
39Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller

IJCTA, 10(01), 2017, pp. 39-45
© International Science Press

Hybrid Approach for Fault Prediction in
Object-Oriented Systems
Viji* Rajkumar* and V. Venkatesh*

Abstract : In recent trend, software systems are more complex and fl exible. Prediction of fault is more
essential for software system. Software fault prediction plays a vital role in improving software quality,
reusability and it reduces time and cost for software testing. The Software fault prediction is a method which
predicts defects based on historical data. Different machine learning techniques are used to predict software
defects from historical databases. The paper mainly focuses on generating accurate rules for software fault
prediction System. For this purpose, K-means technique is used for discretization. Formerly association
rule mining is applied to generate rules in large volumes of data using Apriori algorithm. Software fault
prediction system has been experimented on open sources NASA defect dataset. It holds software metric
data and error data at the function level or method level. In this paper comparison of proposed approach with
existing approaches is debated and the results show that proposed system is produced only interesting rules
hence it is effective for software fault prediction.
Keywords: Software fault prediction, Software metrics, k-means clustering technique, Apriori algorithm.

1. INTRODUCTION

A Software fault is a condition that causes the software to fail to perform its required function and product
which does not meet end user expectation. In other words, a defect is an error or bug in coding or logic
that causes a program to failure or to produce incorrect results. Software fault prediction is the main
process of tracing defective modules in software. For producing high quality software, the delivered end
product should have as limited defects as possible. Earlier detection of software defects could lead to
reduced development cost, time, rework effort and more reliable software. Therefore the fault prediction
is important to achieve good software quality and improve reusability. Software fault prediction metrics
play the most important role to build a statistical fault prediction model. The fault prediction models can
be used by the software companies during the early phases of software development to identify defective
modules. The software companies can use this subset of metrics among the available large dataset of
software metrics. Software metrics used for developing the fault prediction models. There are different
methods to establish the relationship between the static code metrics and fault prediction.

1.1. Software metrics

Software metric is a standard measure of some property of a piece of software [16]. They are used to
measure the ability of software to achieve a goal. In software comprise complexity, cohesion, and coupling
related metrics can be measured during the software development phases such as design or coding and it
also used to calculate the quality of software. Software metrics can be characterized into two kinds those
are code and process metrics. Code metrics contains size, Hastead, McCabe, CK and OO metrics have
used absolute use frequency of code metrics is higher than process metrics [13].

* Assistant Professor, Department of Computer Science and Engineering, SVS College of Engineering, Coimbatore, Tamil Nadu,
India. vijisvs2012@gmail.com, nrajkumar84@gmail.com, venkateshvmecse@gmail.com

40 Viji, Rajkumar and V. Venkatesh

1.1.1. Cyclomatic Complexity

Cyclomatic complexity is a software metric used to indicate the complexity of a program. It is a quantitative
measure of the number of linearly independent paths through a program’s source code. A program with
complex control fl ow will require more tests to achieve good code coverage and less maintainable [16].

The complexity M is then defi ned as
 M = E − N + 2P,

where E = the number of edges of the graph.
 N = the number of nodes of the graph.
 P = the number of connected components.

1.1.2. Halsteads Product Metrics
The measures were established by the late Maurice Halstead metrics determining a quantitative measure
of complexity directly from the operators and operands in the module and also program length, program
vocabulary [13].

1.1.3. Product Metrics

In Product Metrics contains the lines of code (LOC) indicates the approximate number of lines in the code.
Design metrics computed from requirements or design document before the system has been implemented.
Object oriented metrics help identify defects, and it also allow developers to see directly how to make their
classes and objects simpler [16].

