
I J C T A, 7(2) December 2014, pp. 99-108
© International Science Press

* Assistant Professor, C. S. I. Institute of Technology, Thovalai, Nagercoil, India, E-mail: tsajuraj@gmail.com
** Sr. Professor, Mepco Schlenk Engg. College, Sivakasi, India, E-mail: kmuni@mepcoeng.ac.in

Dynamic Task Scheduling in Highly
Communicative Task Graph by Critical
Path Selection and Partial Task Replication
T. Sajuraj* and K. Muneeswaran**

ABSTRACT

Scheduling is mapping of task to processor by reducing the job completion time. The aim of this paper is to
introduce the scheduling approach for highly communicating task graph with partial replication strategy improving
the speedup factor of deploying the parallel processor. Task nodes are mapped on to the processor using critical
path, nodes selection and processor assignment algorithm. Some of the critical tasks are duplicated on more than
one processor using task work with replication algorithm. Our algorithm provides better job completion time than
previous work in the literature.

Keywords: Scheduling, Task Graph, Critical path.

1. INTRODUCTION

The demand for the computing has increased tremendously due to the large number of computers that are
networked and the need for processing a enormous number of tasks. Task scheduling is one of the critical
issues in multitasks and multiprocessor environment. Parallel programming enables the assignment of task
both at spatial and temporal levels. This task scheduling becomes an NP-hard problem [1] which leads to
the explorations of many ways of solving the problem with its heuristic solution for its optimality. The huge
computational requirements are the challenges in today’s mass multimedia-based processing applications.
Parallel processing is one of the approaches to meet these requirements. However, designing a parallel
algorithm is not that simple as that of the single processing environment. Lot of dependencies among the
sub-tasks in the major tasks pose the problem in the realization of the parallel or distributed environments.
The main issues are splitting the task into sub-tasks, studying its dependencies, communication across the
sub-tasks, synchronization and scheduling to the resources. An inappropriate scheduling exhibits poor
performance issues.

The primary objective of the scheduling in multi-processing environment is to minimize the job
completion time and improve the turnaround time by appropriately allocating the sub-tasks to the parallel
or distributed processors. Majority of the algorithms are based on static scheduling [1] [6], where the
requirements regarding the characteristics of the running program must be known before the tasks being
executed. However in static scheduling the resources may be underutilized. On the other hand the dynamic
scheduling algorithm tries to adapt to the computing requirement with an objective of improving the speed
and utilizing the resources to the maximum possible extent.

The work proposed in [3] identifies the dynamic critical path and the result obtained was compared
with pre-existing schedulers for deploying multiprocessors having memory constraints. Task replication is
sometimes made in the creation of concurrency graph, which requires the identification of the sub-task to



100 T. Sajuraj and K. Muneeswaran

be duplicated. The process involves in finding the maximal length of the task (critical path) and assigning
the sub-tasks in that path to appropriate resources ensuring the right starting time of the task. In our proposed
work, the features of both static and dynamic scheduling are made use of for high interactive/dependent
tasks, which assigns the task to processors in a dynamic manner.

2. PROBLEM DEFINITIONS AND BACK-GROUND

The task graph G = (V, E, W, C) represents the task set of tasks T. Here, V is the finite set of vertices
representing the sub-tasks in the system. Each element in the set W represents the computational requirements
of the sub-task V

i
 in V. E is the finite set of edges (E

ij
) linking the sub-task T

i
 and sub-task T

j
, where the sub-

task T
j
’ s input is depending on the output of the sub-task T

i
. A non-negative edge cost C

ij
 is the communication

cost associated with the delay incurred in the transmission and propagation between the sub-tasks i and j.

