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Adaptive Control and Synchronization
Design of a Seven-Term Novel Chaotic
System with a Quartic Nonlinearity

Sundarapandian Vaidyanathan* and Sarasu Pakiriswamy**

Abstract: First, this paper announcesa seven-term novel 3-D chaotic system with aquartic nonlinearity and alsoa
guadratic nonlinearity. The phase portraits of the novel chaotic system are displayed and the mathematical properties
arediscussed. We show that thenovel chaatic system hasthree unstable equilibrium points. The Lyapunov exponents
of the novel 3-D chaotic system are obtained asL, = 0.64357, L, = 0 and L, = —1.74274. The maximal Lyapunov
exponent (MLE) for thenovel chaotic system isobtained asL, = 0.64357 and Lyapunov dimension asD, = 2.3693.
Sincethe sum of the Lyapunov exponents of the novel chaotic system isnegative, it foll ows that the novel chaotic
system isdissipative. Next, we derive new results for the adaptive control design of the novel chaotic system with
unknown parameters. We also derive new results for the adaptive synchronization design of the identical novel
chaotic systemswith unknown parameters. The adapti ve control and synchroni zati on results for the novel chaotic
system have been established using Lyapunov stability theory. Numerical simulations with MATLAB have been
shown to validate and demonstrate all the new results derived in this paper.
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1. INTRODUCTION

A chaotic system is commonly defined as a nonlinear dissipative dynamical system that is highly sensitive
to even small perturbations in its initial conditions [1]. In other words, a chaotic system is a nonlinear
dynamical system with at least one positive Lyapunov exponent. Some paradigms of chaotic systems can
be listed asArneodo system [4], Sprott systems[5], Chen system [6], LU-Chen system [7], Liu system [8],
Ca system [9], Tigan system [10], etc.

In the last two decades, many new chaotic systems have been also discovered like Li system [11],
Sundarapandian systems [12-13], Vaidyanathan systems [14-33], Pehlivan systems [34-35], Pham systems
[36-37], Jafari system [38], etc.

Hyperchaotic systems are the chaotic systems with more than one positive Lyapunov exponent. They
have important applications in control and communication engineering.

Some recently discovered 4-D hyperchaotic systems are hyperchaotic Vaidyanathan systems [39-40],
hyperchaotic Vaidyanathan-Azar system [41], etc. A 5-D hyperchaotic system with three positive Lyapunov
exponents was also recently found [42].

Chaostheory has several applicationsin avariety of fields such as oscillators [43-44], chemical reactors
[45-58], biology [59-80], ecology [81-82], neural networks [83-84], robotics [85-86], memristors[87-89],
fuzzy systems [90-91], etc.

The problem of control of achaotic systemisto find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [92-93]. Some popular methods for chaos control are active control
[94-98], adaptive control [99-100], diding mode control [101-103], etc.
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Chaos synchronization problem can be stated as follows. If a particular chaotic system is called the
master or drive system and another chaotic system is called the dave or response system, then the idea of
the synchronization is to use the output of the master system to control the Save system so that the output
of the dave system tracks the output of the master system asymptotically.

The synchronization of chaotic systems has applications in secure communications [104-107],
cryptosystems [108-109], encryption [110-111], etc.

The chaos synchronization problem has been paid great attention in the literature and a variety of
impressive approaches have been proposed. Since the pioneering work by Pecoraand Carroll [112-113] for
the chaos synchronization problem, many different methods have been proposed in the control literature
such asactive control method [114-132], adaptive control method [ 133-149], sampled-data feedback control
method [150-151], time-delay feedback approach [152], backstepping method [153-164], sliding mode
control method [165-173], etc.

In this paper, we derive a seven-term novel 3-D chaotic system with a quartic nonlinearity and also a
guadratic nonlinearity. The phase portraits of the novel chaotic system are displayed and the mathematical
properties are discussed. We show that the novel chaotic system has three unstable equilibrium points.
Explicitly, we show that one equilibrium point of the novel chaotic system is a saddle point, while the other
two equilibrium points are saddle-foci.

