive definite function on R6.

Substituting the parameter update law (53) into (52), we obtain V� as

2 2 2
1 1 2 2 3 3V k e k e k e� � � �� (54)
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which is a negative semi-definite function on R6.

Thus, it can be concluded that the synchronization vector e(t) and the parameter estimation error are
globally bounded, i.e.

1 2 3( ) ( ) ( ) ( ) ( ) ( ) .
T

a c pe t e t e t e t e t e t L�� � �� � (55)

We define

� �1 2 3min , , .k k k k� (56)

Then it follows from (42) that

2
V k e� ��  or 

2
.k e V� � � (57)

Integrating the inequality (57) from 0 to t, we get

2

0

( )    ( ) (0) ( )
t t

o

k e d V d V V t� � � �� � � �� � � (58)

Therefore, we can conclude that e(t)�L
2
.

Using (49), we can conclude that ( ) .e t L���

Hence, using Barbalat’s lemma [174], we can conclude that e(t) � 0 exponentially as t � � for all
initial conditions e(0)�R3.

This completes the proof. �

5.1. Numerical Results

For the novel chaotic systems, the parameter values are taken as in the chaotic case, viz.

2,  5,  2,  0.1a b c p� � � � (59)

We take the feedback gains as k
i
 = 6 for i = 1, 2, 3.

The initial values of the master system (42) are taken as

1 2 3(0) 1.2,  (0) 5.7,  (0) 2.1x x x� � � (60)

The initial values of the slave system (43) are taken as

1 2 3(0) 7.8,  (0) 3.6,  (0) 1.7y y y� � � (61)

The initial values of the parameter estimates are taken as

ˆˆ ˆ(0) 6.4,  (0) 9.5,  (0) 5.9a b p� � � (62)

Figures 7-9 depicts the complete synchronization of the identical novel chaotic systems.

Figure 10 depicts the time-history of the synchronization errors.

6. CONCLUSIONS

In this paper, we have derived a seven-term novel 3-D chaotic system with two nonlinearities – a quadratic
nonlinearity and a quartic nonlinearity. We gave a qualitative analysis of the mathematical properties of the
novel 3-D chaotic system. We determined the Lyapunov exponents and Lyapunov dimension of the chaotic
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system. Next, we have derived adaptive control and synchronization results for the novel chaotic system
with unknown parameters, which have been established using Lyapunov stability theory. Numerical
simulations with MATLAB were exhibited to demonstrate the phase portraits of the novel chaotic system
and the adaptive results derived in this paper.
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