P is the set of processors which will be mapped to the sub-tasks in the graph G. The entry point of the
graph has the starting time of the task T. We have considered a non-preemptive environment with dedicated
environment. The start time of node, ‘n’ is represented as st(n) and pr(n) is the assigning time of the
processor to that node. st(n, p) represents the start time of the node ‘n’ on the processor ‘p’, and the completion
time of the node ‘n’ by the processor ‘p’ is computed as.

comp(n, p) = st (n, p) + W(n, p) (1)

The processing of a node can be done iff the processing element is free and all its previous or predecessor
node’s processing is completed. To schedule a task graph G onto a target system with a set of processors
P, each node n Є V must be associated with a start time and assigned to a processor ‘p’ where p Є P. In
order to proceed with our work we assume the following about the system: (i) All the processors in the
system are available for execution (ii) The tasks cannot be preempted (iii) The communication cost for
executing in the current processor is taken as zero (iv) There is no overhead of communication cost other
than transmission and propagation (v) There is no contention for the resources (vi) All the processors are
connected.

Also, the processing cannot start unless the execution in the parent node of the current node is not
completed in the task graph. The earliest start time can be only after the communication from the previous
node to the current node is completed, if the previous node is associated with another processor. The
following sections describe our proposed work in details.

3. THE PROPOSED SCHEDULING APPROACH

A proposed scheduling methodology is suggested for task graphs multiprocessor systems. The suggested
methodology is intended for highly communicating task graphs.

For every task, the worst case execution time [3] is known a priori in static scheduling. It is greater
than the actual execution time. Since the exact completion time of any task can only be known at runtime,
static scheduling relies on resource reclaim within each processor. Resource reclaim at the time of
completion may be performed on individual processor for the improvement of schedule length. ‘Resources
reclaim’ means that if a task is ready for execution in the scheduled processor before the start time is
assigned by the static scheduler, then it can start execution early. The selective replication strategies [7]
and [8] tries meeting the memory constraints on each processor by properly choosing nodes that are
anticipated to contribute more to the performance improvement during an online scheduling. A dynamic
schedulers [1] schedule tasks to processors using the information available at runtime. In order to explore
the benefits of the dynamic scheduling, we create different task graphs using Gaussian elimination
approach by specifying the number of nodes in the task graph and processors, which is explained in the
next section.



Dynamic Task Scheduling in Highly Communicative Task Graph by Critical path Selection... 101

3.1. Gaussian Elimination Approach for Task Graph Creation

A task graph is created for Gaussian Elimination application which is a communication-intensive task
graph and it is scheduled on set of heterogeneous processors. The simultaneous equation of the form AX =
C is solved by the Gaussian Elimination method to create the task graph. It consists of two steps: (i)
Forward Elimination and (ii) Back Substitution. In the forward elimination, the coefficient matrix is
transformed into an upper triangular matrix. The total number of nodes N in the task graph is calculated
using the expression given in Equation (2) by specifying the order of the matrix m.

N = (m2 + 3m)/2 (2)

The goal of the static scheduling is to minimize the job completion time and is compliant with the code
memory constraint of each processor. In order to implement the scheduling, we propose the following three
algorithms as: (i) Critical path selection algorithm, (ii) Node selection algorithm, (iii) Processor Assign
algorithm. First we create the task graph using Gaussian Elimination approach for any arbitrary size.

Algorithm genGraphUsingGaussian(M)

Input: M - order of task graph G

Output: Graph G with node cost and edge cost with N number of nodes

{

N=(m*m+3*m)/2

for each node n in N of graph G

{

c
n
 = genRandomCost( a,b) //Computation cost of node n in the range a,b

S
n
 = false //S

n
 is the scheduled status of the node n

}

G = establishLink(N)

//produces a Graph with a set of edges E using Gaussian Elimination method

for each edge e in E with nodes u, v of G

{

C
u,v

 = genRandomCost( p,q) //Communication cost between u, v in the range p,q

}

}

The following algorithms describes the computation of the cost associated with the critical path.