The Lyapunov exponents of the novel 3-D chaotic system are obtained asL, =0.64357, L,=0and L =
—1.74274. The maximal Lyapunov exponent (MLE) for the novel chaotic systemisobtained asL, = 0.64357
and Lyapunov dimension as D, = 2.3693.

Next, we derive new results for the adaptive control design of the novel chaotic system with
unknown parameters. We also derive new results for the adaptive synchronization design of the
identical novel chaotic systems with unknown parameters. The adaptive control and synchronization
resultsfor the novel chaotic system have been established using Lyapunov stability theory. Numerical
simulations with MATLAB have been shown to validate and demonstrate all the new results derived
in this paper.

2. ANOVEL 3-D CHAOTIC SYSTEM
In this section, we propose a novel 3-D chaotic system modelled by the dynamics

% =a(x—x)
X, =%, + X% 1)
%, =b—0x; — pX,
where x , X,, X,arethe statesand a, b, ¢, p are constant, positive parameters of the system.
The system (1) describes a strange chaotic attractor for the parameter values

a=2, b=5 c=2 p=01 2
For numerical smulations, we take the initial values of the system (1) as
%(0)=0.8, x,(0)=0.8, x,(0)=0.8 (3)

Figure 1 shows the strange chaotic attractor of the system (1).

Figures 2-4 show the 2-D view of the chaotic attractor of the system (1) in (x,, X)), (X,, X;), and
(X, X,) planes respectively.
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Figure 3: 2-D view of the novel chactic system in Figure 4: 2-D view of the novel chactic system in
(X, X;) plane (X, X,) plane

3. PROPERTIESOF THE NOVEL 3-D CHAOTIC SYSTEM

In this section, we detail the qualitative properties of the novel 3-D chaotic system (1), which is described
in Section 2.

3.1. Dissipativity

We write the system (1) in vector notation as

f1(%, %, %)
X=f(X) =] (%, % %) 4
f3 (%, %0 %)

where
£ (X %5, %) = a(X, — %)

F (%%, %) =%, + X% ®)
f3(%, %, %) = b—05 — px,
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We take the parameter values as
a=2, b=5 c=2 p=01 (6)
The divergence of the vector field f on R® is obtained as

o, of, o

X, OX, Ox P=-x (7)
where
u=a-1l+p=11>0 (8

Let Q be any region in R® having a smooth boundary.
Let Q(t) = @, (2), where @ istheflow of f.

Let V(t) denote the volume of Q(t).

By Liouville's theorem, it follows that

av .
5 = ) @V dx dg d = [ () i d, i =V )

Q(t) Q(t)
Integrating the linear differential equation (9), we get the solution as
V(t) = V(0) exp(—t) (10)
From Eq. (10), it follows that the volume V/(t) shrinks to zero exponentialy ast — .
Thus, the novel 3-D chaotic system (1) is dissipative.
Hence, the asymptotic motion of the system (1) settles exponentially onto a set of measure zero, i.e. a
strange attractor.
3.2. Symmetry
The 3-D novel chaotic system (1) isinvariant under the coordinates transformation

(X %p0 X5) B2 (=X =%, %) (1)

Since the transformation (11) persists for al vaues of the system parameters, the novel 3-D chaotic
system (1) hasrotation symmetry about the x —axisand that any non-trivial trgjectory must have atwin trgjectory.

3.3. Invariance

The x—axis (x, = 0, X, = 0, x, = 0) isinvariant for the system (4). Hence, all orbits of the system (1) starting
ontheaxisstay intheaxisfor al valuesof time. Also, thisinvariant motion is bounded but not asymptotically
stable.

