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illustrate our results. 
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1. Introduction 

Fixed point theory is a beautiful subject for dynamic research in non-linear 
analysis. In 1912, Brouwer [2] proved a result that a unit closed ball in �� has a 
fixed point. The most remarkable result in the fixed point theory was given by 
Banach [1] in 1922. He proved that each contraction in a complete metric space 
has a unique fixed point. Later on, many authors generalized the Banach fixed 
point theorem in various ways [13,14,15,18,19,22,23]. Recently, Samet et al.[21] 
introduced the notion of �-� contractive mappings and proved the related fixed 
point theorems. 

Digital topology is a developing area based on general topology and functional 
analysis which studies features of 2D and 3D digital images. Rosenfield [20] was 
the first to consider digital topology as the tool to study digital images. Kong [17], 
then introduced the digital fundamental group of a discrete object. The digital 
versions of the topological concepts were given by Boxer [3], who later studied 
digital continuous functions [4]. Later, he gave results of digital homology groups 
of 2D digital images in [6] and [7]. Ege and Karaca [9,10] give relative and reduced 
Lefschetz fixed point theorem for digital images. They also calculate degree of 
antipodal map for the sphere like digital images using fixed point properties. Ege 
and Karaca [11] then defined a digital metric space and proved the famous Banach 
Contraction Principle for digital images. 

In this paper we generalize the concept of �-�-contractive mappings in the 
setting of digital metric space, as �-�-�-contractive mappings. 
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2. Preliminaries 

Definition 2.1: Let Ψ be a family of functions �: �0,∞� → �0,∞� satisfying the 
following conditions: 

(i) � is nondecreasing; 

(ii) there exist �� ∈ � and � ∈ �0, 1� and a convergent series of nonnegative 

terms ∑ ��
�
���  such that 

������� � ������ � �� 

For � � �� and any � ∈ ��. 

Lemma 2.2 ([21]): If �	 ∈ 	Ψ, then the following hold: 

(i) �������
���

	converges to 0 as � → ∞ for all � ∈ ��; 

(ii) ���� � �	for any � ∈ �0,∞�; 

(iii) �	is continuous at 0; 

(iv) the series ∑ ������
��� 	converges for any � ∈ ��. 

Recently, Samet et al. [21] introduced the following concepts. 

Definition 2.3: Let �: � → � and � ∶ � � � → �0, ∞�. we say that � is �-

admissible if for all �, �	�	�, we have 

���, �� � 1	 ⟹ 	����, ��� � 1	

Definition 2.4: Let ��, �� be a metric space and let � ∶ � → � be a given mapping. 

We say that � is an � � �-contractive mapping if there exist two functions � ∶ � �
� → �0,∞� and � ∈ Ψ such that 

���, ������, ��� � �����, ��� 

for all �, �	�	�. 

Clearly, any contractive mapping, that is, a mapping satisfying Banach 
contraction, is an � ��-contractive mapping with ���, �� � 1 for all �, �	�	� and 

���� � ��, for all � � 0 and some � ∈ �0,1�. 

Let � be a subset of �� for a positive integer � where �� is the set of lattice 

points in the �- dimensional Euclidean space and � represent an adjacency relation 

for the members of �. A digital image consists of ��, ��. 



DIGITAL – � – � – CONTRACTIVE TYPE MAPPINGS IN DIGITAL METRIC SPACES 103 

Definition 2.5[9]: Let �, � be positive integers, 1 � � � � and two distinct points 

� � ���, ��, … , ���, � � ���, ��, … , ��� ∈ �� 

� and � are ��- adjacent if there are at most � indices � such that |�� � ��| � 1 
and for all other indices � such that ��� � ��� � 1, �� � ��. 

There are some statements which can be obtained from definition 2.1: 

� � and � are 2- adjacent if |� � �| � 1. 

� � and � in �� are 8- adjacent if they are distinct and differ by at most 1 in 
each coordinate. 

� � and � in �� are 26- adjacent if they are distinct and differ at most 1 in 
each coordinate. 

� � and � in �� are 18- adjacent if are 26- adjacent and differ by at most 
two coordinates. 

� � and � are 6- adjacent if they are 18- adjacent and differ in exactly one 
coordinate. 

A �-neighbour [9] of � ∈ �� is a point of �� that is �- adjacent to � where 
� ∈ �2,4,8,6,18,26� and � ∈ 1,2,3. The set 

Ν���� � ��|�	��	� � ��������	��	�� 

is called the �- neighbourhood of �. A digital interval [9] is defined by 

��, ��� � �� ∈ �|� � � � �� 

where, �, � ∈ � and � � �. 

A digital image � ⊂ �� is �- connected [10] if and only if for every pair 
of different points �, � ∈ �, there is a set ���, ��, … , ��� of points of digital 
image � such that � � ��, � � ��  and �� and ���� are �- neighbours where 
� � 0,1,… , � � 1. 

Definition 2.6: Let ��, ��� ⊂ ��� , ��, ��� ⊂ ���  be digital images and �: � → � 
be a function. 