The existing system had lots of unnecessary rules are generated using Apriori algorithm. Because of
that software executive or user get confused therefore more faults occur in software. In order to solve this
problem hybridized approach is applied which gives only interesting rules. For that NASA defect dataset
is used and K-means clustering is used for converting continuous values into discretized form. Then
form three clusters for creating accurate rules and the purpose of creating interesting rules using hybrid
approach is to assist executives in improving the software process through analysis of the reasons some
faults commonly occur together. If the analysis leads to the credentials of a process problem, managers
have to originate up with a corrective action therefore software build good quality, reusability, reduced
cost and time.

The next section describes the literature survey of existing work. Section 3 describes the proposed
work along with algorithm. Section 4 describes dataset used for implementation. Section 5 describes
results. The last section consists of the conclusion and future scope.

2. RELATED WORK

Software fault prediction is the most popular research area in these predicting faults using software
metrics and data mining techniques. In this paper, categorized according to the different data mining
techniques. Cagatay Catal [1] studied various papers in year 1990 to 2009 those are as following: They
used classifi cation trees with method level metrics on two software systems of NASA and Hughes Aircraft
and also applied classifi cation trees, logistic regression. Evett et al. predicted quality based on genetic
programming system. They applied fuzzy subtractive clustering method to predict the number of faults
and then, they used different module order modeling to classify the modules into faulty or non-faulty
classes. They stated that process metrics is not refi ning the classifi cation accuracy and such a model does
not deliver adequate results. They used major component analysis for fi rst step that is feature selection and
then applied fuzzy nonlinear regression to predict faults on a large telecommunications system developed
with Protel language. They reported that fuzzy nonlinear regression method is an encouraging technology
for early fault prediction. They observed that support vector machine performed better than quadratic
discriminate analysis and classifi cation tree. They focused on the high performance fault predictors based
on machine learning such as Random Forests algorithms.

41Hybrid Approach for Fault Prediction in Object-Oriented Systems

2.1. Software Defect Prediction Based on Classifi cation Techniques

Ezgi Erturk et al. [9] suggested a new method Adaptive Neuron Fuzzy Inference System (ANFIS) for the
software fault prediction. Then for performing experiment they used PROMISE Software Engineering
Repository dataset, and McCabe metrics are selected because they comprehensively address the
programming effort. The results achieved were 0.7795, 0.8685, and 0.8573 for the SVM, ANN and ANFIS
methods, respectively.

Mie Thet Thwin [6] have used two kinds of neural network techniques. The fi rst one emphasis on
predicting the number of faults in a class and the second on predicting the number of lines changed per
class. Two neural network models are used which are Ward neural network and General Regression neural
network (GRNN). They have performed the analysis result on the NASA dataset.

David Gray et al. [14] have focused on classifi cation analysis rather than classifi cation performance,
it was decided to classify the training data rather than having some form of tester set. It includes a manual
analysis of the predictions made by Support vector machine classifi ers using data from the NASA Metrics
Data Program repository. Ensemble classifi er also gives better result for classifying software defects [4].
The purpose was to gain insight into how the classifi ers were separating the training data.

Ruchika Malhotra [5] have examined and related the statistical and six machine learning methods for
software fault prediction. These methods (Decision Tree, Artifi cial Neural Network, Cascade Correlation
Network, Support Vector Machine, Group Method of Data Handling, and Gene Expression Programming)
are empirically validated to fi nd the relationship between the static code metrics and the faults occurs in
a module. They compared the models predicted using the regression and the machine learning methods.
They have used two openly available data sets AR1 and AR6 and among them decision tree provides best
prediction result.

Ahmet Okutan [12] have used Bayesian networks to defi ne the probabilistic infl uential relationships
among software metrics and fault proneness. The software metrics used in Potential data repository, defi ne two
more metrics, i.e. number of developers for the number of development and lack of coding quality for the
source code quality.

2.2. Software Defect Prediction Based on Association rule Techniques

Alina Campan et al.[11] they proposed a innovative algorithm for the discovery of interesting any
length of ordinal association rules in defect data sets. Datasets that contain several software metrics with
similar or comparable domains of values are common in data mining.

