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Abstract: In the present paper we obtained the measure of information energy 
corresponding to measures of Kapur’s [1], [2] family, Havrda-Charvat’s [3] measure of 
entropy, two parametric measures of entropy, generalized measure of entropy, three 
parametric Bi-measures of entropy respectively and also discussed the particular cases for 
each information measure of entropy. Entropy, generalized measure of entropy, three 
parametric Bi-measures of entropy respectively and also discussed the particular cases for 
each information measure of entropy. 
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1. INTRODUCTION 

Quality is a relative term and it is generally used with reference to the end use of a product. 
The quality of a product depends on the perception of the customer in a given situation. 
The situation can be user-oriented, cost-oriented or supplier-oriented. Quality has to be 
planned, achieved, controlled and improved continuously. 

Acceptance sampling is concerned with inspection and decision making regarding 
products, one of the oldest aspects of quality assurance. In the 1930’s and 1940’s, 
acceptance sampling was one of the major components of the field of statistical quality 
control and was used primarily for incoming or receiving inspection. Acceptance sampling 
plans do not provide any direct form of quality control. Acceptance sampling simply 
accepts or rejects lots. Even if all lots are of the same quality, sampling plan will accept 
some lots and reject others, the accepted lots being no better than the rejected ones. Process 
controls are used to control and systematically improve quality, but acceptance sampling 
is not. The most effective use of acceptance sampling is not to inspect the quality of the 
product but rather as an audit tool to ensure that the output of a process conforms to 
requirements. 

Acceptance sampling plan is an essential tool in the Statistical Quality Control. In most 
of the statistical quality control experiment, it is not possible to perform hundred percent 
inspections, due to various reasons. The acceptance sampling plan was first applied in the 
US military for testing the bullets during World War II. For instance, if every bullet tested 
in advance, no bullets are available for shipment, and on the other hand, if no bullets are 
tested, then disaster may occur in the battlefield at the crucial time. 
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Acceptance sampling is a middle ground between the extremes of 100% inspection and 
no inspection. Generally, 100% used in some situations where the component is extremely 
critical and passing any defectives would result is an unacceptably high failure cost at 
subsequent stages. 

The truncated distributions mean deleting some values of the domain of the probability 
density function (pdf). It is a statistical tool to describe phenomena that occur in its loss of 
the part of the observations or data and describe phenomena that depend on time do not 
start from t = 0. Truncation occurs in various situations. For example in life testing and 
reliability, truncated Exponentiated Lomax distribution is proposed for modeling the 
lifetime distributions of items such as electronic components, light bulbs, batteries and so 
on. 

A truncated distribution is a conditional distribution resulting when the domain of the 
parent distribution is restricted to a smaller region. A truncated distribution occurs when 
there is no ability to know about or record events occurring above or below a set threshold 
or outside a certain range. Truncated distributions have achieved a large number of 
applications in various real-life fields like economics, biochemistry, biology, chemistry, 
engineering, networking and other fields. 

Gupta et.al6 introduced a class of exponentiated distributions based on cumulative 
distribution function for the exponential distribution. In a similar manner, Nadaragah and 
Kotz12 proposed the Exponentiated Gamma and Exponentiated Gumbel distributions. 

Hawkins, D. M.7 Proposed a fast accurate approximation for ARL’s of a CUSUM 
Control Charts. This approximation can be used to evaluate the ARL’s for Specific 
parameter values and the out of control ARL’s of location and scale CUSUM Charts. 

Alzaatrch et.al2 proposed another method for generating many new distributions. Gauss 
and Cordeiro5 proposed a new method of adding two parameters to a continuous 
distribution that extends the idea of Nadarajah and Kotz. 

Recently, exponentiated Lomax distribution, Lomax-logarithm, and extended Lomax 
Poisson distributions have been given, respectively by, Ramos et al.15, Al-Zaharani and 
Sagor3., and Al-Zaharani. 

