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TEST FOR STRUCTURAL CHANGE UNDER
ETEROSCEDASTIC ERRORS: THE CASE OF
SUCCESSIVE REGRESSIONS

Jagabandhu Saha1

Abstract: The Chow test is not robust under heteroscedasticity. The presence of
heteroscedasticity will affect level of significance as well as power of the test, especially
when the sizes of the samples are small. The present paper not only resolves the problem of
heteroscedasticity in the error terms, but also extends the existing method of comparing
from two regression equations to many equations in order to make successive comparisons
of the coefficients to be possible, thus generalizing Chow test in two directions. The procedure
is then illustrated with state level population data of India to compare the decadal growth
rates in order to detect structural change, if any.
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coefficients.

1. INTRODUCTION

It is a common practice to test the equality between sets of coefficients in two linear
regressions by Chow Test (Chow 1960). Chow however assumed homoscedasticity of
the regression errors. It is already demonstrated in the literature that the Chow test is
not robust under heteroscedasticity (Toyoda 1974, Schmidt and Sickles 1977, Ali and
Silver 1985 and Tansel 1987). The presence of heteroscedasticity will affect level of
significance as well as power of the test. This means that if there is heteroscedasticity
in the errors, but we perform Chow test assuming homoscedasticity then the result
may be different from the actual especially when the sizes of the samples are small.

Under homoscedasticity assumption in the Chow Test, if the null hypothesis of
equality between the sets of coefficients is not rejected then there is no problem (as in
the examples in his paper). But if rejected, then, naturally, one is probed to the questions:
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(a) at which component/s the sets differ, and

(b) for each of those components, between the two coefficients of the two
regressions concerned, which one is larger/smaller.

Chow test does not provide answer to any of these questions. This problem can be
resolved with some modifications of the model (Saha and Pal 2014). Saha and Pal
introduced the concept of “component wise complete comparison” (CCC)2 in order to
overcome this problem. The test procedure for CCC between every two successive
regressions out of any number of given successive regressions was developed. If
heteroscedasticity is present then the problem of CCC aggravates and needs further
modifications. The present paper extends the earlier paper by incorporating
heteroscedasticity in the model and developing test procedure for CCC between every
two successive regressions out of any number of given successive regressions, thus
generalizing Chow test in two directions.

 We may now straight go to the problem and discuss how we can arrive at a
solution.

2. THE MODEL

We consider the problem of finding test procedure for CCC between every two
successive regressions out of m as follows:

y (1) = a1
(1) + a2

 (1) x2
 (1) + a3

 (1) x3
 (1) + ... + ak

 (1) xk
 (1) + u (1),

 y (2) = a1
(2) + a2

 (2) x2
 (2) + a3

 (2) x3
 (2) + ... + ak

 (2) xk
 (2) + u (2),

.................................................................................................

y (m) = a1
(m) + a2

 (m) x2
 (m) + a3

 (m) x3
 (m) + ... + ak

 (m) xk
 (m) + u (m), …(1)

where, the superscripts denote the individual regressions, n1, n2, ..., nm are the nos. of
observations for these regressions. The assumptions on the error terms are as under:

(i) E(u(i)) = 0n×1, �i = 1, 2, ..., m, I

(ii) E((u(i))(u(i))’) = �i
2 In×n, �i = 1, 2, ..., m,

(iii) E((u(i))(u(j))’) = 0 nxn, �i � j = 1, 2, ..., m,

where , ni  =  n,   �i = 1, 2, ………, m, I

(i.e., the sample sizes for the different regressions are the same, say, n).

We can run the regression separately for each equation, but then it is very difficult
to incorporate the heteroscedasticity of the equations. It will be clear later that the
model    considered is similar to that adopted in the Zellner’s (1962) SURE Estimation
Procedure (ZSEP), and the solution here is, also, similar to that of Zellner’s.

We can combine the above m regressions into a single regression equation model
as follows:
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...(2)

The solution for the single equation model is same as that of finding solution
separately for each equation for the m equation model. The benefit of writing a single
equation model is that we can now introduce heteroscedasticity of the error terms
more easily. In addition to introducing heteroscedasticity of the error terms we want
to compare aj

(i) with a(i+1), for all j = 1, 2, ..., k and i = 1, 2, ..., m – 1. That is also possible
if we slightly change the model further.

