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Multilevel Metamodel for Heuristic Search
of Vulnerabilities in the Software Source
Code

Alexey Sergeevich M arkov* Andre Anatolievich Fadin** and Valentin L eonidovich Tsirlov***

Abstract : This paper is devoted to the structural static analysis of the source code security and the solution to
the problem associated with completeness of checks. To ensure the completeness of checks to detect
vulnerabilities in the source code, the use of heuristic (signature) method for analysis of software security,
which takes into account a full range of classes of software security weaknesses, is justified. A semantic
metamode for the description of heuristic algorithms for detecting software security vulnerabilities and
weaknesses at different levels of the source code presentation has been developed. It is noted that the most
prospective models for software presentation from the point of view of security are an abstract syntax tree and
an abstract semantic graph. It is shown that the necessary level of a response rate, formal simplicity and
visualization of the heuristic analysis can be achieved by the use of a production system. Examples of particular
semantic models of heuristics for identifying actual classes of software security weaknesses are presented.
Advantages and limitations of the solutions offered arenoted. Data onimplementation and approval of proposed
solutionsin practiceareprovided. It is pointed out that, in certification testing of information protection systems,
88% of critical vulnerabilities were identified by the heuristic analysis. It was concluded that the heuristic
analysis may form a basis for different methods of the source code security audit.

Keywords : Information security, software security, testing, static analysis, production models, heuristicanalysis,
vulnerabilities, weaknesses, defects, undocumented features.

1. INTRODUCTION

When testing software systems according to the security requirements, testing laboratories face the
fundamental challenge - confirmation of performed checks completeness. The solution to thisproblemisnot
trivial dueto the use of different testing methods oriented to certain classes of vulnerabilities. For example, the
useof traditiond methodsfor fuzz-tegtingisnot very effectivein detecting vulnerabilitiesrelated to rare combinations
of input data, for example, softwarebugs|[1]. Applied approachesto verifying software based on formal (logic-
algebraic and executable) models[1-10] arelimited to anarrow range of vulnerabilities, as non-functional
errors(incorrect coding).

This paper offers an applied approach to the heuristic analysis of the software security which ensures
completeness and consistency of checksdueto the support for known registers of the code security weaknesses
[11, 12].

The relevance of the theme should be noted, as requirements to mandatory analysis of the source code
security arestated in the popular Common Criteriamethod addressing the highest evaluation levelsof credibility
and PCI DSS, PA-DSS, NISTIR 4909. Theaboveisdeemed to be confirmed by anew internationa project in
theareaof thestaticanalysis- SATEC[13].
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Today, dueto critical complexity of software, it isnot possibleto check the code security without an expert.
The key objective of automated vulnerabilitiessearchisthe provision to the expert of the codetagswith ahigh
degree of probability that it contains a vulnerability of a certain class. In this case, a static analyzer does not
manipulate vulnerabilities but weaknessesin the code security themselves[14], which are understood asdefectsin
the software designthat arelikely to affect the degree of information security [15-17]. An exploited defect in
security is considered to be avulnerability which use at theinformation facility posesinformation security of a
certainresourceat risk (Figure1).
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Fig. 1. Information security factors over the software life cycle.

Vulnerability

Defect *

The heuristic analysis means a search of the software weaknessesin the source code by comparing code
fragmentswith samplesfromthe database of security weaknessestemplates (heuristic rules).

Apart fromthe software source codes, the targets of analysis can be object and executable software codes,
project, compilation, setting and layout information [ 18-20]. The analysis can be conducted with different models
for code presentation (depending ontheleve of unification), such aslexica code, syntax tree, abstract syntax tree
(Kantorovich'stree), control flow graph, dataflow graph, single static assgnment mode, abstract semantic graph
(Boulanger, 2012; Chessand West, 2007).

To ensure completeness of checks, it is hecessary to map the templates database to up-to-date registers of
software weaknesses, suchas CWE, HP Fortify, DoD SFP, WASC-T, etc.

Table 1 comparesstatic analysismethods. applied verification method (properties check) and heuristic analysis
method (search by template) at themost popular level of the code presentation.

Table 1. Compared methodsfor vulnerabilities search.

