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This paper is an attempt to predict stock returns using classical (AR) and intelligent (ANN)
techniques. AR and ANN techniques are also used to test the efficient market hypotheses
using long time-series of daily data of BSE Sensex for the period of January 1997 to September
2005. An attempt has also been made to compare the predictive power of autoregressive
(AR) model and artificial neural network (ANN). The present study shows that to a large
extent stock market returns are predictable. Profitable investment decisions may be taken
using linear and nonlinear techniques of prediction. Prediction improves by using ANN
over AR model. Investment decisions based ANN prediction performs better compared to
AR prediction. It is observed from the obtained result that MSE and RMSE decrease as the
number of observations in training set increases. This is equally applicable to both linear
and non-linear (ANN) modeling. The present study does not support efficient market
hypotheses.
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I. INTRODUCTION

Over the last few decades, there has been much research directed at understanding and
predicting the future. Prediction of stock prices is an important issue in investor’s investment
strategy. Stock prices are predictable only in inefficient stock market. The term efficiency is
used to describe a market in which relevant information is not impounded into the price of
financial assets. If capital markets are sufficiently competitive, then simple microeconomics
indicates that investors cannot expect to achieve superior profits from their investment
strategies. Further, it is important for markets to be efficient for optimal resource allocation
in the economy between firms and industries. Fama (1970) and Baumol (1965) highlighted
the importance of market efficiency in resource allocations in the economy. While there is
no conclusive position between practitioners and academicians about the efficiency of stock
markets, the prevalent view in economic literature that stock markets are efficient has been
dismissed by recent empirical work using both classical and intelligent techniques. Analysing
studies covering different stock markets, Fama (1991), says that research is able to show
confidently that daily and weekly returns are predictable from past returns. Fama (1998)
further points that recent studies on long-term returns suggest market inefficiency,
specifically long term underreaction or overreaction to information.

Before the advent non-linear dynamics, statistical test for random walk were usually
conducted by verifying that there is no linear dependence between returns and its lagged
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values. Traditionally, popular classical prediction techniques include regression analysis,
time-series analysis, moving averages and smoothing methods, and numerous judgmental
methods. However, all of these have the same drawback insofar as they require assumptions
about the form of population distribution. Regression models, for example, assume that the
underlying population is normally distributed. Outliers can lead to biased estimates of model
parameters in classical techniques (Iman and Conover, 1983). The linearity assumption has
been conveniently used, because coefficient estimates from linear models are easy to interpret.
However, lack of linear dependence did not rule out nonlinear dependence, the presence of
which would negate the efficient market hypotheses. Therefore many test are inappropriate,
and some conclusions are questionable.

Recent advances in computing technology have relaxed the constraint on computation
a bit and have led to the development of non-linear techniques such as Markov regime-
switching regression, artificial neural network, genetic algorithm, etc. The non-linear
methods in finance can be viewed as an attempt to structure of dependence among variables
of interest. Among these methods, there is a general function approximation technique
that mimics the functioning of the brain known as the artificial neural network (ANN)
method. Artificial Neural Network (ANN) is a member of intelligent techniques, which
do not necessarily require assumptions about population distribution. Many have argued
that neural networks can overcome or, at least, be less subject to theses limitations (Connor,
1988;Hornik et al., 1989; Wasseman, 1989; White, 1992).Neural networks have been
mathematically shown to be universal approximators of functions (Cybenko, 1989;
Funahashi, 1989, Hornik et al., 1989) and their derivatives (White et al., 1992). They also
can be shown to approximate ordinary least squares and nonlinear least squares regression(
White and Stinchcombe, 1992), nonparametric regression(White, 1992), and Fourier series
analysis (White and Gallant, 1992).

