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Abstract: Data mining environment give a quick response to the user by fast and correctly pick-out the item from the
large database is a very challenging task. Previously multiple algorithms were proposed to identify the frequent item
since they are scanning database at multiple times. To overcome those problems we proposed Rehashing based
Apriori Technique in which hashing technology is used to store the data in horizontal and vertical formats. Rehash
Based Apriori uses hashing function to reduce the size of candidate item set and scanning of database, eliminate non
frequent items and avoid hash collision. After finding frequent item sets perform level wise subspace. We instigate
Generalized Self Organized Tree based (GSTB) mechanism to adaptively selecting root to construct the path from
the cluster head to neighbors when constructing the tree. Our experimental results showthat our proposed mechanisms
reduce the computational time of overall process.

Index terms: Sub-space clustering, GSTB (Generalized Self organized Tree Based Cluster Head selection).

I. INTRODUCTION

In recent years all industries, government sector and entertainment applications are manipulate in database for
storing and retrieving their information in a large-scale database and also currently the growth of the World Wide
Web rate has increased, so that retrieve frequent data from web is a challenging one. Data miningrefers to the
process of extracting useful models of data. Sometimes, a model can be a summary of data, or it can be the set of
most extreme features of the data. Scanning frequent item is an important topic in data mining and continuously
researchers givean new algorithm for solve theseissues [1]. Mining Frequent Pattern (FP) is one of the effective
ways to analyze the customer behavior in terms of purchased products. Distributed Parallel algorithm achieves
better than apriori, especially in the case of high data volumes and low minimum supports and hence the computation
time is high. It will scan the database at multiple times for find the frequent pattern (FP) and it is time consuming
process. Next, researcher wants to speed up the apriori process by implementing the distributed environment [2].

The task of discovering all frequent associations in very large sets are quite challenging. Since the search
space is exponential in the number of database attributes and with millions of database objects. Thus the problem
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of I/O minimization becomes paramount [10].Indistributed environment irregular and imbalance load can be
occurred. To avoid those problems use Distributed Parallel Algorithm [7].In paper [31] authorsproposed the
load balancing approach parallel algorithm for frequent pattern (FP) mining problem, Load balancing FP-tree
(LFP-tree). Moreover, a loading degree function is also developed. The authors use local and global header for
load balancing. Our proposed work is frequent patterns are mined using Hashing technique. Manyhashing
algorithms are concerned with efficiently determining the set of frequent item sets in a given set of large database.
Using this algorithm avoid problems of hash collision, increasing hash table size, double hashing, load imbalance
and multiple scans. This paper performs high level overview of frequent pattern mining, Subspace clustering
and GSTB tree construction.In frequent item set mining generate frequent item and non-frequent item. But
applying hashing non frequent items are eliminated in each level. In our plan of action we integrate hash
basedapriori, Sub-space clustering, and generalized self-organized Tree based algorithm.

Figure 1: Data mining Themes

We summarize the main contribution of our work as follows:

• In the context of FPM, we perform efficient Rehashing technique, which facilitates an analysis of
correlations among transactions to reduce the scanning and computational time. Our technique prevents
hash collision and secondary clustering problem across large datasets.

• To implement the above hashing technique by integrating level wise clustering based on subspace
clustering

• To validate the effectiveness of our approach, we develop the GSTB tree in which the frequent items
applied to construct the tree using adaptively root selection algorithm.

The rest of this paper is systemized as follows: Constituent 2 describes about the previous work under the
frequent pattern mining subspace clustering. Constituent3 discussed about problem definition. Constituent 4
chronicles the proposed frequent pattern subspace clustering optimization algorithm. Constituent 5 gives
experimental result by comparing existing approach. Constituent 6 concludes the proposed work.Constituent 7
is explained the future work and finally the constituent 8 accommodates what are all the previous authors and
their papers are taken for introducing proposed work such as references.
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II. RELATED WORK

Finding frequent pattern (FP) is an essential role in mining associations, correlations, regression, time series,
sequence and many other interesting relationships among data. Association mining task is introduced and it can
be stated as follows: In first step scan the transactional database to make a table of items with item count and
their corresponding transactions. Let I = {I1, I2, I3…..Im} be a set of items. Let D be the transactional database
where each transaction T is a set of items such that T � I. Each transaction associated with an identifier TID.In
transaction T contains X if X ��T, where X is a set of items in I. An association rule form is X=>Y [6].A set of
items is referred as an item set. An item set that contains K items i.e. K-itemset. The number of transactions in
which a particular item set exists gives the support or frequency count of the item set. If the support of an item set
I satisfy the minimum support threshold, then the item set I is a frequent item set i.e. level 1 is generated.Apply
hash function to calculate the bucket count. After finds all candidates item sets, calculate bucket count and
support value. If there is any collision will occur apply collision resolution function to solve this problem. Thus
the frequent pattern mining has become an important data mining task and focused in data mining research.
Frequent pattern mining was introduced in [4] [10][12] and [19] for finding frequent patterns using Fp growth
and apriori techniques.In paper[4] the performance of data mining in frequent patterns improved, since in each
pass set of large k-item sets (Lk) is used to form the set of candidate k+1 item sets (Ck+1) by joining Lk with itself
on k-1 common items for the next pass. In general the more item sets in Ck+1, the higher processing cost of