Code presentation Properties check Weaknesses search by template

Source codes Unavallable Searching sgnaturesby regular expressons

Abstract syntax tree Lexica and syntax anaysis Lexica and syntax analysis, searching
sgnaturesbythetree

Abstract semanticdata  Abstract interpretation (intervd analyss, Dataflow analysis, searching in-procedure

flow graph index analysis, datadependence anadyss) signaturesof ingructions sequencewith

regard to vauestransmitted

Improvement in the performance of the code static analysisis conditioned by the decreasein the number of
false positiveswith acomplete set of identified classes of potentially unsafe constructions. The apparatusthat
describestemplates (Sgnatures, heuristics) of the codeweaknesses must deliver ultimateflexibility in detecting
weaknesseswith regard to diverse syntax of the certain programming language, whichisdeemed to bethe primary
objective of theresearch.
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2. METHODOLOGY
2.1. Developing a M etamodel for Defining Code Weaknesses Security

To smplify anoverview of the metamoded, it isrecommended to use aknowledge production modd. Thisis
dueto that today there are not more than 100 known classes of critical weaknesses associated with a certain
programming language (Barabanov, Markov, Fadin and Tsirlov, 2015). The following system of productionsis
proposed:

R,=<s,€S;CP, (s; ); DA,(s; ) = DB(s; ); R (CL,,PR, ) >
‘ | )

R,=<s,€S;CP, (s, );DA (s, ) —»DB,(s, );R, (CL,,PR,)>
wherenisanumber of production rulesfor code analyssinthe model;

R isi-th number of themodel product, i =1,n;

§ € Sisadescription of aclassof cases(inthisareaof interest we arereferring to the check of the analyzer's
ability to processinput data);

Sissetsof all lexical tokens of the software project source codes, which can be processed by thisanalyzer
(theredtrictionis set by the programming language, itsgrammar, type of supported sgnaturesfor anaysis);

j = 1,k isalexical tokenindex in an array of lexical tokens s,whichis currently processed by the static
analyzer, k =|s|; s isan array of lexical tokens, nodes of the code abstract syntax tree resulting from the
preprocessor operation, lexica and syntax analysis,

CP(q) isaconditionfor activating products, the functionwhichreturns 1 with available standard congtruction
of the software project code set in the argument, wherea software weakness (of a predefined type) ismost likely
to occur or where software featuresimportant for the analysis are available (acertain type of the functional object,
constant or satigtically predictablevaue, etc.);

DA(sJ) — DB(q) isanexpression, aso cdled core of the productionwith aproduction output about acode
weaknessor additional code propertiesbased onthe exigting standard syntactic code congtructionswhich determine
whether any weaknessmay occur or whether there are any code propertiesthat indirectly bring about aweakness
. Theoutput may be either intermediate or find;

P(CL,PR) isafunction called after alogical conclusion on the existence of apotential code weaknessis
reached. Thisfunction hasthefollowing parameters:

CL isacategory (type) of the weakness. This parameter is set by a code audit expert when creating a
production model. The category isanumber assigned to the weaknesstype in the international vulnerahility
classfications;

PR isacriticality level of agiven weakness. Thisparameter isset by an expert.

The parametersof the above functionsare different types of functional and information objectsreceived after
sructurd presentation of the code.

Themethod for operation of the proposed production modelssystem includesthefollowing steps:
1 Theq tokenisread out (originaly j hasanindex of thefirst element of lexical tokenstuple);
2. All mode productionsare checked sequentialy (1,..., n);
3. If netherisactivatedincycle2, thanincreasej by 1, andgo toitem2;
4. If thereare no moretokensintheinput flow than complete thework, otherwisego to item 1 (Figure 2).

Thissystemof productionsisamultilevel metamode for describing heurigtics of searching certain vulnerahilities
asdemonstrated below.
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Fig. 2. Flow chart of the production models system performance.

2.2. Methodsfor Heuristics Formal Characterization for Certain Classes of the Code Weaknesses

Inthe description of certain heuristicswehaveto rely upon certain classes of weaknesses, acertain programming
language and level of the software code presentation [14,21]. Asadetailed description of dl sortsof heurigticsis
associated with alarge volume and complex perception [22], wewill haveto restrict ourselvesto several examples.

L et usintroduce thefollowing definitionsand symbols.

Thefunctional object should be understood as a software component which processes a complete fragment
of the software operation algorithm. Functions, procedures, classes and objects may serve asfunctional objects.

Theset of API FO should be understood asa set of functiona objects of standard librariesfor programming
environment, operating sysem, and external components (libraries, frameworks), which ensuretheimplementation
of agiventypeof functiondity [23].

Wewill defineatuple of allowed types of objectsin the software (procedural and object in nature) asfollows:
M = <Mconst’ I\/Ifunc’ I\/Iinfo’ I\/Iobj’ Idet > (2)
where M isaset of admissible constant valuesin the software (literals, constants, macros, &c.);

M, . isaset of functiona objects (FO) defined inthe software system;,

M, . isaset of information objects (10) defined inthe software system;

MObj isaset of objects(classes) defined in the software;

| . iISaset of IO withagtatistically predictable value (systemtime, processidentifiers, and any constants).
Thetupleof alowed types of external functional objects (API) inthe software isdefined asfollows

F=x< Fpmg, qu|>, 3
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where Fomng isaset of API functionswhichinitialize pseudorandom-number generators,

qul isaset of API functionswhich process SQL queries.