Kakoty. S., Chakravarthy A.B.9 determined CASP-CUSUM charts under the 
assumption that the variable under study follows a Truncated Normal Distribution. 
Generally, truncated distributions are employed in many practical phenomena where there 
is a constraint on the lower and upper limits of the variable under study. For example, in 
the production of engineering items, the sorting procedure eliminates items above or 
bellows designated tolerance limits. It is worthwhile to note that any continuous variable 
is first approximated as an exponential variable. 

Vardeman.S, Di-ou Ray18 has introduced CUSUM control charts under the restriction 
that the values are regard to quality is exponentially distributed. Further, the phenomena 
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under study are the occurrence of the rate of rare events and the inter-arrival times for a 
homogenous poison process are identically independently distributed exponential random 
variables. 

Lonnie. C. Vance10 consider Average Run Length of Cumulative Sum Control Charts 
for controlling for normal means and to determine the parameters of a CUSUM Chart. To 
determine the parameters of CUSUM Chart the acceptable and rejectable quality levels 
along with the desired respective ARL's are considered. 

Mohammed Riaz, Nasir Abbas, and Ronald J.M.M Does11 propose two Runs rules 
schemes for the CUSUM Charts. The performance of the CUSUM and EWMA Charts are 
compared with the usual CUSUM and weighted CUSUM, the first initial response CUSUM 
compared with usual EWMA Schemes. This comparison stated that the proposed schemes 
perform better for small and moderate shifts. 

Mohammed Akhtar. P and Sarma K.L.A.P1 analyzed and Optimization of CASP-
CUSUM Schemes based on truncated two parametric Gamma distribution and evaluate L 
(0), L' (O) and the probability of Acceptance and also Optimized CASP-CUSUM Schemes 
based numerical results. 

Narayana Murthy, B.R. and Mohammed Akhtar.P13 proposed an Optimization of 
CASP CUSUM Schemes based on Truncated log-logistic distribution and evaluate the 
probability of acceptance for different parameter values. 

Sainath.B and Mohammed Akhtar.P16 studied an Optimization of CASP-CUSUM 
Schemes based on truncated Burr distribution and the results were analyzed at different 
values of the parameters. 

Venkatesulu.G and Mohammed Akhtar.P19 Determined Truncated Gompertz 
Distribution and its Optimization of CASP-CUSUM Schemes by changing the values 
of the parameters and finally critical comparisons his based o the obtained numerical 
results. 

In the present paper, it is determined CASP-CUSUM Chart when the variable under 
study follows truncated Exponentiated Lomax Distribution. Thus it is more worthwhile to 
study some interesting characteristics of this distribution. 

Exponentiated Lomax Distribution 

The Lomax distribution can also be called Pareto Type II distribution and its application 
can be found in many fields like actuarial science, economics, and so on. The 
distribution was defined by Lomax and it is a heavy-tailed distribution. We generalize the 
Lomax distribution by powering a positive real number α to the cumulative distribution 
function (CDF). This new type of distribution called as Exponentiated Lomax 
Distribution17. 
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Definition 

A continuous random variable X assuming non-negative values is said to have 
Exponentiated Lomax Distribution with parameters α, λ and θ > 0, its probability density 
function is given by 

 1 ( 1)( ) [1 (1 ) ] 1( , 0, , an) d 0f x x x x  (1.1) 

The Probability density function of the Exponentiated Lomax distribution can be 
reduced to the Exponentiated Pareto distribution with parameters (θ, α) at a particular value 
of λ=1. When λ=α=1, the probability density function of the Exponentiated Lomax 
distribution reduces to the standard Lomax distribution with single parameter θ. 

Truncated Exponentiated Lomax Distribution 

It is the ratio of probability density function of the Lomax distribution to their cumulate 
distribution function at the point B. 

The random variable X is said to follow a Truncated Exponentiated Lomax 
Distribution as 

 
1[1 (1 ) ]

( )
[1 (1 ) ]

B
x

f x
B

 λ > 0, α and θ > 0  (1.2) 

where, ‘B’ is the truncated point of the Exponentiated Lomax Distribution. 