determining Lk+1.In apriori algorithm |C2| = 
| 1|
2
L� �

� �
� �

, here the step of determining L2 from C2 by scanning the

whole database and testing each transaction against C2 is a very expensive. By constructs significantly smaller
sized C2, the DHP algorithm performs well in counting of C2 much faster than apriori.In this method reduce the
size of candidate item set and hence computational time is reduced. The DHP algorithm generates k+1 candidate
item sets from large item sets. It uses hashing technique to filter out the unnecessary item sets for the generation
of the next set of candidate item sets. It consists of three steps: The first step is to collect a set of large 1-itemsets
and constructs a hash table for 2-itemsets. The second step is generates the set of candidate item sets Ck. The
third step is same as the second step except it does not use the hash table in determining a particular item set from
the candidate item sets.DHP efficiently generating large item sets, reduction in transaction database i.e. datasets
size and reducing the number of database scan. Problem of DHP algorithm is increase the size of hash table. In
paper [5], authorsproposed H-Bit array hashing function to avoidcollisions. This will give an outcome of the
minimal amount of time. It avoids lengthy probing sequence. But the problem is secondary clustering since more
than one clustering is not given accurate results. In [6] and [14] PHPalgorithm (Perfect Hashing Pruning) is
proposed. In this algorithm, each item set has its own bucket which increases the size of hash table. But it
effectively reduces the search space. PHS (Perfect Hashing Scheme) algorithmavoids hash collision and reduces
the memory requirements. Hash Based Frequent Items-Double Hashing (HBFI-DH) algorithm uses hashing
technology to store items in vertical format and to avoid collision and secondary clustering problem[8] and[15].
In double hashing, less memory space is occupied. Let H (k) be a hash function that maps an item set k to an
integer in [0, m-1], where m is the size of hash table. Let it probe position for a value k is given by the
function’s(kid)=[h1 (k) +I * h2 (k)] mod m. where h2 (k) is obtained from the following equation h2(k)=[R-(k
mod R)] where R is a prime number that should be less than m.h1(k). h(k)+h2(k). h(k)+2h2

(k).h(k)+…+nhn(k).h(k). In[9] Transaction hashing and pruning techniques given solution for all previously
proposed hashing techniques. THP algorithm overcomes the item set collision problem in DHP algorithm and
large hash table problem in PHP algorithm. As a result of THP method, there is some failures occur such as many
transactions, huge database, many data and about the datasets. Large sets of frequent item sets describe essentially
the same set of transaction. Support counts and bucket counts are arranged in linked list. Papers [18] and [19]
explained the concept of Association Rule Mining (ARM). Issues in ARM:
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1. Finding minimum support: By calculating minimum support for a frequent pattern, user specified minimum
support threshold value. If we place threshold value minimum, infrequentpatterns are evolved. If we place
threshold value maximumsome frequent patterns are not retrieved [3].Due to thisoptimization problems
occur.

2. Multiple scans in database: Finding frequent item sets in a database, we necessary to scan the database
continuously. Themultiple scanning of data leads to:

1) Wastage of memory: utilizing lot of space to store and retrieve data

2) Wastage of time: to scan whole database by continuous scanning

3. Performance: performance is varied when number of instructions gets increased. ARM-HDAG [11] is a
tree based hashing algorithm. This process terminates when no more item sets exist in the every level of
hash table. This process is mainly used for reusability of memory in RAM. When the first level of itemsets
is deleted then same memory is allocated to the second level of Candidate keys. By using hash chaining and
linked list structure frequent item sets are evolved easily compared to other previous algorithms, hashing is
takes place through level by level and equal no of candidate item sets are generated by all levels in a hash
table. But this technique is failure for large database.Double hashing technique removes both primary and
secondary clustering. In this mechanism new method is required to improve efficiency to insertion, deletion
and searching [13] and [15]. Authors proposed an efficient algorithm[22] in which combines three paradigms
for improving runtime: A filter-and-refine architecture with a filter step based on weak density monotonicity
for pruning the search space, A depth first approach which avoids excess candidate generation on a specialized
index structure, Redundancy pruning mine lower dimensional projections in which no redundant higher
dimensional cluster was during depth first search. Subspace clustering [16] technique finds interesting
subspaces in different subspaces.Traditional methods apply frequent item sets to find dense units. Since
these methods are not able to differentiate the density of units in subspaces with different dimensions.Itis
not in favor of finding dense units in the sparse subspace or the higher-dimension subspace.In this paper,
proposed algorithm is CBNI(Clustering high dimensional data streams Based on N-most interesting Item
sets) which finds dense units based on N-most interesting item sets. In [3] Subspace search‘items’ and
‘item sets’ concepts from frequent pattern mining translates to ‘dimension’ and ‘subspace’ respectively.
The notion of a ‘frequent item set’ translates in to ‘interesting subspace’. In this technique count index is
generated in ascending order.Count index processed in a form of depth-first traversal, the search space is
applied for subspace clustering. Paper [17] introduced bottom up algorithm for subspace clustering based
on density and grid that computes the dense units in all dimensions and combines these to generate the
dense units in higher dimensions.Paper [23] developed an algorithm (termed DFPMT-A Dynamic Approach
for Frequent Patterns Mining Using Transposition of Database) for mining frequent patterns which are
based on Apriori algorithm and use dynamic function for LCS(Longest Common Subsequence) and also
frequent patterns are mined using pattern length.