Thetuple of admissible types of operandsin the softwareisdefined asfollows.
0=x< Ocoint’ Ocall’ Oret’ 0asg (V’ R) > (4)

where o, . isaset of operatorsand functions responsible for integer object conversion;

0, isaset of operatorsand functionsresponsiblefor the control transfer to the functional object;

0, isaset of operatorsand functionsresponsible for the control transfer fromthefunctional object;

Oag (V,R) isaset of operators and functions responsible for the assignment of valuestypical for aset of
information objectsV to theinformationobject R.

Thetupleof admissiblefunctionsover thecodestructural presentation isdefined asfollows:
D = <Tinside (0): feay (D), Ty (0) >, (5)

where f,_ . (b) isafunction that returnsaset of functional and informationobjectsinside b;

f 1 (D) isafunctionthat returnsatuple of argumentsused to launchafunctiond object or initidizeaninformetion
object depending onthetype of b;

Lo, (b) isafunctionthat returnsb, if it was set earlier in the software source code; if no typeisdetermined at
thisstage of analysis (for example, aprogramming language with dynamic typing isused), it returnsnil.

L isdetermined asaset of lexical tokenswith potentially unsafe constructions (this set iscompleted whilethe
production model isin operation) and AP(b,e) isafunctionthat addsbtotheset e.

We determinerulesfor production output asrelated to weaknesses of different types.

3. MODEL IMPLEMENTATIONRESULTS
3.1. Examplesof HeuristicAnalysisBased on the Production M odel

The above metamodel can beimplemented asan arbitrary number of production models, which detect the
code weakness of varioustypes. ?nin-procedura leve of the code presentationisused (abstract syntax tree) to
identify apotentialy unsafe fragment. Examplesof weaknessesaregivenin Table 2.

Table 2. Examples of the code security weaknesses.

Upper level CWE Lower level CWE Presencebit Approved programming
languages and technologies
Use of Insufficiently Random Predictable Seed in PRNG Use as a seed for No dependence on
Values, CWE-330 CWE-337 initialization of constants  programminglanguage
or predictable values
Improper Following of Object Model Violation: Just ~ Redefinition of either Java
Specification by Caller, One of Equals and Hashcode Equals or Hashcode
CWE-573 Defined, CWE-581 without a pair
Error Conditions, Return Return Inside Finally Block, Return Insidethefinally  Java
values, Status Codes, CWE-389 CWE-534 block

3.1.1. Example of the Code Weaknessin Random Value Prediction

Let us consider a CWE-337 weakness determined under CWE as a predictable seed in PRNG. If a seed
used inthe program for PRNG is predictable (i.e. formed on the basis of systemtime, processidentifier and other
easly predictable parameters), any attacker may guessvauesgenerated by PRNG to ahigh degree of certainty.
Depending on further use of the same, thismay enable attacksat sesson keys, password hashes, coding gamma
sequence, temporary files subgtitution, etc.
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To detect defects, thefollowing heuristicalgorithm can becreated :
1. Searchfor functionsresponsiblefor setting aseed in PRNG;

2. Andysisof the seed to verify whether any constant and/or atisticaly predictable value (such asaweek
day) isusedfor itsinitialization regarding that such values could have been determined earlier;

3. If the seed isformed on the basis of these data only it is likely that there isa CWE-337 weaknessin
software.

The production modd of such weakness (CWE-337) isasfollows:

R =<5€8;5€0,,(5.1Y); (YNl =2)—AP(S,_;14)>
R =<s €S;s,eM ANzZER, i f Nlg=2)—

func prng : arg
AP (s

6
L); P,(337,6) > ©

i+

Let uscongder thefirg ruleR_1337 of the built production modd. The software code areawhereapotentially
unsafe congructionismost likely to appear isany operator (function) which assgnsany vaue of the set of informetion
objectsY, to the operand x, i.e. CP, (S, N, M, F, 0,D, L) =CP, (0) = N;; € O, (xY).

The core of thefirst heuristic production under consideration is asfollows: “if any information object is
assigned one of satigtically predictable vaues, thenthisinformation object hasadtatisticaly predictable value’.

Let usconsider thesecond rule R3* of the built production model. The software code areawhere apotentially
unsafe congtructionismost likely to appear is any operator (function) whichtransfersthe control to the functional
object, inthiscaseit isany operator (function) generating APl whichinitidizes apseudorandom numbersgenerator.

The core of the second heuristic production under consideration isasfollows:. “if APl whichinitializesa
pseudorandom number generator has predictable arguments, it isapotentially unsafe construction”.