2. DESCRIPTION OF THE PLAN AND TYPE- C OC CURVE 

Beattie4 has suggested the method for constructing the continuous acceptance sampling 
plans. The procedure, suggested by him consists of a chosen decision interval namely, 
“Return interval” with the length h’, above the decision line is taken. We plot on the chart 

the sum 1( ) ' ( 1,2,3........)m i iS X k X s i  are distributed independently and k1 is the 

reference value. If the sum lies in the area of the normal chart, the product is accepted and 
if it lies on the return chart, then the product is rejected, subject to the following 
assumptions. 

1. When the recently plotted point on the chart touches the decision line, then the 
next point to be plotted at the maximum, i.e., h + h’ 

2. When the decision line is reached or crossed from above, the next point on the 
chart is to be plotted from the baseline. 

When the CUSUM falls in the return chart, network or a change of specification may 
be employed rather than outright rejection. 

The procedure, in brief, is given below. 

1. Start plotting the CUSUM at 0. 
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2. The product is accepted ( ) ;m iS X k h  when Sm < 0, return cumulative 

to 0. 

3. When h < Sm < h + h’ the product is rejected: when Sm crossed h, i.e., when 
Sm > h + h’ and continue rejecting product until Sm > h + h’ return cumulative to 
h + h’ 

The type-C, OC function, which is defined as the probability of acceptance of an item 
as a function of incoming quality, when the sampling rate is same in acceptance and 
rejection regions. Then the probability of acceptance P (A) is given by 

 ( )P A  = 
(0)

(0) (0)

L

L L
 (2.1) 

where, L(0) = Average Run Length in acceptance zone and 

 L’(0) = Average Run Length in rejection zone. 

Page E.S.14 has introduced the formulae for L(0) and L’(0) as 

 (0)L  = 
(0)

1 (0)

N

P
 (2.2) 

 (0)L  = 
(0)

1 (0)

N

P
 (2.3) 

where, P(0) = Probability for the test starting from zero on the normal chart, 

 N(0) = ASN for the test starting from zero on the normal chart, 

 P’(0) = Probability for the test on the return chart and 

 N’(0) = ASN for the test on the return chart 

He further obtained integral equations for the quantities P(0), N(0), and P’(0), N’(0) as 
follows: 

 ( )P z  = 1 1

0

( ) ( ) ( )
h

F k z P y f y k z dy , (2.4) 

 ( )N z  = 1

0

1 ( ) ( )
h

N y f y k z dy , (2.5) 

 ( )P z  = 

1

1

0

( ) ( ) ( )
B h

k z

f y dy P y f y k z dy  (2.6) 
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 ( )N z  = 1

0

1 ( ) ( ) ,
h

N y f y k z dy  (2.7) 

 ( )F x  = 1 ( ) :
h

A

f x dx  

 1( )F k z  = 
1

1 ( )
k z

A

f y dy  

and z is the distance of the starting of the test in the normal chart from zero. 

3. METHOD OF SOLUTION 

We first express the integral equation (2.4) in the form 

 ( )F X  = ( ) ( , ) ( )
d

c

Q X R x t F t dt  (3.1)

 

where, 

( ) ( ),

( ) ( ),

( , ) ( )

F X P z

Q X F k z

R X t f y k z

 

Let the integral ( )
d

c

I f x dx  be transformed to 

 I = ( ) ( )
2 2

d

i i

c

d c d c
f y dy a f t  (3.2) 

 y = 
2 ( )x c d

d c
 

where, ai’s and ti’s respectively the weight factor and abscissa for the Gauss-Chebyshev 
polynomial, given in Jain M.K. and et al8 using (3.1) and (3.2),(2.4) can be written as 

 ( ) ( ) ( , ) ( )
2 i i i

d c
F X Q X a R x t F t   (3.3) 

Since equation (3.3) should be valid for all values of x in the interval (c, d), it must be 
true for x = ti, i = 0 (1) n then obtain. 
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 ( ) ( ) ( , ) ( )
2i i i j i i

d c
F t Q t a R t t F t  (3.4) 