� � is said to be ���, ���- continuous[9], if for all ��- connected subset � of 
�, ���� is a ��- connected subset of �.	

� For all ��- adjacent points ���, ��� of �, either ����� � ����� or ����� 
and ����� are a ��-adjacent in � if and only if � is ���, ���-continuous 
[9].	
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� If � is ���, ���- continuous, bijective and ��� is ���, ���- continuous, then 

� is called ���, ���- isomorphism [11]and denoted by � ≅���,��� �.	

A �2, ��- continuous function �, is called a digital �- path [9] from � to � in a 
digital image � if �: �0,��� → � such that ��0� � � and ���� � �. A simple 
closed �- curve of � � 4 points [12] in a digital image � is a sequence 
���0�, ��1�, … , ��� � 1�� of images of the �- path �: �0,� � 1�� → � such that 
���� and ���� are �- adjacent if and only if � � � � ���	�. 

Definition 2.7[8]: A sequence ���� of points of a digital metric space ��, �, �� is 
a Cauchy sequence if for all ∈� 0, there exists � ∈ � such that for all �,� � �, 
then 

����, ��� �∈. 

Definition 2.8[8]: A sequence ���� of points of a digital metric space ��, �, �� 
converges to a limit � ∈ � if for all ∈� 0, there exists � ∈ � such that for all � �

�, then 

����, �� �∈. 

Definition 2.9[8]: A digital metric space ��, �, �� is a digital metric space if any 
Cauchy sequence ���� of points of ��, �, �� converges to a point � of ��, �, ��. 

Definition 2.10[8]: Let, ��, �, �� be any digital metric space and �: ��, �, �� →
��, �, �� be a self digital map. If there exists � ∈ �0,1� such that for all �, � ∈ �, 

������, ����� � 	����, ��, 

then � is called a digital contraction map. 

Proposition 2.11[8]: Every digital contraction map is digitally continuous. 

Theorem 2.12[8]: (Banach Contraction principle) Let ��, �, �� be a complete 
metric space which has a usual Euclidean metric in ��. Let, �: � → � be a digital 
contraction map. Then � has a unique fixed point, i.e. there exists a unique � ∈ � 
such that ���� � �. 

3. Main Results 

We introduce the concept of �������-�-�-contractive mapping as follows: 

Definition 3.1: Let ��, �, �� be a digital metric space and let � ∶ � → � be a given 
mapping. We say that � is a �������-�-�-contractive mapping if there exist two 
functions � ∶ � � � → �0,∞� and � ∈ Ψ such that for all �, � ∈ �, we have 

 ���, ������, ��� � �����, ���. (1) 
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Definition 3.2: Let � ∶ � → � and � ∶ � � � → �0, ∞�. We say that � is a �-

admissible if for all �, � ∈ �, we have 

���, �� � 1	 ⟹ 	����, ��� � 1 

Theorem 3.3: Let ��, �, �� be a complete digital metric space and let � ∶ � → � 

is a �������-�-�-contractive mapping and satisfies the following conditions: 

(i) � is a �-admissible; 

(ii) there exist �� 	∈ � such that ����, ���� � 1; 

(iii) � is digital continuous. 

Then there exists � ∈ � such that �� � �. 

Proof: Let �� ∈ � such that ����, ���� � 1 (such a point exist from the condition 

(ii)). Define the sequence ���� in � by ���� � ���  for all � � 0. If ��� � ����� 

for some ��, then � � ��� is a fixed point of �. So, we can assume that �� � ���� 

for all �. Since � is �-admissible, we have 

����, ��� � ����, ���� � 1	 ⟹ 	�����, ���� � ����, ��� � 1. 

Inductively, we have 

 ����, ����� � 1 for all � � 0,1,2…… .. (2) 

From (2) and (6), it follows that for all � � 1, we have 

  ����, ����� � �������, ���� 

 � ������, �������������, ����
 

 � ��������, ���� 

 ����, ����� � �������, ���� for all � � 1 (4) 

Using (5) , we have 

  ����, ��� � ����, ����� � ������, ����� 

 �������, ����� � ⋯� ������, ��� 

 � ∑ ����, �����
���
���  

 � ∑ �������, ����
���
���  

Since � ∈ Ψ and ����, ��� � 0, by lemma 1.2, we get ∑ ������, ��� � ∞�
���  
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Thus, we have lim
�,�→�

����, ��� � 0. 

This implies that ���� is a digital Cauchy sequence in the complete digital 

metric space ��, �, ��. Since ��, �, �� is complete, there exist � ∈ � such that ���� 
is digital convergent to �. Since � is digital continuous, it follows that ����� is 

digital convergent to ��. By the uniqueness of the limit, we get � � ��, that is, � 

is a fixed point of �. 

The next theorem does not require continuity. 

Theorem 3.5: Let ��, �, �� be a complete digital metric space. Suppose that 

�: � → � is a �������-�-�-contractive mapping and the following conditions 
satisfies : 

(i) � is �-admissible; 

(ii) there exists �� ∈ � such that ����, ���� � 1; 

(iii) If ���� is a sequence in � such that ����, ����� � 1 for all � and ���� is 

a digital convergent to � ∈ �, then ����, �� � 1 for all �. 