The productionrule post-condition implies conclusions on a potentially unsafe construction (weakness)
numbered 337.

3.1.2. Example of the Code Weakness Such asthe Object M odel Violation

Let usconsder the code weakness CWE-581, namely the object modd violation. The weaknessisthat there
isonly one of Equasor hashCodedefined. Thisisdueto that Javaimpliesfixed propertiesof objectsrelated to the
check of their identities. One of such propertiesisthat identical objects should have equa hashes. Inother words,
the check should beasfollows:

if a.equals(b) == true, then a. hash Code() == b. hash Code ().

If only one of such methodsisdefined, identica objectswill no longer beequal, and vice versa, in some cases
different objects may become equal. Thismay result in errorsin collections, maps and sets.

Description of theheurigtic algorithm for defect detection :

1. Searchinclassesof Equalsredefinition;

2. Searchinclassesof hashCode redefinition;

3. Warning of the possible code weakness CWE-581 if thereisonly one of them.
Theproduction model of theheuristicruleisasfollows:

R, =<5, €S; s, €My Aty (s) =finaly; (figee(S;) N M, N{equals, hash Code} = &
— AP(s;, L); R (58L,3) >
3.1.3. Example of the Code Weakness Such asIncorrect Value Return

Let usconsider the code weakness CWE-584, namely incorrect Return Inside Finally Block. The weakness
isasfollows: ReturnInsde Finaly Block rgectsall exceptionsgeneratedinthe Try block, thusemergenciesare
processed, including emergenciesrelated to security mechanisms.
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Description of the heuristic algorithm for weaknessdetection :

1. Searchfor Finally blocks,

2. Anaysisof theblock bodiesto check whether return statementsare present.

The production model CWE-584 can beasfollows:

{R = <S € Myyc ity (s]) ='finally’ ;I 4 €f. (sj) —>AP(sJ, L) ; P,(584,2) > 8)

inside
4. DISCUSS ON
Efficiency and Productivity of theHeuristicAnalyss

The proposed method for detection of awiderange of vulnerabilities by the heuristic analysis has applied
significance, asit isalready used in practice and received approval inreal projects (more than 500 code audits
under the certificationtesting of software productsof leading manufacturerssuch asMicrosoft, Huawel, Symantec,
McAfee, Kaspersky).

Thedeveloped theoretical contents have become abasisfor creating AppChecker implemented onthebasis
of PHP, Javaand C/C++ parsers. The production rule of theanayzer isfulfilled by X Path-queriesfor XML-view
of the abstract syntax tree of the code.

Check completenessis ensured by reference to the international register of security weaknesses, CWE.
Currently theanalyzer (verson 2.1.10) includes 99 heuristics for Java, 92, for C/C++ and 32, for PHP.

The comparison analysis of static analyzers (based on checks of properties and search by templates) using
test exampleswith an open code showed their similar productivity and performance. Results of the comparison
anaysis of synthetic (test) datasetsaccordingto SATEC are shownin (Markov, Fadin, Shvetsand Tarlov, 2015).

It should beunderstood that heuristic approaches depend mostly on experts qudlificationsbothin heuristics
development and analysis of apotentialy unsafe code fragments. At the same time, deliberate software bugs may
beidentified only by the heuristic analysis.

The proposed method isnot theonly one: infact, a synthesis of possible methodsfor detection of acertain
class of weaknessesby responserateand | and |1 type errorsisimportant [24,25]. For example, ISO/IEC TR
20004 proposes methodsfor detection of knownvulnerahilities published in open security bulletins. Such approach
increasesefficiency of structural testing, for example, during theinitial analysisof appropriate components.

5. CONCLUSON

Thefollowing conclusionshave been made on the basis of the research results:

1. Theproposed heuristic method ensures completeness and consstency of checks, asit doesnot restrict
classifications of weaknessesin the software code;

2. Theapproach canbe used asabasisfor practica combination of different methodsfor static analysis of
security software (with regard to opinionsof qualified experts);

3. The specifics of the heuristic method are thosethat it may identify deliberate bugsby expert featuresof a
destructive code;

4. Thedeveoped metamodel alowsfor forma description of weaknesses search heuristicsat any level of
the code presentation (for example, abstract syntax tree and abstract semantic graph), whichimproves
the unification of complex vulnerabilities detection. The metamodel advantagesinclude:

* visudization and relative smplicity of processing heuristic algorithmsfor vulnerabilitiesdetection, and
template (Sgnature) baseitsdf;
* highoperating speed;
* easy Sgnaturesmodificationand porting to different platformsand software languages.
The proposed method and tools are useful not only for accredited testing laboratoriesbut for secure software
engineers.
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