Notice that the above model does not have an intercept term. We may now
introduce the intercept term in (2) and rewrite (2) as follows:

...(3)

In the above model (3), c11 is the intercept term. This is same as a1
(1), the intercept

term in the first regression equation in (1). Similarly, c12, c13, ..., c1k, are also same as a2
(1),

a3
(1), ..., ak

(1). The regression coefficients c21, c22, …, c2k are the changes in the intercept
term and the coefficients of other variables in the second equation from the
corresponding values of the first equation, c31, c32, …, cmk are the changes in the intercept
term and the coefficients of other variables in the third equation from the corresponding
values of the second equation, and so on. We can thus write c1j = aj

(1), for all j = 1, 2, 3,
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..., k and cij = aj
(i) – aj

(i–1), for all j = 1, 2, 3, ..., k and for all i = 2, 3, ..., m. So, the model (3)
gives the changes over successive regressions.

Let us, for convenience, rewrite (3) as:

Y = Xc + U, ...(4)

where, YN×1 = the Y-vector in (3), XN×K = the X-matrix in (3), cK×1 = the coefficient-
vector in (3) and UN×1 = the disturbance-vector in (3), N = nm and K = km.

We can now estimate c as well as perform test for H0 : cij = 0 vs. HA : cij � 0 or HA : cij

< 0 or HA : cij > 0, for all j = 1, 2, 3, ..., k and for all i = 2, 3, ..., m,  and decide whether cij

= 0 or < 0 or > 0, for all j = 1, 2, 3, ..., k and for all i = 2, 3, ..., m, i.e., perform CCC between
every two successive regressions in m-regression equation model, since cij = aj

(i) – aj
(i–1).

And once this is done, the point/each of the points of structural change, if there is any
at all, will be automatically detected—with detailed information for that point/each
of those points.

In fact, any of the coefficients c21, c22,  ..., c2k, c31, c32, ..., c3k, ..., cmk, or any combination
of these coefficients can be tested. It thus can be seen as a generalization of Chow test
in two directions, because we assumed that the errors are heteroscedastic.

3. THE METHODOLOGY

Model (4) is nothing but a Generalised Least Squares Model (GLSM). The estimation
procedure will depend on the variance-covariance matrix of the regression error, which
is given as:

(D(U))nxn = V, say,

2

1
2

2

2

0 0

0 0

0 0

nxn nxn nxn

nxn nxn nxn

nxn nxn m nxn

I

I

I

� ��
� �

� �� �
� ��� �

�

or, V = kronecker (�mxm, Inxn) ...(5)

where, �mxm is :

2

1
2

2

2

0 0

0 0

0 0
mxm

m

� ��
� �

� � �� �
� ��� �

�

It should now be clear that model (4) with D(U) = V given by (5) is similar to that
adopted in ZSEP referred above, simply because �mxm is here obviously positive definite.
Since in the model (4), V is unknown, it needs to be estimated. But V = kronecker
(�mxm, Inxn). So, actually �mxm needs to be estimated. This can be done in the light of
ZSEP as follows. The steps are:
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 (i) Apply OLS separately to each of the regressions in (1); let the residual vector
for the i-th regression be denoted as ei, for all i = 1, 2, ..., m,

(ii) Estimate �i
2 as : �i

2  =  (ei ? ei)/(n – k) , for all i = 1, 2, ..., m.

Then, estimated �mxm, say, Smxm, is:

2

1
2

2

2

0 0

0 0

0 0
mxm

m

S

S S

S

� �
� �

� � �
� �
� �

�

Then, V can be estimated as :

ˆ ( , )
mm nn

V Kronecker S I� ...(6)

We now simply find the GLS estimator of c of (4) with D(U) = V̂  given by (6) and
perform tests for the coefficients c21, c22, ..., cmk, and decide for each of these whether it
is < 0 or = 0 or > 0, as mentioned already. The GLS estimator of c is (X2?(V̂ )–1X)–1(X2?(V̂ )–1Y),
and its dispersion matrix is (X2?(V̂ )–1X) –1.

4. ILLUSTRATION

In the context of rate of growth of population in India, we consider three regression
equations (m = 3) as follows. With state level population of India, we first define the
following four variables:

X1 = size of the population in a state of India in 1981,

X2 = size of the population in a state of India in 1991,

X3 = size of the population in a state of India in 2001,

X4 = size of the population in a state of India in 2011.

The sources of these data are Census of India (1981, 1991, 2001, 2011).

Let us now define variables Y1, Y2, Y3 as follows:

Y1 = X2 – X1 (i.e., growth/increase of population during: 1981 to 1991)

Y2 = X3 – X2 (i.e., growth/increase of population during: 1991 to 2001)

Y3 = X4 – X3 (i.e., growth/increase of population during: 2001 to 2011).

We now consider three regressions as follows:

1 1 1 1

2 2 2 2

3 3 3 3

Y X U

Y X U

Y X U

� � � �
�� � � �
�� � � �

...(7)
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�1, �2 and �3 are nothing but the rates of growth of population over the decades: 1981
to 1991, 1991 to 2001 and 2001 to 2011 respectively (to be referred as first decade,
second decade and so on).