Not only that ANN do not require assumptions about the underlying population but
are also powerful forecasting tools that draw on the most recent developments in artificial
intelligence research. Financial modeling using neural networks has gained ground in recent
years (Abhyankar, et al., 1997; Gencay, 1999). ANN have found increasing consideration in
forecasting theory, leading to successful applications in time series and explanatory sales
forecasting (Bishop, 1995; Thiesing and Vornberger,1997). In stock market, prediction is a
prerequisite for all investment decisions. Therefore, the quality of a forecast must be evaluated
considering its ability to enhance the quality of the investment decision.

In view of this, the present study attempts to predict stock returns using classical and
intelligent techniques. Autoregressive techniques are used from classical techniques while
Artificial Neural Network is used from intelligent techniques to predict the daily BSE Sensex
returns and thereby testing the efficient market hypotheses using data from India’s oldest
stock market. BDS test is applied to detect the nonlinearities in the series of stock returns.
An attempt has also been made to compare the predictive power of autoregressive (AR)
model and artificial neural network (ANN). Further, predictive performance of linear AR
and non-linear ANN over different time horizon has been compared.

The remaining paper is organized as follows: Section 2 deals with data, Section 3 describes
the methodology used, Section 4 analyses the empirical results and finally, Section 5
summarizes the findings and discusses policy implications.
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II. DATA

In the present study we used a long time-series of daily data of BSE Sensex (bseindia.com)
for the period of January 1997 to September 2005. The present paper has taken the returns
on the BSE Sensex as an indicator for analyzing the dependence in the return series. The
daily returns have been estimated as follows:

Sensex Daily Returns (R)= log (Sensex close on day t/Sensex close on day t-1) x 100
Further, the return series is normalized between 0 and 1.
Wide ranges of descriptive statistics for the stock index return of the Sensex are shown

in Table 1. The sample moments indicate that the empirical distributions of returns are all
skewed and highly leptokurtic when compared with normal distributions. This is reinforced
by the highly significant Jarque-Bera statistics. Q-statistics(25) indicate the possibility of
linear dependence in the series.

Table 1
Preliminary Investigation

Statistics R

Mean  0.501141
Median  0.503912
Maximum  0.833333
Minimum  0.041825
Std. Dev.  0.063020
Skewness -0.322745
Kurtosis  6.638150
Jarque-Bera  1143.422
Probability  0.000000
Q-Stat(25) 62.147
Probability 0.000000
PP Test Statistics -41.71172
ADF Test Statistics -19.43012

Note: MacKinnon critical values for rejection of hypothesis of unit root test (PP Test Statistics, ADF Test
Statistics) at 1% are -3.4377, -3.4418, -3.4418 for sample size.

III. METHODOLOGY

For any time series analysis, series must be stationary (Enders, 1995). Stationarity condition
has been tested using Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) tests (Dickey
and Fuller, 1979, 1981; Phillips and Perron, 1988). While the ADF test corrects for higher
order serial correlation by adding lagged differenced terms on the right-hand side, the PP
test makes a correction to the t-statistic of the coefficient from the AR (1) regression to account
for the serial correlation in error term (ut). The advantage of Phillips-Perron test is that it is
free from parametric errors. Phillips-Perron (PP) test allows the disturbances to be weakly
dependent and heterogeneously distributed. In view of this, PP test has also been applied to
test for stationarity.

1. Autoregresive (AR) Model

To detect linear dependence in return series, AR Model is estimated using lagged values of
stock returns. The number of lags is chosen on the basis of AIC criteria. The AR equation is
defined as
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where Rt is normalized stock returns. Ordinary least square method has been used to estimate
the equation and t-test is applied to test the null hypotheses of no linear dependence between
its lagged values.

2. The Ljung and Box Q-Statistic

The Q-statistic can be used to test whether a group of autocorrelations is significantly different
from zero. Ljung and Box (1978) used the sample autocorrelations to form the statistic
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where k̂I  stands for Autocorrelation function.

