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Abstract: The combination of nonlinear dynamics, modeling uncertainties and parameter variation in characterizing 
an aircraft and operating environment are one major problem. The control system of the aircraft can be divided into 
two parts which are longitudinal and lateral control. Pitch control is a longitudinal problem which is utilized to design 
autopilot. In this paper, we proposed Bacterial Foraging Optimization Algorithm (BFOA) for tuning the PID controller. 
To achieve better results, for such critical control scheme. These controllers are compared with conventional order 
controls. These design schemes show a practical and systematic way of the controller design for the considered class 
of fractional order system. Bacterial Foraging Optimization Algorithm (BFOA) has lately emerged as a very potent 
technique for real parameter optimization.
Keywords: Pitch control; Bacterial Foraging Optimization; PSO; PID; Integral Square Error.

InTrODuCTIOn1. 
Modern aircraft include a mixture of an automatic control system that assists the flight team in direction-finding, 
flight management and augmenting the stability characteristic of the airplane. In this condition, an autopilot 
is designed that control the pitch of aircraft that can be used by the flight team to lessen their workload during 
cruising and assist them to set down their aircraft during unfavorable weather conditions in the real situation1. 
The autopilot is an element within the trajectory control scheme. It is a pilot relief mechanism that helps in 
maintaining an attitude, heading, altitude or flying to navigation or landing references2. Designing an autopilot 
requires fundamental of control theory and knowledge of stability derivatives at different altitudes and Mach 
numbers for a given airplane3. A lot of studies has been performed in the past to control the pitch of an aircraft 
for the use of flying stability and even so this research still remains an unresolved issue in the present and future 
works4-6.

As a consequence of wide investigation to formulate methods of choosing optimum controller setting for 
the PID controller, Ziegler and Nichols 7,8 showed how they could be estimated using open and closed loop tests 
on the plants. The method is referred to as ZN rules. The ZN setting usually experiences excessive overshoot 
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of the plant response. With the ease of computation, mathematical optimization methods become significant in 
the devising formula for PI, PD and PID controller parameter tuning9. The squared error integral criteria are the 
most common for such optimization10.

Several optimization techniques using the swarming principle have been adopted to solve a variety of 
engineering problems in the past decade. The work is inspired by the way these insects communicate. Swarming 
strategies in bird flocking and fish schooling are used in the Particle Swarm Optimization (PSO) introduced 
by Eberhart and Kennedy11. A relatively newer evolutionary computation algorithm, called Bacterial Foraging 
scheme has been proposed and introduced recently by K.M. Passino12.

In this paper, the use of both PSO and (E. coli) based optimization for PID parameter tuning is investigated. 
A new algorithm bacterial foraging oriented by particle swarm optimization (BF-PSO) is proposed that combine 
the above-mentioned optimization algorithms.

MODelIng OF A PITCh COnTrOl2. 
Effective control can be achieved by proper modeling mode even after using different inputs to the aircraft. The 
equation for governing the motion of an aircraft can be split into two groups to melt off the complexity of the 
psychoanalysis. These two groups are longitudinal and lateral equations. Figure 1 represents the pitch control 
system. In this figure Xb, Yb and Zb represent the aerodynamic force components as well as q, F and de represent 
the elevator deflection angle and the orientation of the aircraft pitch angle in the earth axis system13.

Figure 1: Air Pitch Control System

Figure 2: Different forces, moments and velocity components of the aircraft system



PID Controller Tuning by Bacterial Foraging - PSO Algorithm for Pitch Control of Aircraft System

International Journal of Control Theory and Applications85

Figure 2 shows the forces, moments and velocity components of the aircraft system. The roll, pitch and 
yaw axis of the representation as L, M, and N-term. Also the term p, q, and r represent the angular rates about 
roll, pitch and yaw axis. The term u, v and w represent the velocity components of roll, pitch and yaw axis and 
a and b are represents the angle of attack and sideslip. The data from General Aviation Aeroplane14 is used in 
the system for analysis and modeling.