Now, following Section 3, we apply OLS separately to each of the above three
regressions in (7). (It may be noted that each of these regressions is a regression without
an intercept term.)  (The no. of observations for each regression here is n = 32(no. of
States in India). Also, we have here: k = 1, m = 3.)

The Residual vectors of these three regressions are first obtained. Then we get the
sum of squares for the residual vectors and hence the estimates of �i

2 , s(si
2 , s) using the

formula as given in the previous section. We then use the following steps to get the
estimate of c in (4), say, c*. The first component of c* gives the estimate of the growth
rate in the first decade, and the second and the third components of c* give respectively
the estimates of changes in the growth rates over first decade to second decade and
over second decade to third one.

1. Construct the matrix S3×3 and compute  (S3×3)
–1 .

2. Compute 1

96 96
ˆ( )V �

�  =  kronecker((S3×3)
–1, I32×32).

3. Compute c* as:  1 1 1ˆ ˆ* ( ( ) ) ( )c X V X X V Y� � �� ��  and its dispersion matrix, D(c*), as:
1 1ˆ( *) ( ( ) )D c X V X� ��� .

The estimate of growth rate in the first decade is 2.408 and the estimates of the
changes concerned are respectively –2.270 and 0.043 with the corresponding t-values
as 132.029, –86.159 and 1.362. The second t-value evidently indicates that there is a
decline in growth rate as one moves from the first decade to the second decade while
the third t-value, compared with table value, indicates that the estimated change in
growth when one moves from the second decade to the third one is insignificant.
Hence there is structural change only once and the change is negative.

Observe that we treated all the states equally. But we should have given weights
proportional to the population of the states respectively.

5. CONCLUSIONS

Our procedure extends the existing method of comparing, from two regression
equations to many equations, from assumption of homoscedastic errors to
heteroscedastic errors, thus generalizing Chow test in two directions and also provides
successive comparisons of the coefficients.

Firstly, we can compare whether any two coefficients are equal against the
alternative hypotheses of inequality of any direction i.e., ‘<’ or ‘>’, instead of only ‘�’.
This can further be extended to vector of regression coefficients with similar alternative
hypotheses for each component of vector.
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Secondly, our procedure enables one to perform component wise complete
comparison between the vectors of coefficients of every two successive regressions
out of several given regressions. Now, one of the important implications of this is as
follows. Suppose each one of the given regressions pertains to a time period/point
and the regressions are arranged in increasing order of time and the investigator is in
search of

(a) existence of structural breakthrough and

(b) detection of the point/s (here, by a point we mean a time period or a time
point) where it occurs, if there is any such at all.

Not only the point/s of structural breakthrough, if there is any at all, through our
procedure we get something more. For every such point we get component wise
complete comparison of the vectors of coefficients of the two regressions associated
with that point. Actually, it is not necessary that the regressions need to be ordered in
increasing/decreasing order of time; it is sufficient for the regressions to be ordered
in a well defined sense, e.g.,

(i) in order of space, e.g., regressions pertain to some states of India arranged
from North to South,

(ii) in increasing order of income, e.g., regressions pertain to some groups of
peoples arranged in increasing order of income, etc.

It seems that the concept of “Structural Change” can be extended, not pertaining
to only “order of time” but pertaining to any well defined order in which the regressions
can be meaningfully arranged.

Thirdly, consider the test provided by Gujarati (Gujarati 1970), Generalised Dummy
Variable Approach, in order to find out whether a given set of regressions differ from
one another. A moment’s reflection shows that the purpose of this test is also served
by our test simply because if we arrange these regressions successively (with or without
any definite meaning) then we can say that these regressions do not differ from one
another iff the two vectors of coefficients of every two successive regressions coincide
which is easily verifiable by our procedure. But, needless to say, the objective of this
paper, i.e., developing test procedure for CCC between every two successive regressions
out of any number of given successive regressions, is not served by the test due to
Gujarati.

Notes

1. I am grateful to Professor Manoranjan Pal, Economic Research Unit, Indian Statistical
Institute, Kolkata, for his kind help in preparing this article.

2. By complete comparison between any two parameters a and b we mean to decide whether
a < b or a = b or a > b. By component wise complete comparison (CCC) between two vectors
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of parameters of the same size (a1 a2 ... am) and (b1 b2 ... bm) we mean complete comparison
between (a1 and b1), (a2 and b2), ... and (am and bm). By CCC between/of/for two regressions
with same no. of parameters we mean CCC between the two vectors of parameters of
these regressions. In the paper by Saha and Pal, CCC is done between every two
successive regressions out of any number of given successive regressions with same no. of
parameters.
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