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ABSTRACT

This paper investigates for predictable components in the return series of 12 European
stock markets using the tests of Geweke and Porter-Hudak (1983), and Robinson (1995b),
to analyze the degree of dependence in the intertemporal structure of stock returns.
Evidence of high degree of predictability is documented in almost all market indices over
the sample periods. Furthermore, by using full Whittle maximum likelihood with the
Geweke and Porter-Hudak estimates of the fractionally differenced parameter as starting
values, more supportive evidence in the series is found. It appears that most European
stock markets are persistent dependent, resulting in improved long-horizon predictability
and stock market inefficiencies.

JEL CLASSIFICATION: G12, G14, C53.
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1. INTRODUCTION

One of the most popular issues of recent research in empirical finance is whether or
not there are predictable components in stock market returns over long horizons.
Many empirical studies have examined the evidence for long horizon predictability in
stock returns, such as, Greene and Fielitz (1977), Aydogan and Booth (1988), Poterba
and Summers (1988), Lo (1991), Cheung, Lai, and Lai (1994), Mills (1993), Crato (1994),
Cheung and Lai (1995), Barkoulas and Baum (1996), Lobato and Savin (1998),
Barkoulas, Baum, and Travlos (2000), Wright (2001), Panas (2001), Sadique and
Silvapulle (2001), Caporale and Gil-Alana (2002), Henry (2002), and Tolvi (2003).
Unfortunately, the results of these studies have been mixed. The main purpose of
most empirical research in this area has been the establishment of time series
properties of stock returns in major stock markets.
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The efficient market hypothesis requires that stock returns are totally
unpredictable, that is, the arrival of new information is arbitraged away immediately.
In an efficiently functioning market, the price of a share of stock should follow a
martingale or random walk process in which each price change is totally unrelated to
its history and there exist zero autocorrelations at all lags. If the stock return series are
long-range dependent, there are significant positive autocorrelations between
observations widely separated in time. Since the realized series are not independent
over time, historical stock returns can be used for prediction purposes, disputing the
validity of the efficient market hypothesis. Therefore, the question of whether or not
stock markets are efficient is equivalent to whether or not long-range dependence is
present in the stock returns.

This empirical study extends previous research on long-range dependence in two
respects. First, European evidence concerning dependence in stock returns is
explored. Since the evidence on long-range dependence is mixed, an analysis of the
behavior of stock markets may be deemed appropriate. Second, the robustness of the
fractionally differencing parameter is examined by applying two estimation
techniques to daily index return data on 12 European countries.

This paper is divided into five sections. Section 2 briefly describes the model of
longrange dependence in time series. Section 3 outlines the tests of Geweke and
Porter-Hudak (1983) and Robinson (1995b) for I(d) statistical models which we apply
to daily stock returns and the full Whittle maximum likelihood (1951, 1962). Section 4
describes the data and presents the empirical results. The final section provides the
concluding remarks.

2. LONG RANGE DEPENDENCE AND FRACTIONAL STATISTICAL ANALYSIS

A series {xt} is a linear long memory time series if
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where t is i.i.d. (0, 2) and the spectral density of the series satisfies

fx ( ) ~ C –2d  0 for 0 < d < 0.5

In practical econometric research, it is often useful to analyze the long-range
dependence of the time series of interest by employing the Autoregressive
Fractionally Integrated Moving Average, or ARFIMA (p,d,q), approach. ARFIMA
models have been introduced by Granger and Joyeux (1980) and Hosking (1981) and
are defined as

(L) (1–L)d (xt – µ) =  (L) t (2)

where L is the lag operator (Ljxt = xt-j), (L) = 1 - 1L -. . . - pLp is the autoregressive
polynomial, and (L) = 1 + 1L + . . . + qLq the moving average polynomial, and µ is the
mean.
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The roots of (L) and (L) are assumed to lie outside the unit circle and that they
do not have common roots. The differencing parameter d can take on any real value
and is not restricted to the integer domain.