3.4. Equilibrium Points

The equilibrium points of the novel 3-D chaotic system (1) are obtained by solving the following nonlinear
system of equations

f(%, %, %) =a(x,—x%)=0
(X, %, %) =X, + XX =0 (12)
fo(X, %y, %) =b—0x; — px; =0
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We take the parameter values as in the chaotic case, viz
a=2, b=5 c=2 p=01 (13)
Solving the equations (12) using the values (13), we obtain three equilibrium points:
0 1.2637 -1.2637
E =/ 0|, E ={12637|, E,=|-1.2637 (14)
50 -1 -1
The Jacobian matrix of the novel chaotic system (1) at any point XeR®is obtained as
-a a 0 -2 2 0
J(X) =] % 1 X =% 1 X (15)
0 -4cx —p 0 -8 -01
The Jacobian of the system (1) at E, is obtained as
-2 2 0
J,=J(E)=(50 1 O (16)
0 0 -01
The eigenvalues of J, are numerically obtained as
A4 =-01 A4,=-10.6119, A,=9.6119 a7)
This shows that the equilibrium E, is a saddle point, which is unstable.
The Jacobian of the system (1) at E, is obtained as
-2 2 0
J,=J(E,)=|-1 1 1.2637 (18)
0 -16.1444 -0.1
The eigenvalues of J, are numerically obtained as
A4, =-1.8615, 4,,=0.3809+ 4.6663i (29
This shows that the equilibrium E, is a saddle-focus, which is unstable.
The Jacobian of the system (1) at E,is obtained as
-2 2 0
J,=J(E)=|-1 1 -1.2637 (20)
0 16.1444 -0.1
The eigenvalues of J, are numerically obtained as
A4, =-1.8615, 4,,=0.3809+ 4.6663i (21)

This shows that the equilibrium E,is a saddle-focus, which is unstable.
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Thus, all the three equilibrium points of the novel 3-D chaotic system (1) are unstable.

3.5. Lyapunov Exponents

We take the parameter values of the novel system (1) as

a=2, b=5 c¢c=2, p=01

We take the initial conditions of the novel system (1) as

x(0)=0.8, x,(0)=08, x,(0)=0.8

The Lyapunov exponents of the system (1) are numerically obtained with MATLAB as

L, =064357, L,=0, L,=-1.74274

Thus, the system (1) is chaotic, since it has a positive Lyapunov exponent.

Also, the maximal Lyapunov exponent (MLE) of the system (1) is obtained as L, = 0.64357.
Sincel, +L,+L,=-1.0992 <0, it isimmediate that the system (1) is dissipative.

(22)

(23)

(24)

The MATLAB plot of the Lyapunov exponents of the nove chaotic system (1) is depicted in Figure 5.

3.6. Lyapunov Dimension

The Lyapunov dimension of the chaotic system (1) is determined as

which is fractional.

Lyapunov exponents

2 T

D, =2+ 53603
ILs |

L, =0.64357
L,=0
2 !l L, =-1.74274 1
0 100 200 300 200 500 0D 700

Time (sec)

Figure 5: Lyapunov exponents of the novel 3-D chaotic system

L)

(25)
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4. ADAPTIVE CONTROL OF THE NOVEL 3-D CHAOTIC SYSTEM WITH UNKNOWN
PARAMETERS

In this section, we design new results for the adaptive controller to stabilize the novel 3-D chaotic system
with unknown parameters for all initial conditions.

Thus, we consider the novel 3-D chaotic system with controls given by

X =a(X,— %)+
X, =X, + X% + U, (26)
% =b—0G — px; + U

where x , X,, X,are state variables, a, b, ¢, p are constant, unknown, parameters of the syssemand u,, u,, U,
are adaptive controls to be designed.

We aim to solve the adaptive control problem by considering the adaptive feedback control
law

U =-a(t)(% —%) ~kX
Uy =% =%~ KX, 27)
Uy = —b(t) + ()X, + P(t)% — kX,
where A(t), b(t), &t), P(t)are estimates for the unknown system parameters a, b, ¢, p respectively, and
k., k,, k,are positive gain constants.
The closed-loop system is obtained by substituting (27) into (26) as

% =[a=at)](x, — %) -kx
o=l 28
% =[b—b()] ~[c— &M% [ P— PO)]% — ks,

To smplify (28), we define the parameter estimation error as

e (t)=a—4a(t)

& (1) =b-b(t)
e,(t) =c—&(t) (29)
e,(t) = p— p(t)