Under H0 : I1 = ..... = Ik = 0,: , Q-statistic asymptotically follows the 2
m�  distribution with

m degrees of freedom. The logic behind the use of this statistic is that high sample
autocorrelations lead to large values of Q. If the calculated value of Q exceeds the critical

2
m� , we can reject the null hypothesis of no significant autocorrelations. Rejection indicates

predictability of the series.

3. BDS Test: A Test for Non linearity

The BDS test, named after Brock, Dechert, and Scheinkman (1987), is a statistical version of
the correlation dimension test for randomness or “whiteness” against the alternative general
dependence in a series. This test for independence is based on estimation of correlation
integrals at various dimensions. It has power against all types of linear and non-linear
departure. BDS can be interpreted as a test for nonlinearity, if it is used in conjunction with
Autoregressive Moving Average (ARMA) modeling. The estimation of the BDS statistic is
non-parametric and the test statistic asymptotically follows a normal distribution with zero
mean and unit variance.

The intuition behind the test is following:
Let Yt be a univariate time series, independent and identically distributed from some

distribution. Also, define

( )� � �A t tP P Y Y � (3)

as the probability that two points are within a distance � of each other. Further, let us define

1 1( , )� �� � � � �B t s t sP P Y Y Y Y� � (4)

as the probability of a history of two observations being within distance � of each other.
Under independence of Xt, the two events contained in the event B are independent, and

therefore 2�B AP P . One can estimate and PA, and PB and also 2�B AP P , which has an expected
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value of zero under the null hypothesis. To estimate the probability that two m length vectors
are within �. define
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n is the sample size, and m is the so-called embedding dimension. Under the null of
independence and identical distribution,
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Brock et al. (1996) show that, given an embedding dimension, m and a value of the
radius �, the BDS statistic
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asymptotically distributed N(0, 1). The consistent estimator is
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c = cl,n(�) (10)
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The consistent estimators c1,n (�) and kn(�) are in the class of U statistics and, as it is
pointed out by Kanzler (1999), they are the most efficient estimators of c and k, respectively.
Moreover, the test is two-sided, therefore the null hypothesis of independence and identical

distribution is rejected at the 5% level if , ( )m nw �  > 1.96.

4. The ANN Framework

The artificial model of the brain is known as Artificial Neural Network (ANN) or simply
Neural Networks (NN). In this work, multilayer ANN (MLANN) has been used in predicting
the stock returns. MLANN models are non-linear neural network models that can be used
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to approximate almost any function with a high degree of accuracy (White 1992). An MLP
contains a hidden layer of neurons that uses non-linear activation functions, such as a logistic
function. The complexity of the MLP can be adjusted by varying the amount of hidden
layers. Different amounts of hidden layers can transform an MLP from a simple parametric
model to a flexible non-parametric model (White, 1992; Kuan and White, 1994; Fine, 1999;
Husmeier, 1999). The number of inputs and outputs in the MLP can be manipulated to
analyze different types of data. In this MLANN, number of neurons in the input layer is
equal to the no of inputs which is number of lags (past stock returns), whereas, number of
output neuron is equal to one. Therefore, proposed network is a multi input and single
output network.

The ANN mode most often used in asset price prediction, and the one this study adopts,
is a single hidden layer single-output feedforward network of the form:
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where y is the output of the model. There are J inputs represented by xj . g(.) is known as the
activation function of the hidden layer. This may be specified in a number of ways. This
study has taken logistic function form, i.e.,
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The network has H neurons in the hidden layer with connection strengths shown by the
layer weights, �h. All inputs enter as arguments in these neurons and their influence are
measured by the input weights, �hj. After choosing the type of activation function and
specifying the inputs and the number of neurons, the network is trained using
backpropagation algorithm. This algorithm appears to be the fastest method for training
moderate-sized feedforward neural networks.