For the thrust and drag are cancel out and lift and weight balance out each other, the aircraft is assumed as 
the steady state cruise at constant attitude and velocity as well as under any circumstance, the change in pitch 
angle does not change the speed of an aircraft. These two assumptions need to be considered before continuing 
with the modeling process15.

Table 1 
longitudinal stability derivative parameters

Longitudinal
Derivatives

Components
Dynamic Pressure and Dimensional Derivative

Q = 36.81 lb/ft2, QS = 6771 lb, QS c  = 38596 ft.lb.
( c /2u0) = 0.016s

X-Force
(S-1)

Z-Force
(S-1)

Pitching
Moment(FT-1)

Rolling
Velocities

Xu = –0.045 Zu = –0.369 Mu = 0

Yawing
Velocities

Xw = 0.036
X w  = 0

Zw = –2.02
Z w  = 0

Mw = –0.05
M w  = –0.051

Angle Of
Attack

Xa = 0
X a  = 0

Za = –355.42
Z a  = 0

Ma = –8.8
M a  = –0.8976

Pitching
Rate

Xq = 0 Zq = 0 Mq = –2.05

Elevator
Deflection

Xde = 0 Zde = –28.15 Mde = –11.874

The longitudinal stability derivatives parameters used are denoted in Table 1. Equation (1), (2) and (3) 
represent the dynamic equations for the aircraft pitch control.

 X - mgSq = m( u  + qv - rv) (1)

 Z + mgCqCF = m( w  + pv - qu) (2)

 M = Iy q  + rq(Ix - Iz) + Ixz(p2 - r2) (3)

where,

 X = x directional force

 m = mass of aircraft

 g = gravity force

 q, F, de = Orientation of aircraft in earth system & elevator deflection angle

 L = aerodynamics moment components for Roll Axis

 M = aerodynamics moment components for Pitch Axis

 N = aerodynamics moment components for Yaw Axis
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 p = Angular Axis about to Roll Axis

 q = Angular Axis about to Pitch Axis

 r = Angular Axis about to Yaw axis

 u = Velocity component for Roll Axis

 v = Velocity component for Pitch Axis

 w = Velocity component for Yaw Axis

 a = angle of attack

 b = angle of sideslip

Above Equations should be literalized using small disturbance theory. The equations are replaced by a 
variable or reference value plus a perturbation or disturbance,

 u = u0 + Du p = p0 + Dp X = X0 + DX

 v = v0 + Dv s = s0 + Ds r = r0 + Dr

 M = M0 + MY Z = Z0 + DZ d = d0 + Dd

 w = w0 + Dw

For convenience, the reference flight condition is assumed to be symmetrical and propulsive forces are 
assumed to remain constant. For that The values of u0 = v0 = M0 = p0 = s0 = Z0 = w0 = X0 = r0 = d0 = 0. After the 
linearization the following equations are found.

 d
dt

u w gu u-Ê
ËÁ

ˆ
¯̃

- +X XD D D( cos )q q0  = Xde Dde (4)

 - + -( ) -È
ÎÍ

˘
˚̇

+( ) -È
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˘
˚̇
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w u d
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gw w o qD D D1 0sin q q  = ZdeDde (5)
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Ê
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dt
w d

dt
d
dtw w qD D D

2

2 q  = MdeDde (6)

After substituting longitudinal stability derivative parameters from table 1 to the above equations (4), (5) 
and (6), the following transfer function for the change in the pitch rate to the change in elevator deflection angle 
is shown in the following equation (7)

 D
D

q s
s

u s u u
se

e e e e

q

( )
( )
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(d

d a d a d d a

a
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 (7)

The transfer function of the change in pitch angle to the change in elevator angle can be obtained from the 
change in pitch rates to the change in elevator angle in the following way.