Substituting (29) into (28), we obtain

% =€,(% —X%)—kX

):(2:_ 2% ) (30)
X =€, — €% —€,% — KX

Differentiating the parameter estimation error (29) with respect to t, we get
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&,(t) =-a(t)
&,(t) = b
& (t) =—C(t) (31)
e, () =—p(t)

Next, we find an update law for parameter estimates using Lyapunov stability theory.
Consider the quadratic Lyapunov function defined by

V(%X %, %3,€,,6,,6,,€,) :%(xf+x§+x§+e§+e§+ef+eﬁ), (32)

which is positive definite on R'.
Differentiating V along the trgjectories of (30) and (31), we obtain

V =kt -k ko e, [0 %) -8 e[ -B e [xix €]

ve,[-x ] (33
In view of (33), we define an update law for the parameter estimates as
a =% (%, —x)
b=x,
C=—xix, (34)
p=-x

Theorem 1. The novel chaotic system (26) with unknown system parametersisglobally and exponentially
stabilized for all initial conditions by the adaptive control law (27) and the parameter update law (34),
wherek, (i =1, 2, 3) arepositive constants.

Proof. Theresult is proved using Lyapunov stability theory [174]. We consider the quadratic Lyapunov
function V defined by (32), which is a positive definite function on R’.

Substituting the parameter update law (34) into (33), we obtain \/ as
V = kX! = kX — kox (35)
which is a negative semi-definite function on R’.

Therefore, it can be concluded that the state vector x(t) and the parameter estimation error are globally
bounded, i.e.

(%0 %® %O e® &b at) e®] L. (36)
We define

k=min{k,k,,k,}. (37)



Adaptive Control and Synchronization Design of a Seven-Term Novel Chaotic System... 245

Then it follows from (34) that

V < kX[ or k|X|’ <-V. (38)
Integrating the inequality (38) from O to t, we get

k[|x@[" dz < = [V()dr =V(0)-V () (39)

From (39), it follows that x(t) € L,
Using (30), we can conclude that x(t) e L.

Hence, using Barbalat’s lemma [174], we can conclude that x(t) — O exponentially ast — oo for all
initial conditions x(0) e R®. This completes the proof. m

4.1. Numerical Results
For the novel chaotic system (26), the parameter values are taken as in the chaotic case (2).

We take the feedback gainsask =6 fori=1, 2, 3.
The initial values of the chaotic system (13) are taken as

%(0)=3.1 x,(0)=5.4, x,(0)=7.6 (40)
The initial values of the parameter estimates are taken as

4(0) =3.4, b(0) =10.1, &0) =6.9, p(0)=4.2 (41)
Figure 6 depicts the time-history of the controlled novel chaotic system.

1 U T T T T T T 1

i : — KQ

-10 1 i 1 1 1
) 0.5 1 1.5 2 2.5 3 35 4

Time (sec)

Figure 6: Time history of the controlled novel chaotic system
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5. ADAPTIVE SYNCHRONIZATION OF THE NOVEL 3-D CHAOTIC SYSTEMSWITH
UNKNOWN PARAMETERS

In this section, we derive new results for the adaptive synchronization of theidentical novel chaotic systems
with unknown parameters.

As the master system, we take the novel 3-D chaotic system

% =a(%—x)
X =X+ X% (42)
X, =b-0xG - px
where x,, X,, X, are state variables and a, b, ¢, d, p are constant, unknown, parameters of the system.
As the dave system, we take the controlled novel 3-D chaotic system

Vi=aly,—yi)+u
2= Y2t Vi¥s t U, (43)
Yo =b—cy; - pys+Us

wherey,, y,, Y, are state variables and u,, u,, u, are adaptive controllers to be designed.