 0(1)j n  
Substituting  

 ( )iF t  = , ( ) , 0(1) , (3.4),i i iF Q t Q i n in  we get 

 0F  = 0 0 0 0 0 1 0 1 1 0[ ( , ) ( , ) ... ( , ) )]
2 n n n

d c
Q a R t t F a R t t F a R t t F  

 1F  = 1 0 1 0 0 1 1 1 1 1[ ( , ) ( , ) ... ( , ) )]
2 n n n

d c
Q a R t t F a R t t F a R t t F  

……………. ……………. ……………. ……………. 

……………. ……………. ……………. ……………. 

 nF  = 0 0 0 1 1 1[ ( , ) ( , ) ... ( , ) )]
2n n n n n n n

d c
Q a R t t F a R t t F a R t t F  (3.5) 

In the system of equations except for Fi, i = 0, 1, 2 … n are known and hence can be 
solved for Fi, we solved the system of equations by the method of Iteration. For this, we 
write the system (3.5) as 

 0 0 0 0[1 ( , )]Ta R t t F  = 0 0 0 0 0 1 0 1 1 0[ ( , ) ( , ) ... ( , ) )]n n nQ T a R t t F a R t t F a R t t F  

 1 1 1 1[1 ( , )]Ta R t t F  = 1 0 1 0 0 1 1 1 1 1[ ( , ) ( , ) ... ( , ) )]n n nQ T a R t t F a R t t F a R t t F  

……………. ……………. ……………. ……………. 

……………. ……………. ……………. ……………. 

 [1 ( , )]n n n nTa R t t F  = 0 0 0 1 1 1[ ( , ) ( , ) ... ( , ) )]n n n n n n nQ T a R t t F a R t t F a R t t F  (3.6) 

where, 
2

cd
T

�
�  

To start the Iteration process, let us put 1 2 .... 0nF F F in the first equation of 

(3.6), we then obtain a rough value of 0F . Putting this value of 0F  and 1 2F F

.... 0nF  on the second equation, we get the rough value 1F  and so on. This gives the 

first set of values iF  i = 0, 1, 2, ..., n which are just the refined values of iF  i = 0, 1, 2, …, 
n. The process is continued until two consecutive sets of values are obtained up to a certain 
degree of accuracy. In the similar way solutions P’(0), N(0), N’(0) can be obtained. 

4. COMPUTATION OF ARL’S AND P (A) 

We developed computer programs to solve the equations (2.4), (2.5), (2.6) and (2.7) and 
we got the following results given in the Tables (4.1) to (4.24). 
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 Table 4.1  Table 4.2 
 Values of ARL’s AND TYPE-C OC  Values of ARL’s AND TYPE-C OC 
 CURVES when CURVES when 
 α = 2, λ = 4, θ = 6, k = 1, h = 0.10, h’ = 0.10 α = 2, λ = 4, θ = 6, k = 1, h = 0.12, h’ = 0.12 

 

 Table 4.3 Table 4.4 
 Values of ARL’s AND TYPE-C OC Values of ARL’s AND TYPE-C OC 
 CURVES when CURVES when 
 α = 2, λ = 4, θ = 6, k = 1, h = 0.15, h’ = 0.15 α = 2, λ = 4, θ = 6, k = 1, h = 0.18, h’ = 0.18 

 

 Table-4.5 Table-4.6 
 Values of ARL’s AND TYPE-C OC Values of ARL’s AND TYPE-C OC 
 CURVES when  CURVES when 
 α = 2, λ = 4, θ = 6, k = 1.4, h = 0.10, h’ = 0.10 α = 2, λ = 4, θ = 6, k = 1, h = 0.25, h’ = 0.25 

 