Algorithm computeCost(p)

Input: path p

Output: path cost c

{

c = 0

for each edge (u,v) in path p

{

//c
u
 is the computation cost of node

//c
u,v

 is the communication cost of the edge u,v

c = c + c
u
 + c

u,v



102 T. Sajuraj and K. Muneeswaran

}

c = c + c
v

return c

}

Algorithm getCritcalCost(G)

Input: Task Graph G with start node s and end node e

Output: Critical Cost C
C

{

Initialize c = c
c
 = 0

P = findAllPath (G, s, e)

for each path p in P

c
p
 = computeCost(p)

C
c
 = max(c

p
)

}

The critical path plays an important role in scheduling, and it determines the partial length of a task
graph. Along with the critical path, the nodes of task graph can be added dynamically based on its predecessor
relation. A node can be selected iff the predecessor node(s) or previous node(s) is completed. During each
scheduling, the critical path may vary which results in the change of intermediate nodes dynamically between
start and end nodes. The following algorithms selectNode and assignProcessor describe the selection of
the node and assignment of the processor for the job.

Algorithm selectNode (p)

Input: Critical path p

Output : Ordered list of nodes - LO

{

repeat

{

for each node n in critical path p

If (isAvailable(pred(p))

add(LO,pred(n))

else add(LO, n)

}

until all nodes are visited

}

After identifying the order of the node, a method is needed to select a processor for scheduling.
The scheduled nodes do not have a fixed start times. In order to select a node, its previous node(s) or
predecessor node(s) has to be completed. The completed sub task is placed in a list LWO. If the parent
node and the child node are executed by the same processor, then the communication cost is considered
negligible, otherwise the communication cost is considered. The following algorithm describes processor
assignment.



Dynamic Task Scheduling in Highly Communicative Task Graph by Critical path Selection... 103

Algorithm assignProcessor(nop, Orderlist)

Input : nop - number of processors, LO
 
in G with start and end node

Output : Task completed

{

t
c
= t

ps
= 0;

//tc - computational time, tps - processor start time

for each node n in the LO

{

if (isCompleted( pred(n))

{

if (!isBusy(pr)

{

assignProcessor(pr,n) //pr - free processor

if(assign(pr,n) = = assign(pr, pred(n))

c
u,v

 = 0

}

else

wait

}

else

wait //Until the predecessor job nodes are completed

}

}

Till this point, we have discussed the scheduling of the free processor for the task in the graph by
selecting the critical path and scheduling the processor to each node for the ordering for execution by
means of looking at the completion status of the predecessor node. By this process, some processor may be
waiting for the predecessor sub task’s completion. After completion of those subtasks only, the other tasks
can run. We will show how some of the tasks can be duplicated and idle time of the processors could be
explored.

3.2. Task Replication

If we select some of the tasks which are required for the maintaining the sequence of the tasks (dependency)
for executing the current sub-sequence of the tasks and duplicate in another path with an ordered list
of nodes, the parallel processing power available in the computing system could be explored to
improve the performance. By this, the idle time of the processor can be utilized in an efficient manner by
executing the duplicated task. Hence concurrency graph is generated and selective nodes are duplicated in
the concurrency graph. During the task replication phase, it identifies the concurrent nodes which are
scheduled on different processors. A concurrency graph G

C
 is constructed from Gaussian Elimination graph

with vertex set V(G) so that for each edge u,v in E(G
C
), the corresponding two vertices u and v are not

reachable from each other in G, and they are not mutually exclusive to each other. The following algorithm
narrates the process.



104 T. Sajuraj and K. Muneeswaran

Algorithm duplicateTaskAndProcess(nop, LO,G
C
)

Input : nop, Ordered list and concurrent Task Graph G
C

Output : Task completed

{

t
c
=t

ps
=0;

for each node n in the LO

{

if ( ! isCompleted( pred(n))

{

If (checkDuplicate(G
C
))

duplicateAndAssignProcessor(pr
1
, n, pred(n))

//pr
1
 is the free processor

}

elseif (!isBusy(pr)

{

assignProcessor(pr,n) //pr - free processor

if(assign(pr,n) = = assign(pr, pred(n))

c
u,v

 = 0

}

else

wait

}

}

4. EXPERIMENTAL SETUP

Having identified the ways to make use of the free processor for the performance improvement, the next
step is to set up simulation for evaluating the work. Figure 1 shows the task graphs with different levels of
Gaussian Tree such as 2, 3, 4 and 5 levels. The dependencies of the tasks on the completions are shown as
directed arcs.