 Dq = Dq  (8)

 Dq(s) = sDq(s) (9)
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Thus, the transfer function of the aircraft pitch control system is represented by the following equation 
(11) and (12)

 D
D

q
d

d a d a d d a( )
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( ) ( )
(
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u s u u
sse

e e e e

q
=

- + - -
- +
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2
M M Z / M Z / M Z /

M Maa a a a+ + -Z / Z M / Mu s uq0 0) ( )
 (11)

After evaluating all values from the Table 1, the transfer function of the aircraft pitch control is

 D
D

q
d

( )
( )

. .
. .

s
s

s
s s se

= +
+ +
11 732 22 3
4 9376 12 893 2  (12)

MeThODOlOgy3. 
In this section, two feedback control schemes are proposed and describe in detail which is PID and self-tuning 
fuzzy PID for control the pitch angle of an aircraft. The block diagram of analog PID control system is showed 
in Figure 1.

Figure 3: Control scheme of aircraft pitch system

A. PID Controller
PID Controller Proportional integral derivative controller (PID) regarded as the standard control structures of 
the classical control theory. PID is a common control loop feedback mechanism extensively used in industrial 
control systems. The performance design of the system can be improved by tuning the value of gain proportional 
gain (Kp), integral gain (Ki), and derivative gain (Kd). The selection of these values will cause for variation in 
observed response because each component has its own special purposes. The mathematical description of linear 
relationship between the controller output, u(t) and the error, e(t) is expressed

 u t e t e t dt de t
dtp i d( ) ( ) ( ) ( )= + +ÚK K K

In this work the controller parameters of PID controller are set to Kp = 4.15, Ki = 0.04 and Kd = 0.9.

B. Self-tuning Bacterial Foraging based PSO Optimization Algorithm PID
Natural selection tends to eliminate animals with poor foraging strategies and favor the propagation of genes 
of those animals that have successful foraging strategies since they are more likely to enjoy reproductive 
success16.In this foraging theory, the objective of the animal is to search for and obtain nutrients in a fashion 
that energy intake per unit time (E/T) is minimized8. A group of bacteria moves in search of food and away 
from noxious elements are known as Foraging. BFO algorithm draws its inspiration from this foraging 
behavior. Bacteria have a trend to amass to the nutrient-rich regions of activity called Chemotaxis. Its cause 
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and behavior are characterized by the spinning flagella which acts as a Biological motor and helps bacteria to 
float17.

BF-PSO algorithm combines both BFO and PSO. The objective is to make PSO ability to exchange social 
information and BF ability in discovering new solutions by elimination and dispersal, a unit length direction of 
tumble behavior is randomly generated. Random direction may conduct to delay in reaching the global result. In 
“BF-PSO” algorithm the unit length random direction of tumble behavior can be determined by the global best 
position and the best view of each bacterium. During the chemotaxis loop tumble, direction is updated by

 x w x( ) ( ) ( ) (j j p p g p+ = ¥ + ¥ - + ¥ -1 1 2C rand C randbest current best currennt )

where, pbest is the best position of each bacterium and gbest is the global best bacterium. Automatic tuning of 
PID can be done based on minimizing the performance index which is given as:

Algorithm to find optimal parameters using BFO for the objective function (Integral time absolute error) 
ITAE is described below:

 ITAE =
•

Ú e t dt( )
0

Step 1: Initialize the parameters

p - length of the search space;

S - Number of bacteria in the population;

ns - Swimming length after which tumbling of bacteria will be undertaken in chemotactic loop;

nc - The number of iterations to be undertaken in chemotactic loop, always Nc > Ns;

nre - Maximum no. of reproduction steps;

ned - the maximum no. of Elimination and dispersal events to be imposed over bacteria;

ped - Probability with which elimination and dispersal will continue;

qi - Location of the ith(i = 1, 2, 3, ..., S) bacterium;

C(i) - Step size of the ith bacterium taken in a random direction, specified by tumble.