Then there exist � ∈ � such that �� � �. 

Proof: Following the proof of theorem 3.4, we know that the sequence ���� 

defined by ���� � ��� for all � � 0 is a Cauchy sequence in the complete metric 

space ��, �, �� that is digital convergent to � ∈ �, From (6) and (iii), we have 

 ����, �� � 1 for all � � 0. (5) 

Using the basic properties of digital metric together with (2) and (5), we have 

  ������, ��� � �����, ��� 

 � ����, �������, ��� 

 � ������, ��� 

Letting � → ∞, and since � is continuous at � � 0, it follows that 

���, ��� � 0 

By definition, we obtain � � �� 

With the help of the following example, we show that the hypotheses in 
theorems 2.4 and 2.5 do not guarantee uniqueness of the fixed point. 
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Example 3.6: Let � � �0,∞� be the digital metric space, where ���, �� 
� |� � �| for all �, � ∈ �. Consider the self- mapping � ∶ � → � given by 

 �� � �
2� �

�

�
	��	� � 1,

�

�
	��	0 � � � 1.

 

Notice that 1.16, a characterization of the Banach fixed point theorem, cannot 
be applied in this case because ���1, �2� � 2 � 1 � d�1,2�. 

Define �: � � � → �0,∞�, as 

 ���, �� � �1	��	�, � ∈ �0,1�,
0	���������.

 

Let ���� �
�

�
 for � � 0.	Then, we conclude that � is a �������-�-�-contractive 

mapping. In fact, for all �, � ∈ �, we have 

 ���, ������, ��� �
�

�	
���, ��. 

On the other hand, there exists �� ∈ � such that ����, ���� � 1. Indeed, for 

�� � 1, we have ��1, �1� � � �1,
�

�
� � 1 

Notice also that � is continuous. To show that � satisfies all the hypotheses of 
Theorem 3.4, it is sufficient to observe that � is �-admissible. For this purpose, let 
�, � ∈ � such that ���, �� � 1, which is equivalent to saying that �, � ∈ �0,1�. Due 
to the definitions of � and �, we have 

 �� �
�

�
∈ �0,1�, �� �

�

�
∈ �0,1�. 

Hence, ����, ��� � 1. As a result, all the conditions of theorem 2.4 are 
satisfied. Note that theorem 2.4 guarantees the existence of a fixed point but not 

the uniqueness. In this example 0 and 
�

�
 are two fixed points of �. 

In the following example � is not continuous. 

Example 3.7: Let �, � and � be defined as in example 3.6. Let �:� → � 

 �� � �
2� �

�

�
	��	� � 1,

�

�
	��	0 � � � 1.

 

let ���� �
�

�
 for � � 0. Then we conclude that � is a �������-�-�-contractive 

mapping. In fact, for all �, � ∈ �, we have 
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 ���, ������, ��� � �

�
���, �� 

Furthermore, there exist �� ∈ � such that ����, ���� � 1. For �� � 1, we 

have ��1, �1� � � �1, �
�
� � 1. 

Let ���� be a sequence such that ����, ����� � 1 for all � ∈ � and as �� → � 

as � → ∞. by the definition of �, we have ����, ����� � 1 for all � ∈ �. then we 

see that �� ∈ �0,1�. Thus, ����, �� � 1. 

To show that � satisfies all the hypotheses of Theorem 2.5, it is sufficient to 

observe that � is � –admissible. For this purpose let�, � ∈ � such that	���, �� �
1. It is equivalent to saying that	�, � ∈ �0,1�. Due to the definition of �	and �, we 
have 

 �� � �

�
∈ �0,1�, �� � �

�
�0,1�. 

Hence ����, ��� � 1. 

As a result, all the conditions of the theorem 2.5 are satisfied. In this example, 

0 and 
�

�
 are two fixed points of �. 

Theorem 3.8: Adding the following condition to the hypotheses of theorem 3.4 
and 3.5 we obtain the uniqueness of a fixed point of �. 

For all �, � ∈ �, there exist � ∈ � such that ���, �� � 1 and ���, �� � 1. 

Proof: Let �, �∗ ∈ ������ then by the given condition ���, �� � 1 and 

���∗, �� � 1  

Since � is �-admissible, we get by induction that 

 ���, ���� � 1	���∗, ���� � 1 for all � � 1,2,3, … (6) 

From (9) and (5), we have 

   ���, ���� � ����, ��������� 

 � ���, ����������, ��������� 

 � �����, ������� 

Thus, we get by induction that 

 ���, ���� � ������, ���	for all � � 1,2,3, … 
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Letting � → ∞, and since � ∈ Ψ, we have 

���, ���� → 0. 

This implies that ����� is digital convergent to �. Similarly, we get ����� is 

digital convergent to �∗. By the uniqueness of the limit, we get � � �∗, that is, the 

fixed point of � is unique. 
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