Dynamic Task Scheduling in Highly Communicative Task Graph by Critical path Selection... 105

Figure 1: Task graphs with different levels of Gaussian Tree
(a) 2 levels, (b) 3 levels, (c) 4 levels, (d) 5 levels

5. RESULTS AND DISCUSSION

As the tasks are assigned to the processor, the time taken for the completion of the tasks is noted and
tabulated. By exploring the parallel processing capabilities of the systems, the performance of deploying
the single processor and multiprocessor environments are analyzed. One of the performance metric is
speedup factor (S) which is defined as the ratio between the job completion time under single processor
environment to the time under the multiple processors environment which is shown in Equation 3 where t

u

is the time taken under the single processor environment and t
m
 is the time taken under multiprocessor

environment. Also the efficiency of the deploying the multiple processors can be computed as shown in
Equation 4, where the N is the number of processors. Table 1-7 show the performance of the proposed
system at different experimental setup.

u

m

t
S

t (3)

*100
S

N
(4)



106 T. Sajuraj and K. Muneeswaran

Table 1
Performance of the Multiprocessor Scheduling (Varying Levels of Task Graph and Number of Processors

#Levels #Nodes Time taken in milli seconds

#P=1 #P=2 #P=3 #P=4 #P=5

P0 P0 P1 P0 P1 P2 P0 P1 P2 P3 P0 P1 P2 P3 P4

2 5 20 11 16 8 12 13 8 9 10 12 7 8 9 9 10
3 9 55 33 36 27 22 28 17 25 24 17 17 16 23 18 17
4 14 87 51 52 36 40 37 33 31 27 29 27 26 26 26 23
5 20 99 76 58 44 52 48 43 41 43 33 35 27 33 33 35

Table 2
Outputs without Replication

#Levels #Nodes Time taken in milli seconds

#P=1 #P=2 #P=3 #P=4 #P=5

P0 P0 P1 P0 P1 P2 P0 P1 P2 P3 P0 P1 P2 P3 P4

2 5 26 18 24 12 18 24 10 11 18 24 7 10 11 18 24
3 9 62 50 55 42 40 35 42 30 29 38 30 23 42 27 22
4 14 73 64 55 45 45 41 25 43 27 36 42 25 32 23 27
5 20 99 70 66 57 62 60 39 42 36 47 35 30 27 31 25

Table 3
Outputs with Replication

#Levels #Nodes Time taken in milli seconds

#P=1 #P=2 #P=3 #P=4 #P=5

P0 P0 P1 P0 P1 P2 P0 P1 P2 P3 P0 P1 P2 P3 P4

2 5 26 16 22 11 16 22 22 16 10 9 7 9 10 16 22
3 9 62 46 49 36 36 39 27 27 38 34 19 32 20 23 29
4 14 73 48 58 41 41 43 29 28 30 41 22 22 19 35 25
5 20 99 64 59 50 52 51 31 35 40 42 31 29 25 35 23

Table 4
Critical Cost without Replication

#Levels #Nodes Time taken in milli seconds

#P=1 #P=2 #P=3 #P=4 #P=5

2 5 26 24 24 24 24
3 9 62 55 42 42 42
4 14 73 64 45 43 42
5 20 99 70 62 47 35

Table 5
Critical Cost with Replication

#Levels #Nodes Time taken in milli seconds

#P=1 #P=2 #P=3 #P=4 #P=5

2 5 26 22 22 22 22
3 9 62 49 39 38 32
4 14 73 58 43 41 35
5 20 99 64 52 42 35



Dynamic Task Scheduling in Highly Communicative Task Graph by Critical path Selection... 107