III. PROBLEM DEFINITIONS

Frequent pattern mining from large datasets is very challenging task in data mining. Lot of methods and techniques
were proposed in previously published papers. But still some of the problems arise. Issues are wastage of memory
and more time taken for computation. To reduce multiple scanning of database use hash based apriori technique
in which reduce the response time, increase accuracy [6]. In case of large dataset, this algorithm is not efficient,
Apriori algorithm requires large number of scans and minimum support is provided by user which is uniform or
constant for whole transaction.Drawback in this technique is scan database at several times and time consuming
process whengenerates candidate item sets. To overcome those problems, hashing technique is introduced. In
this technique hash collision may occur due to primary and secondary clustering which means the single hash
key assigned two or more values. Main advantage of this algorithm is scans the transaction database once and it
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does not produce candidate item sets. Direct Hashing & Pruning (DHP) algorithm is an effective hash based
algorithm for candidate item set generation. This algorithm reduces the size of candidate-2 item set so that
computational time is reduced. H-Bit Array Hashing algorithm (H-BAH) proposed Quadratic probing to avoid
collision problem of DHP algorithm but it increases the size of hash table [15]. Perfect Hashing and Pruning
(PHP) algorithm reduces the extra work of DHP algorithm for counting the occurrences of candidate k+1 item
set in each bucket. In this algorithm each item set has its own bucket which increases the size of hash table but
reduces the search space [14]. Perfect Hashing Scheme (PHS) avoids collision problem. This algorithm uses an
encoding scheme to transform large item sets into large-2 item set. The research paper also proposed a variant of
PHS algorithm that reduces the memory requirements. Hash Based Frequent Item sets-Double Hashing (HBFI-
DH) algorithm uses hashing technology to store database in vertical format which uses for avoid collision and
secondary clustering problem [8]. HMFS algorithm takes advantages of DHP and Pincer Search algorithm to
reduce database scans.Paper [9] discussed about the transaction hashing and Pruning using minimum support
and bucket count. A problem in this algorithm is many transactions and huge database. After completing frequent
pattern level 1 apply hash function to find out the bucket count using the following hash function:H(x, y) =
((order of x)*10+ (order of y)) mod 7 in this hash function 7 is a number of items. So this algorithm is suitable
for predefined datasets. To overcome above mentioned problems we proposedrehashing based apriori techniquefor
frequent pattern mining. In this algorithm overcomes the following problems: double hashing problem, reduce
the hash table size, secondary clustering, insertion, searching, deletion is easy to perform. Using associative
array for storing item sets in hash table. In Subspace clustering two approaches are introduced. First one is top
down approach and Bottom up approach. Techniques used in clustering are Density based and Grid based. The
problem of subspace clustering is given by the fact that there are 2d different subspaces of a space with ddimensions.
If the subspaces are not axis-parallel, an infinite number of subspaces are possible. So we use a density based
approach to clustering. A cluster is a region that has a higher density of points than its surrounding region. We
propose a count indexing scheme for subspace clustering [31].

IV. PROPOSED WORK

In our proposed frequent pattern Subspace cluster optimization (FPSSCO) translates frequent pattern (FP) mining
concept to subspace clustering in which item into dimension, subspace and units. Sub-Space (SS) clustering is a
special family of adaptations of clustering approach for high dimensional data[35].Data clustering is an innovative
idea in data mining applications. Subspace clustering is the task of extracting group of object in a large dataset
that inherits the high similarity object for clustering .For e.g. one organization purchase some goods for their
company. File, card reader, scanner, pens, curtain clothes, projectors, notice board, etc. these are the frequent set
item 1. From this algorithm calculates frequent item set-2 had some limitation. Frequent items-2 contains both
items and itemsetsthat are share common property. Card reader, scanner, projector are in one candidate sets, pen,
notice board are the other candidate set. These steps are continued when no further extensions is possible.
Frequent item is exponential in large datasets [25]. Apriori algorithm [2] is the best previously proposed algorithm
and it uses an efficient candidate item prompting procedure, such that only the frequent item sets at a level are
used to construct candidates at the next level. TheDHP (Double Hashing and Pruning) algorithm is to reduce the
number of candidate collecting approximate counts in the previous level. PHP (Perfect Hashing and Pruning)
algorithmreduces the more number of candidate itemsets. In this algorithm each item set has its own bucket
which increases the size of hash table but reduces the search space [9] but the apriorialgorithm required many
database passes as the longest item set.In the first pass, it generates the set of all potentially or locally frequent
item sets and, in the second pass, it counts their global support. Partition may enumeratestoo many false positives
in the first pass i.e., item sets locally frequent in some partition but does not globally frequent.In our proposed
work we overcome these problems by FPSSCO algorithm. Let FI be a set of frequent items and T be a database
transactions, I be a set of item sets where each transaction has a unique identifier (tid) and contains a set of items.
A set of items is also called an item set. An item set with k-items is called a k-item set. A k length subset of an
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item set is called a k-subset. An item set is frequent if its support is more than a user-specified minimum support
(min-sup)value.

There are 8 main steps in the algorithm

1. Scan the given transactional database to make table of items with transaction id and item sets.

2. I is represented as a set of item sets that denoted as{I1,I2,I3,I4,I5,….In}

3. Generate table L1

4. This is similar to apriori join step. In ith level combined items generates all possible ith level transaction for
Ck (candidate itemsets) that using Lk-1itemsets.Then frequency counts are discovered for each combination
and generate linked list structure and allocate items in structure.

5. Apply hash function for each item in Ck .If collision occurs apply collision resolution function and then
move i -term set to the corresponding Bucket count. If collision not occurs at any one of the item set Go to
step 4.

6. End the process when frequent item set is found.

7. Perform Level wise sub-space clusteringfor frequent item set based on their frequency count and then
make a table for maximal frequent item sets, closed frequent item sets and frequent item sets.

8. Calculating pattern length of every frequent item sets. Next construct GSTB tree based on the pattern
length order avoid full tracery of the database.