ANN Training and Forecast Evaluation

One of the problems that occur during neural network training is called overfitting. The
error on the training set is driven to a very small value, but when new data is presented to
the network the error is large. The network has memorized the training examples, but it
has not learned to generalize to new situations. For improving network generalization,
early stopping method has been used. In this technique the available data is divided into
three subsets. The first subset is the training set, which is used for computing the gradient
and updating the network weights and biases. The second subset is the validation set.
The error on the validation set is monitored during the training process. The validation
error will normally decrease during the initial phase of training, as does the training set
error. However, when the network begins to over fit the data, the error on the validation
set will typically begin to rise. When the validation error increases for a specified number
of iterations, the training is stopped, and the weights and biases at the minimum of the
validation error are returned. Test vectors are used as a further check whether the network
is generalizing well.
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In this case, we normalized the whole data set between 0 and +1 so that convergence
problems are avoided. The sigmoid transfer function is used for hidden units in the hidden
layer and the linear transfer function is used for output units in the output layer. To gauge
the performance of the models, in-sample and out-of-sample forecasts statistics are computed
using several statistics such as, Mean Square Error(MSE), Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), MAD, DA, Correlation and Akaike Information Criterion (AIC).
These statistics are calculated as:
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where ui = ˆ( )�y y  are the forecasted error values.
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IV. EMPIRICAL ANALYSIS

In order to examine the elementary data properties and to test the distribution of series the
preliminary investigation of BSE normalized returns (R) are presented in Table-1. The results
indicate skewed and leptokurtic frequency distribution of return series are not normal.
Jarque-Bera test also rejects the null hypothesis of normal distribution for the series. Ljung-
Box (Q) test rejects the joint null hypothesis of zero autocorrelations at 1% level, indicating
the presence of linear structure in the data. The BSE normalized returns series are found to
be stationary as depicted by ADF and PP tests statistics.
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1. Auto Regression (AR) Results

As indicated by Ljung-Box (Q) test, we applied AR model to estimate the linear structure in
the normalized returns. The lags in AR model are chosen on the basis of AIC criteria. AR
moderl is estimated using 1500, 1800, 1900 and 2000 observations, namely AR-1500, AR-
1800, AR-1900 and AR-2000. The results are presented in table-2. The AR (9) in all four
models captures the linear structure in the normalized return series. The number of lags is
chosen on the basis of AIC criteria. The F- test statistics are significant showing the overall
significance of the regression results. Durbin-Watson statistics accept the null hypotheses
of no autocorrelation. Out of nine lags, AR(1), AR(6) AND AR(9) are found to be significant
at 5 per cent level of significance while t-statistics of AR(2), AR(3), AR(4), AR(5), AR(7) and
AR(8) are either greater than unity or closer to 1, implying significant effect on F-statistics
as per Klien thumb rule. To diagnose the presence of linear structure in AR residuals, Ljung-
Box (Q) statistics up to 25 lags are estimated and presented in table 3. The results indicate
that there is no remaining linear structure in the AR residuals. The parameter estimate of
first three AR model are used for forecasting the remaining observations. The evaluation
statistics for the static1 forecasted results are given in table-4. The MSE, RMSE and MAE in
AR-1800 model is minimum.

3. BDS Test: A Test for Non linearity

AR model is capable of finding linear patterns that exist in the data set, but has no ability to
trace non-linear patterns that might exist. Having this in mind we apply the BDS test in
order to check the non-linearties in residuals produced by the in sample observations. The
residual generated by all four AR regressions are tested for non-linearties. In view of similar
results and for the brevity of space, the BDS results only for AR-2000 regression are presented
in table 5.

The data is exposed to the computational procedure of the correlation integral allowing
for five embedding dimensions m (2-6) and distances å ranging over the interval 0.5ó-2ó in
equal increments. The result shows the evidence of nonlinear association in the AR return
series residuals because BDS statistics is significant at 1 percent level of significance. Hence,
null hypothesis of IID data-generating process for the BDS test is rejected. These results,
therefore, lead us to propose the use of nonlinear modeling. In this light, ANN has been
applied.