Gabriela Czibula et al.[3] they proposed a controlled method for detecting software entities with
architectural defects, based on relational association rule mining. They achieved experiments on open
source software are conducted in order to discover defective classes in object oriented software systems
for example the WinRun4J is a windows native launcher for Java implementation.

Qinbao Song et al. [20] they calculate defect association, defect isolation effort, defect correction
effort on SEL defect data consisting of more than 200 projects over more than 15 years. They related
the fault rectifi cation effort prediction method with other types of methods like PART, C4.5, and Naive
Bayes and show that accuracy has been improved by at least 23 percent. They have discovered the effect
of support and confi dence levels on prediction accuracy, false negative rate, false positive rate, and the
number of rules as well. They found that higher support and confi dence levels may not result in greater
prediction accuracy and a suffi cient number of rules are a precondition for high prediction accuracy.

2.3. Software Defect Prediction Based on Regression

Kamei et al.[2] proposed a fault prone module prediction method that combines association rule mining
with logistic regression. They have predicted performance of their algorithm method with different
thresholds of each rule interestingness measure support, confi dence and lift using a module set in the
Eclipse project.

42 Viji, Rajkumar and V. Venkatesh

Yuan Jiang, Ming Li et al.[9] have addressed two practical issues fi rst, it is rather diffi cult to collect a
large amount of characterized training data for learning a well-performing model and second, in a software
system there are usually much less defective modules than defect free modules, therefore learning
techniques would have to be directed over an imbalanced data set therefore they proposing a novel
semi-supervised learning approach named Random Committee with Under Sampling (Rocus). This
method includes recent advances in disagreement-Abased semi-supervised learning with under-sampling
strategy for imbalanced data.

Above approaches have not used hybrid approach that is k-means clustering with Apriori algorithm
for generating accurate rules regarding, they just focused on the relation association rule. This
work emphasis on improving performance of rule generation for software fault prediction. As in original
work Apriori algorithm is used, it returns a large amount of results. Applying K-means algorithm in
preprocessing step on results of fault prediction improve accuracy.

3. IMPLEMENTATION DETAILS
3.1. System Overview

In the proposed system, input is training dataset including software metrics and their values. First
preprocessing is done, in which all the values in continues form are converted into discrete form by
using k-means clustering techniques. Then applying Apriori algorithm with minimum support threshold
and minimum confi dence threshold, after that rules are generated and in such way software fault are
predicted. The architecture of the software defect prediction proposed system is shown in Figure 1. The
main objective is to fi nd defective modules in software, for producing high quality software so that the
fi nal product should be of good quality. In the fi rst phase, all software metrics are discretized into three
values low, medium, high. The method in which dataset is pre-processed can be used for building the
association rule. Finally, focusing on identifying relations between two software metrics, relations that
would be relevant for deciding if a software entity is or not defective. After the relations are defi ned, the
interesting association rules are discovered in the training datasets with minimum support and confidence.

Training
dataset

Preprocessing
(K-means)

Applying Apriori
Algorithm

Rules Generated
Predict Software

defects

Figure 1: System architecture for software defect prediction

3.2. Algorithm
3.2.1. K-means

The clustering algorithm sorts the software metrics values into three different values in discrete
form. For this performed following steps:

Let X = {x1, x2, x3,……..,xn} be the set of data points and V = {v1, v2,…….,vc} be the set of centres.
 1. Randomly select ‘c’ cluster centres.
 2. Calculate the distance between each data point and cluster centres.
 3. Assign the data point to the cluster centre whose distance from the cluster centre is minimum of

all the cluster centres.

43Hybrid Approach for Fault Prediction in Object-Oriented Systems

 4. Recalculate the new cluster centre using:

 vi =
1

(1/)
ic

i i
j =

c xå
 Where, ‘ci’ represents the number of data points in ith cluster.
 5. Recalculate the distance between each data point and new obtained cluster centres.
 6. If no data point was reassigned then stop, otherwise repeat from step 3).