Algorithm 1: FPSSCO algorithm

1. Input: Database item T, Transaction set.

2. For(k=1;k<=n;k++)

3. FP mining();

4. For each transaction T I.Do begin

5. Apply hashing technique.

6. Obtain all k item set of the transaction and store them in hash table.

7. End for

8. SS clustering();

9. Perform level wise clustering of all frequent item sets. Sort the levels in descending order according to its
count value and pattern length.

10. Compute level wise clustering � Xi,Yi,,Zi.

11. GSTB();

12. Select the cluster head with maximum pattern length to construct the path.

13. Traverse root node to leaf nodes while comparing the pattern length join leaf node to root.

14. Else

15. Create new set of nodes with pattern length. Insert them into tree according to their pattern length

16. End for

17. End

18. Output: All most frequent pattern with minimum response time and high accuracy.
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Algorithm 1 provides working procedure for our proposed system whichreduces the execution time. In this
section, we describe several new algorithms for efficient enumeration of frequent item sets. The first step involves
computation of frequent items. The next step generates the sub-spaces by applying SS clustering (sub-space
clustering), on the frequent item sets. The GSTB tree construction is based on the frequent pattern length in
descending order in Main-memory.The algorithms are given below,

1. Frequent pattern mining algorithm using apriority.

2. Sub-space clustering algorithm

3. GSTB algorithm.

Next session describe the overall working procedure of the above algorithm

4.1. Frequent Pattern Mining

In our proposed System FPSSCO algorithm selects the entire frequent M- item set from the high-dimensional
database over N items represented by,

1 2 1N N
M

N

M�

� �
� � �� �

� �
(1)

We use hashing technique for avoid pruning i.e. reduce the non frequent item to simplify the scanning process.
The FPSSCO algorithm has multiple transaction of each data set T and their frequent items are FI, and support
value (min_sup) is S. Ckis the candidate set for K level. At each step candidate sets are generated from the large
data item set of the preceding level. In this phase user given query is scanned from large data set (D1, D2…Dn), and
within their transaction (T1,T2..Tn) set also. Each transaction contains transaction id, and item sets in the database
.Where the database D is kept normalized and each database record is a <TID, item sets> pair, where TID is the
identifier of the corresponding transaction. Each transaction belongs to a transaction set T which is denoted as,

0
n
k tn T�� � (2)

4.1.1. Apriori algorithm using hashing technique

Our hash based apriori technique uses a data structure that directly represents a hash table. This algorithm
overcomes some of the problem in the apriori algorithm by reducing the number of candidate k-item sets and
reduces multiple numbers of databases scanning. The data structure used here is Associative array. The associative
array usually implemented as a hash table. An associative array As stores a set of frequentitem sets. Each item set
K isassociated with a key i.e. key(k)  key. Associative array in hash table supports the following operations:

• As.insert (Ks:itemset): As: = As � {k}.

• As. remove (e: Key):= \ {K}, where K is the unique element with key (K) = e.

• As .find (e : Key ): If there is an k � As with Key (k) = e, return e; otherwise, return �”.

A hash table uses a hash function to compute an index to an array of buckets from which the correct value
can be found. In hash table hash function will assigns each item set placed in unique bucket. But in some
situation more than one item setshad same bucket. In such situations hash collisions will occur.

4.1.2. Separatechaining

Hashing with separate chaining maintains an array Asin a form of linear linked list. To insert an item set I to the
sequence of As[h(k)]. To remove an item set with key k which are not frequent ,we scan throughlinked listAs[h(k)].If
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a key k with h (k) = eis encountered, weremoveit from linked list and return �. To find the element with key k, we
also scan through As[h (k)]. If an element e with h (k) = e is encountered, we return it. Otherwise, we return �.

4.1.3. Open addressing

In open addressing two techniques are introduced: Linear probing and Quadratic probing. All item sets are
stored in the bucket array. When a new entry has to be inserted, the bucket count is examined in starting with
hashed-to slot to proceeding in some probe sequence.Hash table is inefficient when load factor is increased. In
quadratic probing insert may fail if load > ½.

4.1.4. Rehashing: To overcome these problems “Rehashing technique” is introduced. Whenapply hash
function to two different item sets, it producethe same key element. Due to this same key value, hash collision
will occur in hash table. To avoid such problems collision resolution function is used.

Computing frequent itemset 1: Given the database transaction id and all itemsets generate the database
transaction id,itemsets format.Apply hash function to identifyy the frequent item sets ,support value and bucket
count .The following equation computes frequent item set 1.

H (k) = (order of item k) mod ns (3)

The ns value is determined by using the formula (2ms+1) wheremsare the number of items in the database. In
hashing algorithm items are pruned after generating C1, pruned item sets are called L1 i.e. level 1 itemsets,
Dataset of candidate k+1item set is arranged in vertical format along with thetransaction id and corresponding
bucket number. Construct hash table using associative array and linked list which contains bucket count, support
value, transaction id in vertical format.

Computing frequent itemset 2:Construct the transactional database for second level frequent itemsets.The
following equation computes frequent item set 2.

H (k) = ((order of X)*10+order of Y) mod ns (4)

Where n is a bucket count, when the bucket count is same for more than one itemsets collision will occur.To over
come the collision ,collison resolution function is used and hash table size is changed.The following equation
describes frequent item set 2 collision resolution function

H (k)=((order of X )*10+order of Y)mod js (5)

Js=2*Ns+1, wherej is a size of hash table and Ns is initial hash table.

Compute frequent itemset 3:Construct the transactional database for third level baased upon the hash
fuction. The following equation describes frequent item set 3.