4. Artificial Neural Network

In this work, we are having 2000 observations, which have been divided into three sets,
namely training data set, validation data set and testing data set. Total observations are
divided among these three sets in three different ways. In first case, 1000 observation are
used for training, 500 observations for validation and 500 observations has been used for
testing the performance of network. The results are presented in table 6. In the second case,
1600 observation are used for training, 200 observations for validation and 200 observations
has been used for testing the performance of network. The results are presented in table 7.
Similarly in third case, 1800 observation are used for training, 100 observations for validation
and 100 observations has been used for testing the performance of network. The results are
presented in table 7.



Prediction of Stock Returns using Classical and Intelligent Techniques: 63

In all three cases, lagged values of normalized returns ranging from 4 to 15 are taken as
the inputs for the neural network. As far as number of neurons in hidden layer is concerned,
we took different number of hidden layer neurons in different cases, namely 3, 4, 8, 12 and
16. Therefore, from the point of view of the number of hidden neurons we are having five
different networks. Now we have twelve different training sets, thus yielding a total of
sixty different networks to experiment with. Mean Square Error (MSE) is chosen as the cost
function and network is selected on the basis of minimum MSE. The results for best
performing networks2 training set, validation set and testing set for all three cases are
presented in table 6-8.

In addition to mean square error (MSE), root mean square error (RMSE), mean absolute
error (MAE), median absolute deviation (MAD), Pearson correlation coefficient (Corr) and
its P-value, direction accuracy (DA) and Akaike information criterion (AIC) have been used
to evaluate the predictive power of network. In-sample performance of ANN for training
data set, it is observed that performance generally increases with more hidden layers
corresponding to each input node. In all 540 neural networks, the study found significant
correlation between actual and predicted returns. Obtained results reveal that the change
in direction of predicted returns and actual returns are correct approximately in the range
of 71 to 75 per cent cases.

Looking at case 1, the neural network with 13 input nodes and 12 hidden layers ()
depicts best performance on the basis of MSE, MAE, RMSE, DA, Correlation and AIC. . The
values of this network of MSE, MAE, RMSE, MAD, DA, Corr. And AIC are 0.0048, 0.0526,
0.0690, 0.0424 0.327, 73.73% and (-) 5321 respectively. Out of sample performance of ANN
using validation data set of 500 observations, the performance of architecture is found to be
better on the basis of MSE, MAE, RMSE, DA, and Correlation and AIC is highest in case of.
For network, the values of MSE, MAE, RMSE, MAD, DA, Corr. And AIC are 0.0021, 0.0346,
0.0462, 0.0261, 0.1913, 58.18 and (-) 3064 respectively. Testing the performance of neural
network using testing data set of 500 observations, the neural network architecture consisting
of seven input nodes and 12 hidden layers () seems to be performing better on all grounds.
The values of this network of MSE, MAE, RMSE, MAD, DA, Corr. And AIC are 0.0028,
0.0388, 0.0527, 0.0309, 0.3147, 51.70 and (-) 2930 respectively (table 6).

In sample performance of case 2, the neural network with 12 input nodes and 16 hidden
layers (NN

12×16
) depicts best performance on the basis of MSE, MAE, RMSE, DA, Correlation

and AIC. The values of this network of MSE, MAE, RMSE, MAD, DA, Corr. And AIC are
0.0036, 0.0449, 0.0601, 0.0346, 0.3802, 73.55% and (-) 8975 repectively. Out of sample
performance of ANN using unseen validation data set of 200 observations, the performance
of NN

7×3
 architecture is found to be better on the basis of MSE, MAE, RMSE, DA, Correlation

and AIC. The values of MSE, MAE, RMSE, MAD, DA, Corr. and AIC are 0.0039, 0.0439,
0.0627, 0.0319, 0.4113, 54.27% and (-)1094 respectively. In all network for validation data,
the study found significant correlation between actual and predicted returns. Evaluating
the performance of neural network using unseen testing data set of 200 observations, the
network consisting of fifteen input nodes and 12 hidden layers (NN