3.2.2. Apriori

The algorithm is used to mine all frequent item sets in database and generate rules.
For this performed following steps:

 1. It fi nds all frequent item sets. To fi nd frequent item sets where k-item sets are used to generate
k + 1 item sets.

 2. In this each k-item set must be greater than or equal to minimum support threshold to be frequency
if not then it is candidate item sets. It fi nds frequent item set using candidate generation.

 3. It implies an iterative approach known as level wise search where k item sets level 1 are used to
explore (k + 1) item sets level 2 i.e. L1 is used to fi nd L2, L2 is used to fi nd L3 and so on.

 4. It generates strong association rules from the frequent item sets.
The algorithm makes multiple passes over the data set R. In the fi rst pass, it estimates the support

and confi dence of the any length rules and determines which of them are interesting, i.e. decide minimum
support and confidence requirement. In every subsequent pass over the data, start with a seed set of
interesting rules, found in the previous pass. Then this set to produce new possible interesting rules, called
candidate rules, and then calculates the actual support and confi dence of these candidates during the scan
of the data. At the end of this step, keep the rules that are deemed interesting, which will be used in the
next iteration. The process ends when no new interesting rules were found in the latest iteration.

4. DATASET

The publicly available National Aeronautics and Space Administration (NASA) datasets have been
extensively used for fi nding software fault investigation. The NASA fault data sets are easy to understand
and comparable. The data set is provided by the NASA IV and V Metrics Data Program has software
metrics and associated error data at the method level. The data repository records are stored and organized
which has been collected and validated by the Metrics Data Program [8]. The Promise Data Repository
2 has served as an important role for making software engineering data sets publicly available [17]. The
database uses unique numeric identifi ers or values to describe the individual error records and software
entries. The repository contains all metric data in terms of product metrics, object oriented class metrics,
requirement metrics and defect association metrics.

Table 1
Dataset description [8]

Dataset Language Attribute System

CM1 C 38 NASA spares craft instrument

PC1 C 38 Flight software

KC1 C++ 22 Storage management

44 Viji, Rajkumar and V. Venkatesh

5. RESULTS

In this section, the comparison between proposed system and the existing system is discussed. In the
proposed work NASA fault dataset is used and it is built on java language. The rules are produced with
different minimum support thresholds and different minimum confi dence thresholds. Figure 2 shows the
comparison of rules generated for existing system and proposed system. From this analysis it is observed
that in existing system lot of avoidable rules are generated because of that software manager or user get
confused therefore more faults occur in software. In order to solve this problem hybridized approach is
adopted which gives only interesting rules. For each data set, the average number of rules decreases as the
minimum support increases from 20 percent to 40 percent, and this decrease in rules is very sharp when
minimum support exceeds 30 percent. Figure 3 shows the comparison of rules generated by minimum
confi dence. It is observed that for each data set, the average number of rules decreases as minimum
confidence increases from 30 percent to 50 percent.

Existing system

Proposed system

30 40 50
0

100

200

300

400

500

600

Min Confidence

A
v
e
ra

g
e

N
u

m
b

e
r

o
f

ru
le

s
g

e
n

e
ra

te
d

Figure 2: Rules are generated for minimum support

Existing system

Proposed system

0

100

200

300

400

500

600

A
v
e
ra

g
e

N
u

m
b

e
r

o
f

ru
le

s
g

e
n

e
ra

te
d

700

30 40

Min Support

20

Figure 3: Rules are generated for minimum confidence

6. CONCLUSION AND FUTURE WORK

In this paper, association rule discovery for detecting software entities that are expected to be defective
in software systems. This approach is useful to evaluate software faults. When a problem arises due to
the increasing complexity of a program, then solutions are being submitted by fi nding software defect.
The main feature that distinguishes our approach from others is using a k-means and Apriori method.