 Table 4.7 Table 4.8 
 Values of ARL’s AND TYPE-C OC Values of ARL’s AND TYPE-C OC 
 CURVES when CURVES when 
 α = 2, λ = 4, θ = 6, k = 1.4, h = 0.15, h’ = 0.15 α = 2, λ = 4, θ = 6, k = 1.4, h = 0.18, h’ = 0.18 

 

 

B L(0) L’(0) P(A) 
1.4 9560.27246 0.9955152 0.9998958707 
1.3 10692.57031 0.9955151 0.9999068975 
1.2 13140.67188 0.9955150 0.9999242425 
1.1 20877.24023 0.9955149 0.9999523163 
1.0 3340357.50000 0.9955147 0.9999997020 

B L(0) L’(0) P(A) 
1.4 9540.76172 0.9946278 0.9998957515 
1.3 10669.30371 0.9946277 0.9999067783 
1.2 13097.95020 0.9946276 0.9999240637 
1.1 20806.46680 0.9946275 0.9999521971 
1.0 2085847.87500 0.9946272 0.9999995232 

B L(0) L’(0) P(A) 
1.4 9500.76074 0.9933026 0.9998954535 
1.3 10620.99023 0.9933026 0.9999064803 
1.2 13039.38379 0.9933025 0.9999238253 
1.1 20675.34570 0.9933023 0.9999519587 
1.0 1388693.62500 0.9933020 0.9999992847 

B L(0) L’(0) P(A) 
1.4 9461.02246 0.9919847 0.9998951554 
1.3 10573.02148 0.9919846 0.9999061823 
1.2 12971.11035 0.9919845 0.9999235272 
1.1 20494.98828 0.9919842 0.9999516010 
1.0 978936.68750 0.9919839 0.9999989867 

B L(0) L’(0) P(A) 
1.4 9346.42578 0.9889369 0.9998942018 
1.3 10433.90234 0.9889368 0.9999052286 
1.2 12761.46191 0.9889366 0.9999225140 
1.1 20036.10547 0.9889363 0.9999506474 
1.0 487937.84375 0.9889358 0.9999979734 

B L(0) L’(0) P(A) 
1.8 55487.69922 0.9955152 0.9999820590 
1.7 63747.31641 0.9955152 0.9999843836 
1.6 80685.00781 0.9955152 0.9999876618 
1.5 132553.93750 0.9955152 0.9999924898 
1.4 3340359.25000 0.9955152 0.9999997020 

B L(0) L’(0) P(A) 
1.8 54104.99219 0.9933028 0.9999816418 
1.7 61949.20703 0.9933028 0.9999839664 
1.6 77870.73438 0.9933028 0.9999872446 
1.5 125295.75781 0.9933027 0.9999920726 
1.4 1388694.625000 0.9933026 0.9999992847 

B L(0) L’(0) P(A) 
1.8 53169.13672 0.9919848 0.9999813437 
1.7 60737.00781 0.9919848 0.9999836683 
1.6 75990.58594 0.9919848 0.9999869466 
1.5 120593.75781 0.9919848 0.9999917746 
1.4 978937.50000 0.9919847 0.9999989867 
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 Table 4.9 Table 4.10 
 Values of ARL’s AND TYPE-C OC Values of ARL’s AND TYPE-C OC 
 CURVES when  CURVES when 
 α = 2, λ =4, θ = 6, k = 1.4, h = 0.20, h’ = 0.20 α = 2, λ = 4, θ = 6, k = 1.4, h = 0.25, h’ = 0.25 

 

 Table 4.11 Table 4.12 
 Values of ARL’s AND TYPE-C OC Values of ARL’s AND TYPE-C OC 
 CURVES when  CURVES when 
 α = 2, λ = 4, θ = 6, k = 1.8, h = 0.10, h’ = 0.10 α = 2, λ = 4, θ = 6, k = 1.8, h = 0.12, h’ = 0.12 

 

 Table 4.13 Table 4.14 
 Values of ARL’s AND TYPE-C OC Values of ARL’s AND TYPE-C OC 
 CURVES when  CURVES when 
 α = 2, λ = 4, θ = 6, k = 1.8, h = 0.20, h’ = 0.20 α = 2, λ = 4, θ = 6, k = 1.8, h = 0.25, h’ = 0.25 