15×12
) seems to be

performing better on all performance evaluating criteria. MSE, MAE, RMSE, MAD, DA,
Corr. and AIC in this network is 0.0013, 0.0293, 0.0367, 0.0273, 0.2611, 57.29% and (-) 1292
respectively (table 7).
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In case 3, the network consist of 12 input nodes and 16 hidden layers (NN
13×16

) depicts
best performance on the basis of performance criteria. Out of sample performance of ANN
using unseen validation data set of 100 observations, the performance of NN

9×8
 architecture

is found to be better on the basis of MSE, MAE, RMSE, DA and AIC. Evaluating the
performance of neural network using unseen testing data set of 100 observations, the neural
network architecture consisting of 12 input nodes and 8 hidden layers (NN

12×8
) seems to be

performing better on all grounds (table 8). The values of MSE, MAE and RMSE for best
performing network in case of training, validation and testing are 0.0032, 0.0012 and 0.0013;
0.0417, 0.0271 and 0.0295; and 0.0562, 0.0342 and 0.0363 respectively. The correlation
coefficients between actual and predicted returns are found to be significant in all networks
using testing data set. The values of correlation coefficient and DA for best performing
network in case of training, validation and testing are 0.5080, 0.4241 and 0.2779; and 74.32%,
48.48% and 47.47% respectively (table 8).

From the results shown in the table 2 and 6-8, it can be said that to a large extent stock
market returns are predictable using AR and MLANN models. Table 9 shows that predictive
power of artificial neural network is better than AR model as indicated by highlighted figures
of MSE, RMSE and MAE. The MSE, RMSE and MAE are less for Neural Network compared
to AR modeling. For instance, the MSE, RMSE and MAE in case 1 for AR model is 0.0031,
0.0553 and 0.0400 while it is 0.0028, 0.0527 ad 0.0388 for ANN respectively which are less in
comparison to AR values. Similar difference exists in case 2 and 3 (table 9). Further, MSE
and RMSE decreases as the number of observations in training set increases. This is equally
applicable to both linear (AR) and non-linear (ANN) modeling.

Table 2
Resuts for AR Model

Dependent Variable: R

AR-1500 AR-1800 AR-1900 AR-2010

Coeff t-Stat Coeff t-Stat Coeff t-Stat Coeff t-Stat

C 0.5 255.5 0.501 288.9 0.501 301.3 0.501 316.5

AR(1) 0.071 2.753 0.07 2.971 0.071 3.105 0.073 3.263

AR(2) -0.02 -0.69 -0.04 -1.68 -0.04 -1.68 -0.04 -1.78

AR(3) 0.016 0.63 0.029 1.231 0.03 1.295 0.029 1.278

AR(4) 0.04 1.555 0.054 2.291 0.057 2.466 0.056 2.487

AR(5) -0.03 -1.18 -0.03 -1.36 -0.03 -1.41 -0.03 -1.32

AR(6) -0.06 -2.2 -0.06 -2.55 -0.06 -2.67 -0.06 -2.86

AR(7) 0.021 0.81 0.019 0.809 0.02 0.859 0.021 0.926

AR(8) 0.024 0.928 0.009 0.36 0.007 0.29 0.008 0.345

AR(9) 0.07 2.686 0.066 2.783 0.066 2.888 0.064 2.871

R-squared 0.018 0.019 0.02 0.02

Adjusted R-squared 0.012 0.015 0.015 0.016

F-statistic 2.932 3.929 4.275 4.542

Prob(F-statistic) 0.002 0 0 0

Durbin-Watson stat 2 2.002 -2.663 -2.7

Akaike info criterion -2.617 -2.626 2.002 2.002
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Table 3
Q-Statistics for Autocorrelation

Lag Q-Stat(1500) Q-Stat(1800) Q-Stat(1900) Q-Stat(2010)