The fractional differencing operator (1-L)d is defined for non-integer d by an
infinite binomial expansion
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The long-range dependence properties of such series depend on the value of d. For
d  (0, 0.5) the ARFIMA process is covariance-stationary and it displays long-range
dependence. This property characterizes the behavior of the series’ long-lagged
autocovariances. In this case, all autocorrelations are positive and they decay
hyperbolically to zero as the lag length increases, compared to the usual exponential
decay of a stationary ARMA model with d = 0. Thus, if a series is long-range
dependent, there are significant autocorrelations even at very long intervals and the
autocovariances decline very slowly (in the time domain). A shock to the series has a
long-lasting impact, even though it eventually dies out. For all practical purposes, a
long-range dependent process may be considered to have an infinite span of statistical
interdependence. In the frequency domain, long-range dependence is indicated by
the fact that the spectral density becomes unbounded as the frequency approaches
zero.

Standard ARIMA processes cannot possess long-term dependence since they can
only describe the short-run behavior of a time series. For d  (-0.5, 0) the process is
covariance-stationary and displays short memory. Short memory describes the
loworder correlation structure of a series and is shown by quickly declining
autocovariances in the time domain and significant power at high frequencies in the
frequency domain. In this case the autocorrelations are all negative. For a
shortmemory process, events from the distant past have negligible effect on the
present. For d  0.5 the series are no longer covariance stationary, and have infinite
variance (for a more detailed discussion see, for example, Baillie (1996)).

3. TESTING METHODS

There exist a large number of methods, proposed in the literature, to test for
longrange dependence. These estimation techniques may be classified in different
ways. They may be classified in two-step (Geweke and Porter-Hudak, 1983) and
one-step procedures (Li and McLeod, 1986, and Fox and Taqqu, 1986) or time-domain
(Li and McLeod (1986) and Sowell, 1992a) and frequency-domain procedures (Fox and
Taqqu, 1986, and Geweke and Porter-Hudak, 1983) or approximate maximum likelihood
(Li and Mcleod, 1986, and Fox and Taqqu, 1986) and exact maximum likelihood (Sowell,
1992a). Exact maximum likelihood techniques have been criticized as being too
computationally demanding, while the other methods have been criticized as being
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inaccurate for finite samples (Sowell, 1992a, b). The semiparametric and nonparametric
may seem advantageous since fully specified parametric models may be subject to
misspecification. They help to avoid the modeling of short-run components. Another
advantage is the computational simplicity of these techniques. The Whittle MLE has
the same asymptotic properties as the exact MLE and has three advantages over the
exact MLE: the asymptotic properties of the Whittle estimator hold even if the series is
not Gaussian; the computation of the Whittle likelihood is computationally simple
since the periodogram at Fourier frequencies can be computed quickly using the Fast
Fourier Transform; the periodogram at non-zero Fourier frequencies is location
invariant. Thus, one does not have to mean-correct the data, unlike in the case of the
exact MLE. This can be beneficial in small samples (Cheung and Diebold, 1990).

In this empirical study two types of tests are used. The d parameter is estimated
using the semiparametric methods proposed by Geweke and Porter-Hudak
(GPH,1983) and the Robinson’s Gaussian estimator (RGSE, 1995b). In addition,
ARFIMA models are fitted to the return series using the full Whittle ML with GPH
estimates as starting values (this approach does not use the approximation advocated
by Fox and Taqqu, 1986).

3.1. The Geweke Porter-Hudak log Periodogram Regression Estimator

Geweke and Porter-Hudak (1983) proposed a semiparametric procedure to obtain an
estimate of the memory parameter of a fractionally integrated process. The estimate is
obtained from the application of ordinary least squares to

ˆˆlog( ( )) log|1 |si
x s iI c d e �� � � � � � (3)

computed over the fundamental frequencies { s = 2 /n, s = 1, …, v, v<n}. We define
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Various authors have proposed methods for the choice of v, the number of Fourier
frequencies included in the regression. The regression slope estimate is an estimate of
the slope of the series spectrum in the vicinity of the zero frequency; if too few
ordinates are included, the slope is calculated from a small sample. If too many are
included, medium and high-frequency components of the spectrum will contaminate
the estimate. A choice of T, or power = 0.5 is often employed. To evaluate the
robustness of the GPH estimate, a range of power values (from 0.40 - 0.75) is
commonly calculated as well. Two estimates of the d coefficient’s standard error are
commonly employed: the regression standard error, giving rise to a standard t-test,
and an asymptotic standard error, based upon the theoretical variance of the log
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periodogram of ( 2/6). The statistic based upon that standard error has a standard
normal distribution under the null.