H(k)=((order of X)*100+(order of Y)*10+order of Z)mod j (6)

Where X, Y, Z are the set of item sets. Here, we implement the frequent item,item sets transaction id and bucket
count using apriori based hashing technique.

This process is performed until the final frequent item sets were found. Since our major aim is to mining most
frequent pattern from the large data base.

Algorithm 2: FP mining using Apriori based hashing

1. Input: D, a database of transactions where all are represented as vertical hash table.

2. Process logic: Finding the frequent item sets.

3. Output: Generating the frequent item sets.
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4. begin
5. ms=0;k=0;
6. Get minimum support, min_sup;
7. //before hash function
8. Generate the database in (Items, Transaction id,) format
9. for all Items I [Dk do
10. //apply hash function
11. Generate new database in(Itemsets,Transaction id,Bucket count, Support count)
12. Increment m;
13. ns=2*ms+1;
14. Dk=D;
15. do
16. begin
17. Make a hash table of size ns.Map items on to the buckets.
18. If collision occurs then use Rehashing technique for increase the size of the hash table js=2*Ns+1
19. for all Items I � [Dk do
20. begin
21. Generate a subset of items.
22. End.
23. Find common transaction between the subsets in the kth level.
24. Eliminate the subset<=min_sup.
25. Dk = Items >=min_sup.
26. Increment k.
27. End until frequent item set is found.
28. End.

4.2. Subspace Clustering

Subspace clustering is the clustering mechanism to detect all clusters present in all subspaces. It is an efficient
approach for clustering high dimensional data. In subspace clustering object may be member of more clusters
over different subset of the attributes. Sub-Space cluster give a different projection in each dimension. Varies
clustering techniques were introduced in the database application. They are CLARANS, BIRCH, DBSCAN,
CLIQUE, DENCLUE and OPTICS. These clustering algorithms are designed to provide scalability in high
dimensional database.This paper proposes level wise subspace clustering. In this algorithm each attribute represents
an item and each subspace cluster consists of item set which contains number of items. Items are representing the
attributes of the subspace. It uses level wise algorithm, starting from the clusters in one dimensional
subspacetowards joins (k-1) dimensional clusters. In this paper, frequent patterns consider in to a various sub-
spaces clusters. We retrieve the most frequent item from various space clusters.

Table 1
Elucidated frequent patterns (FP) mining concept into Sub-Space Search

Frequent pattern mining Subspace clustering

Item Dimension (attribute)

Item set Subspace (set of attribute)

Interesting subspacefrequent item set
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4.2.1. Level wise subspace clustering

In this section, we describe the synthesis of candidate clusters from the cluster-projections on individual attributes
(computed as described in Section 4.2). The central idea is that a cluster on a set of attributes induces a sub-
cluster on any subset of the attributes (monotonicity property). The monotonicity property follows directly from
the definition of a cluster. We also exploit the fact that we want to compute clusters over the set of all attributes
{A1……An}. Informally, we start with cluster-projections on and then extend them to clusters over (A1, A2) then
to clusters over (A1, A2, A3) and soon. In level wise subspace clustering inherits the frequent item sets from the
above process.

Algorithm 4: level wise subspace clustering algorithm

1. Input :{( L1, H1), (L1, H2)……(Lk,Hk)}

2. Output: Interesting Subspaces.

3. Algorithm:

4. Look up Hash table hTable � { }

5. //An entry hk in htable is {sum, U,S}

6. For j=1 to k do

7. Du � finds dense units (j)

8. // Get dense units in dimension j.

9. u1= (Lj
1, Hj

1) (or) (Lk
1, Hk

1) in same as

10. uR= (Lj
R, Hj

R) (or) (Lk
R, Hk

R).

11. For all Du = {Sum,U} Du do

12. //Frequent item set find based on descending order.

13. If (Selectivity of U e” min-selectivity)then

14. Append dimension k to subspace S.

15. else

16. Add new entry {U} to the hTable.

17. end if

18. end for

19. end for

20. For all set of entries {Hk,……H1) � hTable do

21. until all of Ck has been examined.

22. End for.

Let A= {A1, A2, A3, An) be a set of attributes i.e. Subspaces, total ordered domain is S =
(A1×A2×…×An).We partition database in to dimensional units u. The units (group of items) are obtained from
transaction set. Each unit’s u is the intersection of one interval from each attributes. Dense units du is an item sets
and j is a dimension which represents the number of item sets present in dense units. It has the form {u1, u2…
ud} where ui= [li, hi] is a portioning element of Ai. We say the point V = {V1, V2, V3..Vd} is contained in a unit
u= {u1, u2…ud} if li < Vi<hi for all u. The selectivity of the unit is defined to be the fraction of total data point
contained in the unit. We similarly define unit in all sub-spaces of the original d-dimensional space. Consider the
projection of the dataset V into At1 × At2 × … ×Atk, where K< d and ti<tj if i<j. A unit in the sub-space is the
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intersection of an interval from each of the k-attributes. A zone in q- dimension is an axis-parallel k-dimensional
set. We are only interested in those zones that can be expressed as unions of units: henceforth all references to a
zone mean such unions. A zone Z is contained in a cluster C if Z � C= Z. A zone Z contained a cluster which is
said to be a maximal zone and then there is no proper subset of Z contained in C. A minimal description of a
cluster is a non-frequent item does not cover in the cluster within the in our plan of action, Sub-Space clustering
translating all frequent pattern mining parameter into Sub-Space parameter. At this point frequent items are said
to be units, item set are called as sub space and their item in the data set are said to be dimension.