1 0.0038 0.0017 0.0016 0.0019

2 0.0170 0.0028 0.0034 0.0033

3 0.0556 0.0054 0.0063 0.0054

4 0.0563 0.0197 0.0220 0.0217

5 0.0868 0.0319 0.0363 0.0342

6 0.1061 0.0321 0.0365 0.0347

7 0.7383 0.0353 0.0398 0.0380

8 1.8403 0.0602 0.0677 0.0629

9 9.1844 0.0607 0.0699 0.0669

10 9.1909 0.3412 0.3310 0.4026

11 10.514 0.6890 0.8390 0.8653

12 10.580 1.0269 1.2325 1.1584

13 14.200 3.6797 4.0774 4.0779

14 16.101 6.6498 6.7728 6.6259

15 19.488 9.6268 10.262 10.044

16 19.759 9.7871 10.453 10.243

17 20.670 10.338 11.205 11.125

18 20.919 10.809 11.606 11.461

19 23.666 11.748 12.491 12.404

20 32.435 16.407 17.627 17.441

21 33.267 16.970 18.406 18.305

22 33.268 16.970 18.422 18.337

23 34.599 19.049 21.048 21.146

24 34.606 19.112 21.120 21.217

25 35.248 19.855 22.115 22.284

Table 4
Forecast by AR Model

Input data for estimation 1500 1800 1900

Forecasted observation 510 210 110

MSE 0.0031 0.0014 0.0014

RMSE 0.0553 0.0372 0.0376

MAE 0.0400 0.0300 0.0306

The empirical results for India do not support the hypothesis that financial liberalization
has lead to increased efficiency and reduced the prediction possibility in stock prices. Grabel
(1995) suggested that improved legal and regulatory environment and institutional
arrangements basic to reform process would contribute to restrain excessive speculation
and a decline in price volatility by aligning asset prices closer to fundamentals. But apparently
the reverse is happening and the possible reasons are discussed in the next section.
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Table 5
BDS Statistics

Residuals from the AR to Return

Dimension (m) BDS Statistic Std. Error z-Statistic Prob.

0.5s

R 2 0.008110  0.000818  9.915731  0.0000

3  0.007583  0.000585  12.95417  0.0000

4  0.004737  0.000314  15.06579  0.0000

5  0.002571  0.000148  17.37970  0.0000

6  0.001300  6.45E-05  20.16817  0.0000

R 2 0.019490  0.001798  10.84211  0.0000

3  0.031422  0.002332  13.47154  0.0000

4  0.034404  0.002269  15.16193  0.0000

5  0.032290  0.001933  16.70729  0.0000

6  0.028275  0.001523  18.56068  0.0000

1.5
R 2 0.020672  0.001746  11.83655  0.0000

3  0.041857  0.002964  14.12417  0.0000

4  0.058663  0.003767  15.57253  0.0000

5  0.069376  0.004191  16.55453  0.0000

6  0.076105  0.004313  17.64432  0.0000

2
R 2 0.014543  0.001213  11.99198  0.0000

3  0.032784  0.002351  13.94469  0.0000

4  0.051995  0.003413  15.23590  0.0000

5  0.068875  0.004334  15.89040  0.0000

6  0.083929  0.005093  16.48084  0.0000

Notes: m-embedding dimension; �-distance between points, measured in terms of number of standard
deviations of the raw data; �-standard deviation.
All statistics are significant at the 5 per cent level.

Table 6
ANN Results

Training Validation Testing

Inputs�  13 5 7

Neurons� 12 8 12

MSE 0.0048 0.0021 0.0028

MAE 0.0526 0.0346 0.0388

RMSE 0.0690 0.0462 0.0527

MAD 0.0424 0.0261 0.0309

Corr 0.3273 0.1913 0.3147

P-Val 0.0000 0.0000 0.0000

DA 73.73 58.18 51.70

AIC -5321 -3064 -2930
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CONCLUDING REMARKS