There is evidence of long-range dependence if the least squares estimate of d is
significantly larger than 0. With the proper choice of v, the asymptotic distribution of
d depends on neither the order of the ARMA component nor the distribution of the
error term of the ARFIMA process.

3.2. Robinson’s log Periodogram Regression Estimator

Robinson (1995a) suggested an alternative log-periodogram regression estimator. Let
Xt denote a G-dimensional vector with g-th element Xgt, g = 1, …,G. Assume that Xt
has a spectral density matrix 

–
  eij  f ( )f  with (g, h) element denoted as fgh ( ). The

g-th diagonal element, fgg( ), is the power spectral density of Xgt. For 0 < Cg <  and –
½ < dg < ½ assume that fgg( ) ~ Cs 

-2d as   0 + for g =1, …, G. The periodogram of Xgt
is then denoted as
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Without averaging the periodogram over adjacent frequencies or omitting initial
frequencies from the spectral regression, we may define Ygk = log Ig ( k). The least
squares estimates of c = (c1 , …, cG)’ and d = (d1 , …, dcG

)’ are given by
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where Z = (Z1 , … , Zm)’, Zk = (Z1, -2log k)’, Y= (Y1 , … , YG)’ and Y = (Yg,1 , … , Yg,m)’
for v periodogram ordinates.

Standard errors for g d~g and for a test of the restriction that two or more of the dg
are equal may be derived from the estimated covariance matrix of the least squares
coefficients. The standard errors for the estimated parameters are derived from a
pooled estimate of the variance in the multivariate case, so that their interval
estimates differ from those of their univariate counterparts.

3.3. Full Whittle Maximum Likelihood

The Whittle likelihood requires the computation of the periodogram of the series
defined as
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where I( j) denotes the periodogram at the j-th Fourier frequency, j ( j = 2 j/n,
 j =1, …,m).
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It can be shown that for j = 1, 2, … Ix( j )/fx ( j) behave approximately like i.i.d.
standard exponential random variables for almost all Fourier frequencies. The
Whittle likelihood is thus obtained by writing the likelihood of standard exponential
variables using the normalized periodogram ordinates as the observations.

The Whittle log likelihood is given by
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where m is the largest integer contained in (n – 1)/2.

The reduced form of Lw with respect to the error variance 2
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4. DATA AND EMPIRICAL RESULTS

The data used in this study consist of stock index observations of daily frequency for
Austria, Denmark, Finland, France, Germany, Greece, Holland, Italy, Norway, Spain,
Turkey, and UK and they were obtained from the Bloomberg database. When daily
observations are not available, next day index values are used. The data description is
depicted in Table A in the appendix.

The data were transformed into continuously compounded returns by taking the
first logarithmic difference of the index series. The main motivation to work with log
returns is that they are usually (covariance) stationary. A second advantage of
working with log returns, instead of levels, is that log returns present the behavior of
the conditional volatility of the series in a more intuitive manner.

In selecting which stock indices to include in the analysis, the main criterion was
the length of the available series. The decision was to include series with more than
2500 observations. Therefore the shortest series has 2,744 observations, and the
longest one has 6,057. Using the Granger and Ding (1995a) approach, outliers have
been transformed in a way that they do not heavily influence the d estimates towards
zero. Based on their technique, any stock return larger than three standard deviations
is set equal to three standard deviations and any return smaller than minus three
standard deviations is set equal to minus three standard deviations.

Table 1 lists all the return series and presents summary statistics for the data. All
of the series mean returns are positive. The mean of the mean series is 0.0005, that is,
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over the sample periods European stock markets have produced a return of 0.05%.
The return series appear extremely non-normal. In 11 out of 12 series, return
distributions are negatively skewed. The data also display a high degree of excess
kurtosis (leptokurtic), since the kurtosis coefficients are all larger than three. Such
skewness and kurtosis are common features in stock return distributions.