4.2.2. Algorithm Description

This algorithm identifying the subspace in the cluster, identifying the cluster, and find out the maximal frequent
item in the cluster. The algorithm proceeds level by level. It first determines maximal frequent item sets by
making a pass over the data. The maximal frequent item sets are descending order of the units with their count
and pattern length. Cluster node is selected based on their maximum pattern length. This CH selects their neighbor
node by comparing next level of pattern length. Two item are contain same pattern length means they placed left
and right side of the cluster head. In this process sort the entire frequent sets based on their frequent pattern
length. Maximum pattern length count will be placed in the top of the tree, so the computation time is reduced for
large datasets. Subspace clustering only considers frequent item sets andnon-frequentitem sets are eliminated in
hashing technique.In subspace-Search inherits the input unit from the above process. Input unit U is in D.The
result of the above algorithm is used to find the pattern length.In Subspace (SS) Clustering Xi, Yi, Ziis a set of
units and its represents Maximal dense units, closed frequent dense units, frequent dense units. The given below
formulas are described the pattern length: Xi = {x1,x2,x3….xn},Yi= {y1,y2,………yn}, Zi={z1,z2,z3,….zn}

where x1 ��x2 �….� xn,y1 � y2 � y3 �…� yn,z1 � z2 �,……. �zn.

� �1 1 11, 2, ... ... .... ... ....k k k
i j j jX n� � �� � � � � � � (7)

� �1 1 11, 2, ... ... ... ... ...k k k
i j j jY y y yn� � �� � � � (8)

� �1 1 11, 2, ... ... ... ... ...k k k
i j j jZ z z zn� � �� � � � (9)

4.2.3. Count Indexing

Count indexing structure only maintains the frequent item sets. Starting from the most frequent pattern and
followed by the closed frequent item and frequent item sets are generated. Using this count index structure
cluster head (i.e.) root node is predicted. In this technique levels are indexed in descending order for selecting
maximal frequent item sets.

4.3. GSTB Tree construction phase

In GSTB, each individual frequent pattern length are stored in the count index table. This algorithm selects the
cluster head with respect to the most frequent item set from the count index table. Then we construct the route
from parent to child based on their frequent count. Sub-Space clustering with GSTB avoid full tracery of all
nodes found in the clustering. Instead of use entire value ranges within their approximation value. Priority
queues were maintained in order to generate the most promising candidates in the lattice first. As a result, it
becomes possible to avoid the prompting of many relatively low-dimensional subspace clusters and to steer the
search towards high dimensional subspace clusters directly. Tree construction is used for connecting interesting
pattern in the frequent pattern mining. It is same as the FP-Growth method. Subspace cluster are perceived based
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on pattern length in the count index table which is perform in the depth first manner. In frequent item set mining,
neighboring nodes are merged if they contain cells that are potentially part of the cluster.

4.3.1. GSTB Tree construction phase

A GSTB-tree has one root node and set of leaf nodes. It maintained a transaction list of each item with their
pattern length.GSTB-tree can define path from root node to the end of the tree. Transactions of the items are
sorted in a descending order. The main goal of GSTB algorithm is to construct the tree which is based on their
pattern length.GSTB perform in the form of iterations. In first iteration, parent node is connected to their child
for avoiding multiple scanning. In second iteration GSTB protocol can dynamically changing their root and
reconstructing the tree in self-adaptive manner.GSTB is a self-organizing protocol which builds a routing tree
from root node towards child node. Assign a root node and then buildGSTB tree based on the transaction list
which contains the pattern length. GSTB is a dynamic and parallel protocol, which can change the root and
reconstruct routing tree to reduce thescanning process. Therefore a better balanced load is achieved, especially
for dense nodes deployed. As a result of hashing technique, the frequent items set among all the items are
available in the database. Then Sub-Space clustering output is providing as an input for the GSTB tree construction
phase. They give only frequent item sets by comparing with their support value (min_sup).In Sub-Space Clustering
cluster this frequent item with respect to their count value and frequent pattern length. Maximum number of
pattern length as a cluster head of GSTB tree and their child nodes are joined to the cluster head.User pass a
query to the database then processing query and searching relevant datasets based on their user query. Assume
that when the user query will be matched in the root node of GSTB tree, fetch the relevant data from the root
node and send it to the user; otherwise the cluster head transfer the user query to their neighbor node. This
process is performed until to find the relevant data from the large database. GSTB protocol assign the cluster
head which is maximum frequency pattern length that means it is asked more and more times. So, we satisfy the
maximum number of user’s query.

Time complexity for GSTB tree

Number of steps=f (n) where f(n)=f(data. Length)
Length of a tree is 2n-1.So the time complexity is O (log n) and space complexity is O(1).

Algorithm 4: GSTB Tree construction

Select cluster head (n, S) in level wise Subspace clustering.

Begin

Step:1 Let we have a set S of n nodes in a cluster S={S1,S2,S3,….Sn}

Step:2compute a pattern length for required subspace clusters.

Step:3 for j=1to k do length from Xi to Zi.

Step:4 Pickup one by one pattern lengths sequentially compare with the corresponding pattern-length.

End for

Step: 5select the cluster head based on all lwsc values.

Step: 6 if (CH >=threshold) then consider the corresponding node as a CH

Step: 8 else eliminate it from tree constructionElse do until final leaf node is examined.
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4. EXPERIMENTAL RESULTS

In this section we presented the detailed execution of our FPSSCO algorithm. It amalgamates frequent pattern
(FP) and Sub-Space (SS) clustering concept for effective mining large datasets. To reduce the overall scanning
and efficient load balancing we uses network protocol GSTB. This algorithm constructs the tree from parent to
child node and contains the prefix path to avoid full tracery of dataset item. Fig 2 describes the working of our
proposed technique. It carries three phases, first one is frequent pattern (FP) mining phase, and it extracts all
frequent items from the overall dataset. Second phase is Sub-Space (SS) clustering it perform the second level
dimension data by comparing with support value (min_sup). Pruning application is not used at this phase for
eliminating the non-frequent item. The output of this phase is entering into the tree construction phase.