The empirical results for India indicate the presence of inefficiency and predictability in
stock prices. Autoregressive Models and Artificial Neural Network are used to predict the
daily BSE Sensex returns and test for efficient market hypotheses. It is revealed in the study
that AR model are capable to detect linear dependencies while nonlinearties are not detected
as shown by BDS test. ANN is found to outperform AR predictions. It is observed from
obtained result that MSE, RMSE and MAE decrease as the number of observations in training

Table 7
ANN Results

Training Validation Testing

Inputs� 12 7 15
Neurons� 16 3 12
MSE 0.0036 0.0039 0.0013
MAE 0.0449 0.0439 0.0293
RMSE 0.0601 0.0627 0.0367
MAD 0.0346 0.0319 0.0273
Corr 0.3802 0.4113 0.2611
P-Val 0.0000 0.0000 0.0011
DA 73.55% 54.27% 57.29%
AIC -8975 -1094 -1292

Table 8
ANN Results

Training Validation Testing

Inputs� 13 9 12
Neurons� 16 8 8
MSE 0.0032 0.0012 0.0013
MAE 0.0417 0.0271 0.0295
RMSE 0.0562 0.0342 0.0363
MAD 0.0329 0.0239 0.0284
Corr 0.5080 0.4241 0.2779
P-Val 0 0.0001 0.0051
DA 74.32% 48.48% 47.47%
AIC -10337 -657 -639

Table 9
Comparative Predictive Performance

Input data for estimation 1500 1800 1900
Forecasted observation 500 200 100

Auto Regression (AR) Model
MSE 0.0031 0.0014 0.0014
RMSE 0.0553 0.0372 0.0376
MAE 0.0400 0.0300 0.0306

Artificial Neural Network
MSE 0.0028 0.0013 0.0013
RMSE 0.0527 0.0367 0.0363
MAE 0.0388 0.0293 0.0295
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set increases. These results are equally applicable to both AR and MLANN modeling.
Efficient market hypotheses are not supported by the data of BSE stock indices as indicated
by AR and MLANN model. Further, it can be said that to a large extent stock market returns
are predictable.

These results seems to suggest that more steps on the part of government, RBI and SEBI
are required to bring more transparency in the equity markets. Over the years transactions
costs have come down, trades are guaranteed and screen based trading has done away with
settlement problems. The role of intermediaries has reduced due to online trading of equity
shares through ICICI bank and HDFC bank’s demat accounts among others. However,
market efficiency is linked to information which is costly (both in terms of money and time)
and monitoring and enforcing regulations are not costless, nor perfect. The results suggest
that certain anomalies such as insider trading, price rigging by management, circular trading,
dissemination of information about FIIs trades among others still exist which may be making
the equity markets inefficient and predictable.

There is a link between market inefficiencies and trading profits. Market intermediaries
are closest to markets, are able to respond fastest to market inefficiencies, and hence are
best able to obtain trading profits from inefficiencies. The rents that flow from faulty market
structures give intermediaries the sharpest incentives to engage in political actions, which
increase transactions costs, block reforms to market institutions, and maximize market
inefficiencies. For instance, BSE brokers earned enormous trading profits as a direct
consequence of the inefficiencies of the BSE floor. Intermediaries in equity markets have
unique incentives to block institutional change which eliminates their special status and
ends these trading profits. In view of emergence of equity market as the barometer of
economic performance of the economy, there is a need of committed effort on the part of
government, RBI and SEBI to bring transparency and immediate dissemination of
information would help in minimizing inefficiency and reduce predictability.

Notes

1. The forecasts can be either static or dynamic; static forecasts use actual values of lagged dependent
variables, where these are required, whereas dynamic forecasts use the previously forecast values
of these variables. Since the errors made in dynamic forecasting for periods early in the forecasting
horizon contaminate forecasts for later periods as well, forecast errors in dynamic forecasts are
expected to be greater than those in static forecasts.

2. The results for all network are not given in the paper for saving the space, because there are 540
networks. However, the results for all networks are available with authors and can be provided
on demand.
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