Table 1
Summary Statistics

Country Index Name T Mean SD Skewness Kurtosis

Austria ATX 4482 0.0002 0.0118 -0.3206 9.6197
Denmark KFX 3556 0.0003 0.0108 -0.2599 5.6874
Finland HEX 3234 0.0006 0.0198 -0.2603 8.5602
France CAC 4167 0.0002 0.0140 -0.2664 7.1219
Germany DAX 6057 0.0003 0.0136 -0.4412 9.2484
Greece ASE 4265 0.0008 0.0194 0.3420 14.9327
Holland AEX 5358 0.0004 0.0134 -0.3022 10.7834
Italy MIB30 2810 0.0004 0.0152 -0.0742 4.7589
Norway OBX 4297 0.0003 0.0143 -1.4018 27.7436
Spain MADX 2744 0.0004 0.0143 -3.1322 65.4415
Turkey XUSIN 2954 0.0020 0.0324 -0.1001 20.5465
UK UKX 5092 0.0003 0.0107 -0.7351 12.9105

Note: T is the sample size.

4.1. Fractional Difference

In this section we analyze the degree of dependence in the intertemporal structure of
daily stock returns using the tests of Geweke and Porter-Hudak (1983) and Robinson
(1995b). Table 2 reports the empirical estimates for the fractional differencing
parameter, d, as well as the results regarding the statistical significance based on the
GPH and RGSE tests, for all 12 stock indices. A concern in the application of the GPH
estimator is the choice of v, the number of spectral ordinates from the periodogram of
returns or the number of harmonic frequencies, to include in the estimation of d.
Usually it is function of the sample size, T. Traditionally, the choice most widely used
in this kind of research, is to set, v = T0.50. However, this may not be the best possible
choice in every situation, since it may bias the results. Some theoretical work has been
done on this topic, but unfortunately there is no easily applicable rule for the
appropriate choice of v.

As suggested by Taqqu and Teverovsky (1996), one possibility for an empirically
driven choice of v is to compute the estimate of d with different values of v, plot them,
and search for a relatively horizontal range in the plot. In such a range, both the variance
and the bias of the estimate should be small. To find the appropriate values for the data
set used in this empirical study, GPH and RGSE estimates were computed for all series
examined, using values of v ranging from 10 to T/2, which is the maximum usable
value. Values around v = T0.50 produce very random and unreliable results. However,
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based on our computations, a value of v = T0.65 is a better choice and will be used in what
follows. In order to check the sensitivity of the fractionally differencing parameter
estimates to the choice of v, we also report results for v = T0.60, and v = T0.70. To test the
statistical significance of the d estimates, one-sided (d = 0 vs. d > 0) test is performed.

Table 2
Results of Fractional Integration Analysis

Estimates of fractional differencing parameter (d)

GPH RGSE

Country Index Name 0.60 0.65 0.70 0.60 0.65 0.70

Austria ATX 0.0147 0.0787** 0.0889 0.0177 0.0787** 0.0894*
(0.794) (0.069) (0.011) (0.754) (0.069) (0.011)

Denmark KFX 0.0547 0.0707 0.0135 0.0487 0.0757 0.0111
(0.389) (0.166) (0.725) (0.445) (0.138) (0.772)

Finland HEX 0.1030 0.0737 0.0425 0.1104** 0.0708 0.0422
(0.107) (0.144) (0.337) (0.085) (0.162) (0.340)

France CAC 0.0599 0.0740 0.0125 0.0598 0.0666 0.0158
(0.282) (0.112) (0.741) (0.282) (0.149) (0.675)

Germany DAX 0.0659 0.0543 0.0510** 0.0530 0.0541 0.0509**
(0.190) (0.150) (0.099) (0.278) (0.153) (0.099)

Greece ASE 0.0788** 0.1194* 0.1235* 0.0788** 0.1193* 0.1247*
(0.075) (0.003) (0.000) (0.075) (0.003) (0.000)

Holland AEX 0.0464 0.0471 0.0414 0.0463 0.0471 0.0414
(0.451) (0.303) (0.246) (0.451) (0.304) (0.247)

Italy MIB30 -0.0005 0.0439 0.0210 0.0026 0.0439 0.0168
(0.993) (0.368) (0.597) (0.966) (0.368) (0.670)

Norway OBX 0.0406 0.0552 0.0397 0.0323 0.0550 0.0421
(0.477) (0.201) (0.254) (0.570) (0.204) (0.226)