 

 Table 4.15 Table 4.16 
 Values of ARL’s AND TYPE-C OC Values of ARL’s AND TYPE-C OC 
 CURVES when CURVES when 
 α = 2, λ = 4, θ = 6, k = 2, h = 0.10, h’ = 0.10 α = 2, λ = 4, θ = 6, k = 2, h = 0.12, h’ = 0.12 

 

B L(0) L’(0) P(A) 
1.8 52451.23828 0.9911101 0.9999811053 
1.7 59809.50000 0.9911101 0.9999834299 
1.6 74560.71875 0.9911101 0.9999867082 
1.5 117091.82813 0.9911101 0.9999915361 
1.4 791763.75000 0.9911101 0.9999987483 

B L(0) L’(0) P(A) 
1.8 50425.25391 0.9889371 0.9999803901 
1.7 57206.58203 0.9889371 0.9999827147 
1.6 70595.35156 0.9889370 0.9999859929 
1.5 107726.67188 0.9889370 0.9999908209 
1.4 502724.43750 0.9889369 0.9999980330 

B L(0) L’(0) P(A) 
2.2 214125.60938 0.9955153 0.9999953508 
2.1 249280.56250 0.9955153 0.9999960065 
2.0 315128.25000 0.9955153 0.9999968410 
1.9 506115.09375 0.9955153 0.9999980330 
1.8 3340359.50000 0.9955152 0.9999997020 

B L(0) L’(0) P(A) 
2.2 208584.92188 0.9946279 0.9999952316 
2.1 241837.59375 0.9946279 0.9999958873 
2.0 303396.25000 0.9946279 0.9999967217 
1.9 476765.53125 0.9946279 0.9999979138 
1.8 2085849.25000 0.9946279 0.9999995232 

B L(0) L’(0) P(A) 
2.2 176883.42188 0.9911101 0.9999943972 
2.1 200325.81250 0.9911101 0.9999950528 
2.0 240971.62500 0.9911101 0.9999958873 
1.9 339327.37500 0.9911101 0.9999970794 
1.8 791763.87500 0.9911101 0.9999987483 

B L(0) L’(0) P(A) 
2.2 156508.57813 0.9889371 0.9999936819 
2.1 174630.62500 0.9889371 0.9999943376 
2.0 204813.70313 0.9889371 0.9999951720 
1.9 271965.75000 0.9889371 0.9999963641 
1.8 502724.50000 0.9889371 0.9999980330 

B L(0) L’(0) P(A) 
2.4 371151.06250 0.9955153 0.9999973178 
2.3 428251.21875 0.9955153 0.9999976754 
2.2 538767.68750 0.9955153 0.9999981523 
2.1 835089.87500 0.9955153 0.9999988079 
2.0 3340359.50000 0.9955153 0.9999997020 

B L(0) L’(0) P(A) 
2.4 355038.15625 0.9946279 0.9999971986 
2.3 406994.96875 0.9946279 0.9999975562 
2.2 505660.43750 0.9946279 0.9999980330 
2.1 758490.62500 0.9946279 0.9999986887 
2.0 2085849.25000 0.9946279 0.9999995232 
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 Table 4.17 Table 4.18 
 Values of ARL’s AND TYPE-C OC Values of ARL’s AND TYPE-C OC 
 CURVES when CURVES when 
 α = 2, λ = 4, θ = 6, k = 2, h = 0.15, h’ = 0.15 α = 2, λ = 4, θ = 6, k = 2, h = 0.18, h’ = 0.18 

 

 Table 4.19 Table 4.20 
 Values of ARL’s AND TYPE-C OC Values of ARL’s AND TYPE-C OC 
 CURVES when CURVES when 
 α = 2, λ = 4, θ = 6, k = 2, h = 0.20, h’ = 0.20 α = 2, λ = 4, θ = 6, k = 2, h = 0.25, h’ = 0.25 