Generate a random vector x( j) in the range [-1 1]

C1, C2,: swarm confidence

w: The inertia weight

q(i, j, k) = Position vector of the ith bacterium, in jth chemotactic step and kth reproduction

Step 2: Update cost function (J(i, j, k)) of the ith bacterium, in jth chemotactic step and kth reproduction loop: 
l = l + 1

Step 3: Reproduction loop: k = k + 1

Step 4: Chemotaxis loop: j = j + 1

For i = 1, 2, 3, ..., S

(i) take a chemotactic step for bacterium i as follows

(ii) Compute fitness function, ITAE(i, j, k).
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(iii) Let ITAElast = ITAE(i, j, k, l) save this value, since we may get better value via a run.

(iv) Tumble: generate the random vector D(i) ŒRn with each element Dm(i), m = 1, 2, 3, ..., n, a random 
value on [-1 1].

(v) Move: Assume q(i, j + 1, k) = q(i, j, k) + C(i) D

D D

( )

( ) ( )

i

i iT

(vi) Calculate ITAE(i, j + 1, k).

(vii) Swim

 Assume m = 0 (counter for swim length)

 while m < Ns (if the bacteria have not climbed tolong)

(viii) Let us consider m = m + 1

∑ If ITAE(i, j + 1, k) < ITAElast (for better doing)

∑ Assume ITAElast = ITAE(i, j + 1, k) and q(i, j + 1, k) = q(i, j, k) + C(i) D

D D

( )

( ) ( )

i

i iT
 and use

 q(i, j + 1, k) to compute the new ITAE.

∑ Elese, assume m = Ns

Step 5: Mutation with PSO oerator for i = 1, 2, 3, ..., S

∑ Update the qg_best and ITAEbest(i, j, k)

∑ Update the position and the velocity of the dth coordinate of the ith bacterium according to the following 
rule:

 x( j + 1) = w ¥ x( j) + C1 ¥ rand(pbest - pcurrent) + C2 ¥ rand(gbest - pcurrent)

 qi(j + 1, k, l) = qi(j, k, l) + C(i)x(j)

Step 6: Let Sr = S/2

The Sr bacteria with highest cost function (ITAE) values die and other half bacteria population with the 
best values split.

Step 7: If k < Nre, go to step 3. One has not reached the number of specified reproduction steps, so one starts 
the next generation in the chemotaxis loop.

SIMulATIOnS AnD TeSTIng4. 
Figure 1 shows the unit step response of closed loop system in which PID controller is tuned by conventional 
Ziegler-Nichols method and BF-PSO based optimization method. Table 1 shows the different transient parameters 
of PID controller. The transient parameters considered are settling time, peak overshoot, ISE (integral square 
error) and ITAE (integral time absolute error).

Bacteria parameters: Number of bacteria = 20; number of chemotatic steps = 10; number of elimination 
and dispersal events = 2; number of reproduction steps = 4; probability of elimination and dispersal = 0.25. PSO 
parameters: C1 = C2 = 2.0, w = 0.8.
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Figure 4: Step response of the closed loop system with the BF-PSO-PID controller using 
ITSe based fitness function and conventional PID controller

Table 1 
Different transient parameters of PID and BF-PSO based PID controller

Conventional PID Tuning
Kp = 4.15, Ki = 0.04, Kd = 0.9

BF-PSO based tuning
Kp = 9.21, Ki = 0.91, Kd = 1.53

Rise Time (Sec) 1.9195 0.5062
Settling Time (Sec) 2.3993 0.6328
Integral Square Error (ISE) 0.0797 0.0094
Integral Time Absolute Error (ITAE) 0.404 0.0323
Integral Absolute Error (IAE) 0.3421 0.2930

COnCluSIOn5. 
In this paper, a new BF oriented by the PSO optimization algorithm is proposed. This algorithm combines PSO and 
BF techniques in order to make use of PSO ability to exchange social information and BF ability in discovering 
a new solution by elimination and dispersal. The suggested technique is applied to the PID parameter tuning 
for a set of test plants. Modeling is done on an aircraft pitch control and self-tuning BF-PSOPID is proposed 
successfully. The proposed control schemes have been implemented within simulation environment in Matlab and 
Simulink. The performance of the control schemes has been evaluated in term of time domain specification.
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