Spain MADX 0.0506 0.0846 0.0352 0.0556 0.0883 0.0364
(0.413) (0.121) (0.424) (0.371) (0.106) (0.408)

Turkey XUSIN 0.0514 0.0808** 0.0803* 0.0514 0.0808 0.0801*
(0.307) (0.070) (0.025) (0.306) (0.070) (0.025)

UK UKX 0.0135 0.0319 0.0628** 0.0131 0.0319 0.0641**
(0.779) (0.417) (0.066) (0.788) (0.417) (0.060)

p-values are given in parentheses. The superscript *, ** indicates statistical significance for the null
hypothesis d = 0 against the alternative d > 0 at the 5%, 10% percent level or less, respectively.

The results reveal supportive evidence of long-range dependence in the return
series, since most d estimates are significantly positive for the stock markets at hand,
except the markets for Holland, Italy, and UK. The d parameter for Holland (0.0471),
Italy (0.0439), and UK (0.0319) is quite small; however it is different from zero and
suggests a weaker long memory in its mean process. The fractionally differenced
estimates are generally similar in value across the two tests used for each of the return
series. In all of the return series there is long-range dependence with positive values of
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d, varying from 0.0319 to 0.1194 for the GPH test and 0.0319 to 0.1193 for the RGSE
test. This result can be considered as an indication of the existence of long-range
dependence in these series. Both tests indicate that the evidence for the ASE (Greece)
market index is far stronger and statistically significant at the 1% level, with d
suggesting that there is a high degree of predictability in that index. There is marginal
evidence of predictability in the stock return series of Holland, Italy, and UK since the
estimates of d are very close to zero. The findings for these three countries support, to
some degree, the weak form of capital market efficiency, which implies that future
returns cannot be predicted based on past returns.

More evidence for return long-range dependence can be found in this data set
than what has earlier been found in other empirical studies. In the majority of the
series analyzed here, there is convincing evidence that the return series are strongly
autocorrelated, since the series for most market indices appear to be long-range
dependent processes, and that this property is robust to unit-root alternatives,
providing strong support for persistent (not martingale) behavior of stock prices.
These results suggest that stock markets experience long periods of generally
upward-trending stock indices as well as long periods of generally downward-
trending stock indices. Based on these findings, we can possibly conclude that most of
the European stock markets are inefficient and the presence of long-range
dependence could give rise to improved predictability, that is, systematically project
returns make profits over the future course of stock returns.

4.2. Full Whittle MLE

The existence of long-range dependence as evident by the discovery of a fractional
integration order suggests possibilities for constructing nonlinear models for
improved forecasting performance of the return series. The ARFIMA process
represents a flexible and parsimonious way to model both the short and long term
dynamic properties of the series. The parameters of the ARFIMA (p,d,q) model can be
jointly estimated by the frequency-domain full Whittle ML method using as starting
values the GPH d estimates.

Table 3 displays the parameter estimates of the selected ARFIMA models. Whittle
ML estimates of the parameters are obtained using the Broyden-Fletcher-Goldfarb-
Shanno algorithm and based on the model specifications selected initially by the
Akaike information criterion and finally by the Schwartz information criterion, with
both p and q being permitted to be less than or equal to four. The number of lags is
considered adequate in capturing the dynamics of fractionally integrated economic
time series.

From the results reported in Table 3, it can be observed that except Germany,
Italy, and UK with the weak evidence, the evidence for all the other nine countries
significantly exhibits the long memory property. The estimated results of d parameter
in the mean equation for all those 12 countries are lying between 0.0315 and 0.1201
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smaller than 0.5 implying a stationary process. In particular, the d parameter for
Germany (0.0423), Italy (0.0451), and UK (0.0315) is quite small, however it is different
from zero and suggests a weaker long memory in its mean process.

From the results of Table 3, we can obtain several interesting findings. In all 12
stock markets, the estimates for long memory parameter d in mean equation are
below 0.5, which indicates that all series are stationary. The estimated long memory
parameter is in the range 0.0315 < d <0.1201. The results indicate that all return series
have an integration order of less than one (d < 1). The data uniformly reject the null of
d = 0 in favor of fractional alternatives of d > 0 and most coefficient estimates are
statistically significant at the 10 per cent level or better. The long memory parameters
for all those countries are quite close to each. These results provide supporting
evidence of mean reverting fractional dynamics in all series. In short, we find that the
long memory effects are present in all 12 return series and can be better described by
the ARFIMA process.