 

 Table 4.21 Table 4.22 
 Values of ARL’s AND TYPE-C OC Values of ARL’s AND TYPE-C OC 
 CURVES when CURVES when 
 α = 2, λ = 4, θ = 6, k = 2.2, h = 0.15, h’ = 0.15 α = 2, λ = 4, θ = 6, k = 2.2, h = 0.18, h’ = 0.18 

 

 Table 4.23 Table 4.24 
 Values of ARL’s AND TYPE-C OC Values of ARL’s AND TYPE-C OC 
 CURVES when CURVES when 
 α = 2, λ = 4, θ = 6, k = 2.2, h = 0.20, h’ = 0.20 α = 2, λ = 4, θ = 6, k = 2.2, h = 0.25, h’ = 0.25 

 

B L(0) L’(0) P(A) 
2.4 320468.03125 0.9933028 0.9999969006 
2.3 370318.62500 0.9933028 0.9999973178 
2.2 450387.50000 0.9933028 0.9999977946 
2.1 617197.68750 0.9933028 0.9999983907 
2.0 1388694.87500 0.9933028 0.9999992847 

B L(0) L’(0) P(A) 
2.4 291963.87500 0.9919848 0.9999966025 
2.3 326312.56250 0.9919848 0.9999969602 
2.2 387021.87500 0.9919848 0.9999974370 
2.1 520060.65625 0.9919848 0.9999980927 
2.0 978937.68750 0.9919848 0.9999989867 

B L(0) L’(0) P(A) 
2.3 302309.84375 0.9911101 0.9999967217 
2.2 353766.84375 0.9911101 0.9999971986 
2.1 461862.28125 0.9911101 0.9999978542 
2.0 791763.87500 0.9911101 0.9999987483 
1.9 8313521.0000 0.9911101 0.9999998808 

B L(0) L’(0) P(A) 
2.3 247610.59375 0.9889371 0.9999960065 
2.2 281184.90625 0.9889371 0.9999964833 
2.1 345623.12500 0.9889371 0.9999971390 
2.0 502724.53125 0.9889371 0.9999980330 
1.9 1184993.62500 0.9889371 0.9999991655 

B L(0) L’(0) P(A) 
2.5 537559.31250 0.9933028 0.9999981523 
2.4 640936.06250 0.9933028 0.9999984503 
2.3 833216.87500 0.9933028 0.9999988079 
2.2 1388694.87500 0.9933028 0.9999992847 
2.1 16664338.00000 0.9933028 0.9999999404 

B L(0) L’(0) P(A) 
2.5 462276.12500 0.9919848 0.9999978542 
2.4 520060.65625 0.9919848 0.9999980927 
2.3 665677.62500 0.9919848 0.9999985099 
2.2 978937.68750 0.9919848 0.9999989867 
2.1 2377420.25000 0.9919848 0.9999995828 

B L(0) L’(0) P(A) 
2.5 415676.06250 0.9911101 0.9999976158 
2.4 461862.28125 0.9911101 0.9999978542 
2.3 554234.75000 0.9911101 0.9999982119 
2.2 791763.87500 0.9911101 0.9999987483 
2.1 1511549.25000 0.9911101 0.9999993443 

B L(0) L’(0) P(A) 
2.4 345623.12500 0.9889371 0.9999971390 
2.3 394997.84375 0.9889371 0.9999974966 
2.2 502724.53125 0.9889371 0.9999980330 
2.1 721300.43750 0.9889371 0.9999986291 
2.0 2073738.75000 0.9889371 0.9999995232 
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5. NUMERICAL RESULTS AND CONCLUSIONS 

At the hypothetical values of the parameters α, λ, θ, k, h and h’ are given at the top of each 
table, we determine optimum truncated point B at which P(A) the probability of accepting 
an item is maximum and also obtained ARL's values which represent the acceptance zone 
L(0) and rejection zone L'(0) values. The values of truncated point B of random variable 
X, L(0), L'(0) and the values for Type-C Curve, i.e. P(A) are given in columns I, II, III, and 
IV respectively. 