45Hybrid Approach for Fault Prediction in Object-Oriented Systems

It is possibly the best algorithm for the software defect problem. Standard dataset have been used for
experimental purpose. The focus is to increase the quality and feasibility of the software. In our scenario,
the result heavily depends on the accuracy of rules generation and based on that it will predict the software
defects. The results show that proposed system generating only interesting rules which is more useful for
predicting defects in software. Our future research focuses on elaborating with machine learning or
fuzzy techniques that will further improve accuracy of predicting software defects.

7. REFERENCES
 1. C. Catal, Software fault prediction: “A literature review and current trends, Expert systems with applications”, vol.38,

no. 4, pp. 4626-4636, 2011.

 2. Y. Kamei, A. Monden, S. Morisaki, and K.-i. Matsumoto, “A hybrid faulty module prediction using association
rule mining and logistic regression analysis”, in Proceedings of the Second ACM-IEE international symposium on
Empirical software engineering and measurement, pp. 279-281, ACM, 2008.

 3. G. Czibula, Z. Marian, and I. G. Czibula, “Detecting software design defects using relational association rule mining,”
Knowledge and Information Systems, pp. 1-33, 2012.

 4. Tao WANG, Weihua LI, Haobin SHI, Zun LIU, “Software Defect Prediction on Classifi er Ensemble”, Journal of
Information & Computational Sciences, 8:16(2011) 4241-4254.

 5. R.Malhotra, “Comparative analysis of statistical and machine learning methods for predicting faulty modules,”
Applied Soft Computing, vol. 21pp. 286-297 2014.

 6. M. M. T. Thwin and T.-S. Quah, “Application of neural networks for software quality prediction using object- oriented
metrics,”Journal of systems and software, vol. 76, no. 2, pp. 147-156, 2005.

 7. D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovi, Software fault prediction metrics: A systematic literature
review, Information and Software Technology, vol. 55, no. 8, pp. 1397-1418 ,2013.

 8. M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: some comments on the nasa software defect datasets,”
Software Engineering, IEEE Transactions on, vol. 39, no. 9, pp. 1208 -1215, 2013.

 9. E. Erturk and E. A. Sezer, “A comparison of some soft computing methods for software fault prediction,” Expert
Systems with Applications, 2014.

 10. M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of machine learning in software defect
prediction,” Software Engineering, IEEE Transactions on, vol. 40, no. 6, pp. 603-616, 2014.

 11. Campan, G. Serban, T. M. Truta, and A. Marcus, “An algorithm for the discovery of arbitrary length ordinal association
rules.,” DMIN, vol. 6, pp. 107-113, 2006.

 12. Okutan, Ahmet, and Olcay Taner Yıldız. “Software defect prediction using Bayesian networks.” Empirical
Software Engineering 19.1 (2014) 154-181

 13. J. Nam, Survey on software defect prediction,” 2010.

 14. D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Software defect prediction using static code metrics
underestimates defect-proneness,” in Neural Networks (IJCNN), International Joint Conference on, pp. 1-7,
IEEE,2010.

 15. Naidu, M. Surendra, and N. GEETHANJALI. “Classifi cation of Defects in Software using Decision Tree
Algorithm.” International Journal of Engineering Science and Technology (IJEST) 5.06 (2013).

 16. E. E. Mills, Software metrics, 2000.

 17. Datasetavailable:http://promise.site.uottawa.ca/SERepository/datasets

 18. Pooja Paramshetti, Mrs D.A. Phalke. “Survey on software defect prediction using machine learning tecniques” IJSR
2014.

 19. G. Czibula, Z. Marian, and I. G. Czibula, “Software design defects using relational association rule mining,”
Knowledge and Information Systems, 2014.

 20. Qinbao Song, Martin Shepperd, Michelle Cartwright, Carolyn Mair, “Software Defect Association Mining and
Defect Correction Effort Prediction”, IEEE transaction on software engineering, VOL. 32,