Table 6
Speed up without Replication

#Levels #Nodes Time taken in milli seconds

#P=1 #P=2 #P=3 #P=4 #P=5

S S S S S

2 5 1 1.08 1.08 1.08 1.08

3 9 1 1.12 1.47 1.47 1.47

4 14 1 1.14 1.62 1.69 1.73

5 20 1 1.41 1.59 2.10 2.82

Table 7
Speed up with Replication

#Levels #Nodes Time taken in milli seconds

#P=1 #P=2 #P=3 #P=4 #P=5

S S S S S

2 5 1 1.18 1.18 1.18 1.18

3 9 1 1.26 1.58 1.63 1.93

4 14 1 1.25 1.69 1.78 2.08

5 20 1 1.54 1.90 2.35 2.82

Gaussian Elimination Task Graphs of various sizes are taken for experiment. The proposed algorithm
for highly communicating task graph is compared and studied for various levels, and the number of processors
and the time taken by them are also studied. Task graphs are created by varying the number of nodes and
dimension of Gaussian elimination matrix. Computation cost and communication cost is selected randomly
by using function. For the experiments, the matrix sizes are varied. This scheduling gives better performance
compared to the static and dynamic scheduling. It is observed that the increase in the number of processors
reduces the job completion time. Also the speedup faction with selected tasks duplicated improves as the
idle processor time is explored.

6. CONCLUSION

The proposed algorithm is better for large number of processors. The performance of our proposed algorithm
has been observed experimentally by using Gaussian elimination task graph. The proposed scheduling
phase is better for large number of processors. In our proposed work, the generalized Gaussian elimination
task graph is generated and the generated task graph is statically scheduled in the processor using the
Dynamic Critical Path scheduling algorithm. Then, the generalized concurrency graph is generated for is
exploring the parallel processing computing power and is shown to provide the promising results for the
various test case scenarios compared to the existing work.

REFERENCES
[1] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng, “Optimal On-line Scheduling of Parallel Jobs with Dependencies,”

Proc. 25th Ann. ACM Symp. Theory of Computing (STOC ’93), pp. 642-651, 1993.

[2] R. Gupta, D. Mosse, and R. Suchoza, “Real-Time Scheduling Using Compact Task Graphs,” Proc. 16th Int’l Conf.
Distributed Computing Systems (ICDCS ’96), p. 55, 1996.

[3] Y. K. Kwok and I. Ahmad, “Dynamic Critical-Path Scheduling: An Effective Technique for Allocating Task Graphs to
Multiprocessors,” IEEE Trans. Parallel and Distributed Systems, Vol. 7, No. 5, pp. 506-521, 1996.



108 T. Sajuraj and K. Muneeswaran

[4] R. Ernst and W. Ye, “Embedded Program Timing Analysis Based on Path Clustering and Architecture Classification,”
Proc. IEEE/ ACM Int’l Conf. Computer-Aided Design, pp. 598-604, 1997.

[5] I. Ahmad and Y.-K. Kwok, “On Exploiting Task Replication in Parallel Program Scheduling,” IEEE Trans. Parallel and
Distributed Systems, Vol. 9, No. 9, pp. 872-892, 1998.

[6] Y. K. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors,” ACM
Computing Surveys, Vol. 31, No. 4, pp. 406-471, 1999.

[7] C.I. Park and T.Y. Choe, “An Optimal Scheduling Algorithm Based on Task Replication,” IEEE Trans. Computers, Vol.
51, No. 4, pp. 444-448, 2002.

[8] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown, “MiBench: A Free Commercially
Representative Embedded Benchmark Suite,” Proc. Fourth Ann. IEEE Workshop Workload Characterization (WWC),
Dec. 2001.

[9] N. Fisher, J. Anderson, and S. Baruah, “Task Partitioning upon Memory-Constrained Multiprocessors,” Proc. 11th IEEE
Int’l Conf. Embedded and Real-Time Computing Systems and Applications (RTCSA ’05), pp. 416-421, 2005.

[10] Pravanjan Choudhury, Rajeev Kumar and P.P. Chakrabarti, “Hybrid Scheduling of Dynamic Task Graphs with Selective
Replication for Multi-processors under Memory and Time Constraints”, IEEE Trans. Parallel and Distributed Systems,
Vol. 19, No. 7, July 2008.