Table 3
Parameter Estimates of the Selected ARFIMA Models

Country Index Name d 1 2 3 1 2 3

Austria ATX 0.0966 0.0246 0.0095 0.0098 - - -
(1.83) (0.28) (2.46) (0.87) -

Denmark KFX 0.0699 0.0016 0.0040 - 0.0016 0.0039 -
(2.66) (0.86) (2.84) (0.83) (1.56)

Finland HEX 0.1147 0.6113 - - 0.6683 0.0383 -
(2.02) (5.23) (4.47) (1.39)

France CAC 0.0747 - - - - - -
(8.62)

Germany DAX 0.0423 - - - 0.0397 0.0513 0.0267
(1.96) (1.63) (3.39) (2.06)

Greece ASE 0.1201 - - - - - -
(13.85)

Holland AEX 0.0690 - - - 0.0644 0.0437 0.0616
(2.78) (2.40) (2.77) (4.57)

Italy MIB30 0.0451 - - - - - -
(1.76)

Norway OBX 0.0560 - - - - - -
(6.46)

Spain MADX 0.0859 - - - - - -
(6.98)

Turkey XUSIN 0.0819 - - - - - -
(1.86)

UK UKX 0.0315 0.0004 0.0016 - 0.0004 0.0016 -
(3.64) (0.85) (2.94) (0.84) (1.29)

t-values are given in parentheses.
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5. SUMMARY

This paper examines for long horizon predictability in the stock market returns of 12
European countries. Two semiparametric methods of estimating long-range
dependence were employed, the Geweke and Porter-Hudak (GPH) and the
Robinson’s Gaussian estimator (RGSE). The study used stock index observations of
daily frequency that were transformed into continuously compounded returns by
taking the first logarithmic differences of the index series in order to make them
(covariance) stationary. In the selection of the data, we decided to use series with
more than 2500 observations. Outliers were transformed in a way that they do not
heavily influence the d estimates towards zero.

The results reveal supportive evidence of long-horizon predictability in most
return series and that it cannot be attributed to random variation. In fact, more
evidence for return long-range dependence can be found in our data set than in other
empirical studies. The existence of long-range dependence suggests ARFIMA model
construction to model both the short- and long- term dynamical properties of the
series, for improved forecasting performance, especially over longer forecasting
horizons.

The implications of the study are that European stock markets are not efficient
and they exhibit long-range dependence. The weak form of efficiency is rejected and
past information can be used to predict the direction of future prices. That is,
systematic profits can be made in most of the markets examined.

Questions also arise as to the source of long-range dependence in the
European stock indices. The presence of long-range dependence in these series
may reflect the statistical property of fundamental factors underlying their
behavior. One possible mechanism that might generate long memory in the stock
return series is structural change. It is well known that inference about the
differencing parameter in presence of structural break in a series entails
considerable difficulties. Therefore, given the financial crisis of 2000-2001 in
Europe, further tests for unraveling of the memory property and presence of
structural break in the stock return series are required. The exclusion of such tests
from the present study can be considered as its limitation.
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APPENDIX
Table A

Data Description

Data Period

Country Index Name From To No. of Obs

Austria ATX 8/1/1986 18/2/2004 4482

Denmark KFX 4/12/1989 18/2/2004 3556

Finland HEX 11/3/1991 18/2/2004 3234

France CAC 9/7/1987 18/2/2004 4167

Germany DAX 2/1/1980 18/2/2004 6057

Greece ASE 2/1/1987 18/2/2004 4265

Holland AEX 3/1/1983 18/2/2004 5358

Italy MIB30 31/12/1992 18/2/2004 2810

Norway OBX 2/1/1987 18/2/2004 4297

Spain MADX 30/12/1988 18/2/2004 2744

Turkey XUSIN 25/2/1992 18/2/2004 2954

UK UKX 3/1/1984 18/2/2004 5092

Data Source: Bloomberg