From the above Tables 4.1 to 4.24 we made the following conclusions: 

(i) From the Table 4.1 to 4.24, it is observed that the values of P (A) are increased 
as the value of truncated point decreases thus the truncated point of the random 
variable and the various parameters for CASP-CUSUM are related. 

(ii) From the Table 4.1 to 4.24, we observe that it can be maximized the truncated 
point B by increasing value of k. 

(iii) From Table 4.1 to 4.24, it is observed that at the maximum level of probability of 
acceptance P(A) the truncated point ‘B’ from 5.0 to 1.0 as the value of h changes 
from 0.10 to 0.25. 

(iv) From the Table 4.1 to 4.24, it was observed that the truncated point ‘B’ changes 
from 5.0 to 1 .1 and P (A) are as 0.15h  maximum i.e. 0.9999999404. Thus 
truncated point B and k are inversely related. 

(v) From Table 4.1 to 4.24 it is observed that the optimal truncated point changes 
from 2.5 to 2.1 as 0.15h . 

(vi) It is observed that the Table -5.1 values of Maximum Probabilities increased as 
the increased values of ‘k’ as shown below the Figure 5.1. 

Table 5.1 
α = 2, λ = 4, h = 0.10, h’ = 0.10 

k P(A) 
1.5 0.972061 
2 0.984949 

2.5 0.992802 
3 0.997891 

 

 

(vii) It is observed that the Table 5.2 values of Maximum Probabilities increased as 
the increased values of h and h’ as shown below the Figure 5.2. 
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Table 5.2 
α = 2, λ = 4, B = 3.9, k = 3 
h and h’ P(A) 

0.10 0.923217 
0.12 0.926376 
0.15 0.932649 
0.18 0.941885 
0.20 0.950871 
0.25 0.999331 

 

 

(viii) The various relations exhibited among the ARL's and Type-C OC Curves with 
the parameters of the CASP-CUSUM based on the above Table 4.1 to 4.24 are 
observed from the following Table. 

Table 5.3 
Consolidated Table from the Tables (4.1) to (4.24) 

B α λ θ k h h’ P(A) 

2.1 2 4 6 1.8 0.12 0.12 0.9999958873 
1.8 2 4 6 1.8 0.15 0.15 0.9999992847 
2.5 2 4 6 1.8 0.18 0.18 0.9999935031 
1.4 2 4 6 1 0.15 0.15 0.9998954535 
1.0 2 4 6 1 0.18 0.18 0.9999989867 
1.1 2 4 6 1 0.20 0.20 0.9999513626 
2.6 2 4 6 2 0.25 0.25 0.9999951720 
2.2 2 4 6 1.8 0.25 0.25 0.9999936819 
2.7 2 4 6 2 0.10 0.10 0.9999966621 
1.5 2 4 6 1 0.25 0.25 0.9998869896 
1.7 2 4 6 1.4 0.10 0.10 0.9999843836 
1.3 2 4 6 1 0.12 0.12 0.9999067783 
2.2 2 4 6 2.2 0.12 0.12 0.9999995232 
2.1 2 4 6 2.2 0.15 0.15 0.9999999404 
1.8 2 4 6 1.8 0.10 0.10 0.9999997020 
2.0 2 4 6 1.8 0.20 0.20 0.9999958873 
2.7 2 4 6 2.2 0.20 0.20 0.9999971986 
2.0 2 4 6 2.2 0.25 0.25 0.9999995232 
1.7 2 4 6 1.4 0.18 0.18 0.9999836683 
1.8 2 4 6 1.4 0.20 0.20 0.9999811053 
2.5 2 4 6 2.2 0.18 0.18 0.9999978542 

By observing the Table 5.3, we can conclude that the optimum CASP-CUSUM 
Schemes which have the values of ARL and P (A) reach their maximum i.e., 3340359.5, 
0.9999997020 respectively, is 
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