In Frequent pattern mining approach, the frequent item sets are arranged depending up on the occurrences
of item sets. By using this hashing technique mining frequent item sets in data mining in an efficient manner. It
will reduce the multiple time of scanning the database. The following tables and figures are described about our
FPSSCO algorithm

Table 2
Initial Transaction database

Item sets Transaction ID

I1 T1,T3,T4,T5,T7,T9

I2 T1,T2,T4,T6,T8,T9

I3 T1,T4,T6,T7,T10

I4 T1,T2,T5,T8,T10

I5 T3

Table 2 represents the example dataset for our proposed framework Let us consider the above datasets B,
D, I, N, V as an item sets which represents in a form of I1,I2,I3,I4,I5 then hashing function is applied in the
following manner:

Table 3
Transaction database

Transaction ID  Item Sets

T1 B,D,I,N

T2 D,N

T3 B,V

T4 B,D,I

T5 B,N

T6 D,I

T7 B,I

T8 D,N

T9 B,D

T10 I,N

A transaction may contain one or more frequent items and few of them may contain single itemsets. Next
we consider frequent item in each transaction in below process.



International Journal of Control Theory and Applications 442

T. Sheik Yousuf and M. Indra Devi

Table 4
Vertical format of transaction database

Transaction id Item sets

T1 I1,I2,I3,I4
T2 I2,I4
T3 I1,I5
T4 I1,I2,I3
T5 I1.I4
T6 I2,I3
T7 I1,I3
T8 I2,I4
T9 I1,I2
T10 I3,I4

Each and every item set in table 4 represents candidate-1 item set of the transaction database. After generating
the candidate-1 item set hash table is constructed using the hash function. The items in the transaction are hashed
based on the hashfunction:

H (k) = (order of item k) mod n
s

Where ns value is determined by using the formula of (2ms + 1) where msis the number of items in the database.
The transaction in which I1 is connected in the form of linked list and the first node denotes the number of
occurrences of the item in the transactions. It can be observed from Figure 2, I1 is hashed to 1st location and it is
determined using the hash function. Similarly all items are hashed into the hash table. The cross symbol indicates
the end of the items in the list. Here, the linked list is created based on the item set and not on the transactions
because the transactions are more so that it occupies more memory and it is very difficult to access the items sine
there is a link between a transactions and item sets. The linked list is created for all levels of frequent item set
generation. In the next higher level, the item subsets become low and it is easy to find frequent item sets of that
level. The process continues until the exact frequent item set is found.

Table 4.1
Bucket no after hash function

Item sets Transaction id Bucket count Support count

I1 T1,T3,T4,T5,T7,T9 1 6
I2 T1,T2,T4,T6,T8,T9 2 6
I3 T1,T4,T6,T7,T10 3 5
I4 T1,T2,T5,T8,T10 4 5
I5 T3 5 1

Table 5
Vertical format for second level transactional database

Item set Transaction id

I1,I2 T1,T4,T9
I1,I3 T1,T4,T7
I1,I4 T1,T5
I2,I3 T1,T4,T6
I2,I4 T1,T2,T8
I3,I4 T1,T10
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The item set in the second level from Table.4 are hashed based on the hash function,

H (k) = ((order of X)*10+order of Y) mod n
s

Here , the item sets are mapped to 1,2,3,1,2,1.Here , there is a collision for {I1,I2}{I2,I3};they are mapped to 1
and {I1,I2}{I3,I4} are mapped to 1 and {I1,I3}{I2,I4} are mapped to 2.Rehashing technique is used to overcome
this collision. Here, we increase the size of the hash table by doubling the actual size, so that the resulting hash
table size is also a prime number. Thus the size of the hash table after increasing is js= (2*ms+1), where m=11
(initial hash table size) .Therefore, j=23.Now, we apply the hash function.

H (k) = ((order of X )*10+order of Y)mod j
s

It better avoids primary, secondary clustering problems and some collisions that may still occur using Double
hashing technique also. After rehashing the collision is resolved and the 2-itemsets {I1,I2},
{I1,I3},{I2,I3},{I2,I4},{I3,I4} ,{I1,I4} are mapped to 12 ,13,0,1,11,14 buckets respectively as shown in figure.2.
In the second level, item sets {I1,I2} ,{I1,I3},{I2,I3},{I2,I4},{I3,I4} whose support counts are greater than or
equal to 3 are said to be frequent item sets.

Table 6
Transactional database after applying hash function.

Item sets Transaction id Bucket count Support value

I1,I2 T1,T4,T9 12 3
I1,I3 T1,T4,T7 13 3
I1,I4 T1,T5 14 2
I2,I3 T1,T4,T6 0 3
I2,I4 T1,T2,T8 1 3
I3,I4 T1,T10 11 2

Figure 2: Hash table including links for the transactional database in the first level
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Table 7
Vertical formation of the transactional database in the third level

Item set Transaction id

{I1,I2,I3} T1,T4
{I1,I2,I4} T1
{I2,I3,I4} T1

The 3-item sets are generated from frequent item sets of second level as shown in the Table .7 the item sets
in the third level are hashed based upon the hash function

Table 8
Vertical formation of transactional database after

Applying hash function

Item sets Transaction id Bucket count Support value

{I1,I2,I3} T1,T4  8  2

{I1,I2,I4} T1  9  1

{I2,I3,I4} T1  4  1

H(k)=((order of X)*100+(order of Y)*10+order of Z)mod j. Using this hash function the itemsets
{I1,I2,I3},{I1,I2,I4},{I2,I3,I4} are mapped to location 8,9 and 4 respectively as shown in the Figure.3.