The synchronization error is defined by

E=Y1—X
&=Y—% (44)
&=Y;—%
The error dynamics is easily obtained as
g=ale,—-¢e)+y
& =6+YY;—XX%+U, (45)

& =—C(Y, — %)~ P&+,
We consider the adaptive control law defined by

u =-a(t)(e,-g)-ke
U, =—€ — ¥, Y3 + XX — K&, (46)
U = E(t)(y, — %) + P(t)e, — ke,
wherek , k,, k, are positive gain constants.
Substituting (46) into (45), we get the closed-loop error dynamics as

g =[a-a(t)](e,—&)-ke

€ =—K8 (47)
& =-{c-EMOI(y, —%)-[p- p(D)]e;— ke,
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To smplify the error dynamics (47), we define the parameter estimation error as

e (t)=a-a(t)
& (t) =C-— é(t)

. (48)
e,(t)=p—p(t)
Using (48), we can smplify the error dynamics (35) as
g=6l(e-8)-ke
€ =-K¢&, .y (49)
ej = _ec(yz _XZ)_epej - kS%
Differentiating the parameter estimation error (36) with respect to t, we get
&(t) = -a()
&) =—C(t) (50)
&,(t) =—p(t)
Next, we find an update law for parameter estimates using Lyapunov stability theory.
Consider the quadratic Lyapunov function defined by
V(e,2.8.6,8.8) =5 (G +& & rere 4 el), )
which is positive definite on R®.
Differentiating along the trajectories of (49) and (50), we obtain
V=-ke -ke&-ke+e|g(e-a)-a]+e|-a(yi-x)-E|+e, - - p] (52)
In view of (40), we define an update law for the parameter estimates as
d=g(e,-8g)
C=-e(y, - %) (53)
p=-¢

Theorem 2. The identical novel chaotic systems (42) and (43) with unknown system parameters are
globally and exponentially synchronized for all initial conditions by the adaptive control law (46) and the
parameter update law (53), where k, (i = 1, 2, 3) are positive constants.

Proof. The result is proved using Lyapunov stability theory [174]. We consider the quadratic Lyapunov
function V defined by (51), which is a positive definite function on Re.

Substituting the parameter update law (53) into (52), we obtain \/ as

V= ke ke -k (5
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which is a negative semi-definite function on R,

Thus, it can be concluded that the synchronization vector e(t) and the parameter estimation error are
globally bounded, i.e.
.
[a®) &) &) e®) a@® e®)] L. (55)
We define
k:min{kl,kz,kS}. (56)
Then it follows from (42) that
V < k|l or k[ <-V. (57)
Integrating the inequality (57) from O to t, we get

k[le(@)| dz < —[V(r)dr =V () -V (t) (58)

Therefore, we can conclude that e(t) <L,
Using (49), we can conclude that &(t) e L, .

Hence, using Barbalat’s lemma [174], we can conclude that e(t) — O exponentially ast — oo for all
initial conditions e(0)eR3.

This completes the proof. m

5.1. Numerical Results
For the novel chaotic systems, the parameter values are taken as in the chaotic case, viz.
a=2 b=5c=2 p=01 (59)
We take the feedback gainsask =6 fori=1, 2, 3.
The initial values of the master system (42) are taken as
%(0) =12, x,(0)=5.7, x,(0)=2.1 (60)
The initial values of the dave system (43) are taken as
y;,(0)=7.8, y,(0)=3.6, y,(0) =1.7 (61)
The initial values of the parameter estimates are taken as

a(0) = 6.4, b(0) =9.5, p(0) =5.9 (62)
Figures 7-9 depicts the complete synchronization of the identical novel chaotic systems.
Figure 10 depicts the time-history of the synchronization errors.

6. CONCLUSIONS

In this paper, we have derived a seven-term novel 3-D chaotic system with two nonlinearities— a quadratic
nonlinearity and a quartic nonlinearity. We gave a qualitative analysis of the mathematical properties of the
novel 3-D chaotic system. We determined the Lyapunov exponents and Lyapunov dimension of the chaotic
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system. Next, we have derived adaptive control and synchronization results for the novel chaotic system
with unknown parameters, which have been established using Lyapunov stability theory. Numerical

simulations with MATLAB were exhibited to demonstrate the phase portraits of the novel chaotic system
and the adaptive results derived in this paper.
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