Figure 3: Hash table including links for the transactional database in the second level



445 International Journal of Control Theory and Applications

Frequent Pattern Sub-space Clustering Optimization (FPSSCO) Algorithm for Datamining From Large Data Base

Figure 4: Hash table including links for the transactional database in the third level

Table 9
Levelwise subspace clustering
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Table 10
Pattern length after applying length function for n subspaces

Subspaces Pattern length

{I1,I2,I3}  3
 {I1,I2}  2
 {I1,I3}  2
 {I1,I4}  2
 {I2,I3}  2
 {I2,I4}  2
 {I3,I4}  2
 {I1}  1
{I2}  1
{I3}  1
{I4}  1

Figure 5: Selecting a cluster head and using sub-space clustering algorithm select the
neighbors of the root node

Table 11
Load balancing among all the processor.

units Transaction id processor

{I1,I2,I3} T1,T4 P0

{I1,I2} T1,T4,T9 P1

{I1,I3} T1,T4,T9 P2

{I1,I4} T1,T5 P3

{I2,I3} T1,T4,T6 P4

{I2,I4} T1,T2,T8 P5

{I3,I4} T1,T10 P6
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Comparative analysis

We compare our new algorithm with existing hashing techniques such as PHP (Perfect Hashing and Pruning)
and Apriori in which our rehashing based apriori produce accurate result. The datasets are generated randomly
depending on the number of distinct items, the maximum number of items in each transaction and the number of
transactions. The performance of the FPSSCO implementation is dependent on the number of large item sets
found and the frequency of the units.

We evaluated most frequent pattern mining algorithm performance by means of a large set
of experiments addressing the following issues: (i) Time for mining frequent item from the large
dataset, (ii) Existing algorithm performance with our proposed algorithm (iii)  response time of the each
processor.

Dataset description

The characteristics of the evaluated dataset are summarized in the following. To validate the usefulness
of the FPSSCO algorithm we analyzed 18 collections, each one composed of various real time frequent
item set. An initial analysis of the frequent pattern extracted from the large dataset with support their
minimum value. In our FPSSCO algorithm reduce frequent pattern mining time all sampled dataset to existing
algorithm.

The bench mark of dataset has been taken from [35].Doctors, wages,iqitems, verbalaggression and
males’dataset are taken for analysis.The bench mark of dataset considers more items. We have taken the above
mentioned datasets for experimentation. Table 12 shows name of the datasets and their corresponding number of
items.FPSSCO algorithm is finding frequent pattern in a quick manner whenever there are a large number of
frequent item sets present in large database.

7.2.3. Frequent pattern mining

Table 12
Details of smaller datasets

TID Dataset Numberof items

1 Doctors 5190

2 Wages 3294

3 Economics 479

4 Housing 452

5 Iris 151

6 Ice cream 518

7 Males 4390

8 Ovary cancer 789

9 Primary school 568

10 Animals 657

This chart is comparing the DPA algorithm with our proposed algorithm FPSSCO with different type of
transactional datasets. FPSSCO algorithm finds the maximum number of frequent items in this datasets. FPSSCO
can take minimum computational time to extract the frequent item when compared to the Distributed Parallel
Algorithm.
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Fig. 7 shows the execution time of different processor by FPSSCO on the above dataset. It can be observed
that FPSSCO achieved a good balance of workload [7].

Figure 6: Execution time of different datasets

Figure7: Execution time of different processor

Figure 8: Execution time for different algorithms
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Fig. 8 shows the execution time of Apriori, PHP algorithms and FPSSCO algorithm on the real life dataset
with different support values. The FPSSCO algorithm outperforms the above mentioned algorithms. It can be
observed the FPSSCO can efficiently balancing the load and reduce execution time with low minimum support
values [6].

6. CONCLUSION

In this paper, weproposed a new algorithm for mining frequent patterns i.e. frequent pattern subspace clustering
optimization algorithm. This algorithm is quickly extracting the frequent pattern from the large database. The
process of finalized them into a frequent item and it is taken more time in DPA algorithm. FPSSCO algorithm
takes the frequency count of the items and generating the cluster head for sub-space clustering. Then we introduce
the novel network application of GSTB is self organized tree based adaptively root selecting algorithm. This
approach is adaptively selecting the root from parent to child node which is work with the combination of the
frequent pattern and sub-space clustering concept. We presented sub-space clustering to determine the most
frequent item among all the transaction in the database. GSTB tree is used for efficiently balancing the load for
all processor. On the entire process FPSSCO take only few scans. Experimental result shows that our FPSSCO
algorithm is reduce the number of processors and execution time.

7. FUTURE WORK

In our proposed work we introducedFPSSCO mechanism in order to find out the frequent items in an effective
manner. FPSSCO is the combination of clustering and routing optimization technique. In future, we use some
new clustering algorithm instead of subspace clusteringand also furthermore to reduce the time consumption and
also increase the accuracy. Initially discover frequent items from the given item sets in the database. After that
apply effective clustering mechanism like k-means++ for clustering the frequent items and apply routing
mechanism to find out the optimal route from the root to child nodes in order to offer effective and accurate
results.
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