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Abstract: We aim at establishing certain new image formulas of family of some 
extended generalized Gauss hypergeometric functions by applying generalized 
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1. INTRODUCTION 

For our present study we recall some required special functions. 

The generalized Beta function 
( , ; , ) ( , )pB x y  is defined by (see [1]) 

 ( , ; , ) ( , )pB x y
1 1 1

1 1
0

(1 ) ( ; ; ) ,
(1 )

x y p
t t F dt

t t
 (1.1) 

( ) 0;min ( ), ( ), ( ), ( ) 0;min ( ), ( ) 0p x y  

When  � �1.1  reduces to the generalized extended beta function 

( , ; ) ( , )pB x y  defined by (see [2, p.37]). 
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 ( , ; ) ( , )pB x y
1 1 1

1 1
0

(1 ) ; ; ,
(1 )

x y p
t t F dt

t t
 (1.2) 

( ) 0;min ( ), ( ), ( ), ( ) 0; ( ) 0p x y . 

The special case of (1.2), when 1  reduces to the generalized Beta type 

function as follows (see [3, p.4602])  

 ( , ) ( , )pB x y ( , ;1) ( , )pB x y
1 1 1

1 1
0

(1 ) ; ; ,
(1 )

x y p
t t F dt

t t
 (1.3) 

( ) 0;min ( ), ( ), ( ), ( ) 0 .p x y  

The further special case of (1.3) when � ��  is given due to Choudhary et al. 

[4] by 

 ( , )pB x y ( , ) ( , )pB x y
1 1 1

0
(1 ) exp ,

(1 )
x y p

t t dt
t t

 ( ) 0p  (1.4) 

The classical Beta function B( , )x y  is defined by 

 B( , )x y
1 1 1

0
(1 ) ,x yt t dt  ( ) 0, ( ) 0x y  (1.5) 

It is clear that there is following relationship between the classical Beta function 
B( , )x y  and its extensions: 

B( , )x y 0 ( , )B x y ( , )
0 ( , )B x y ( , ;1)

0 ( , )B x y ( , ;1,1)
0 ( , )B x y  

The generalized hypergeometric series ,p qF p q �  is defined as (see 

[5,p.73]) and (6,pp. 71-75)]: 

 
11

1 0 1

......,........., ;

,........., ; !......

npp n n
p q

q n qn n

z
F z

n  (1.6) 
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1 1,........., ; ,........., ; ,p q p qF z  

Where ( )n  is the Pochhammer symbol defined for ( )�  by (see [6. P.2 and 

p.5]): 

 
1

( 1)...........( 1): nn  
( 0)
( )
n
n �  (1.7) 

 
( )

( )

n
 0( \ ),� �  (1.8) 

and 0�  denotes the set of Non-Positive integers, where ( )  is familiar 

Gamma function. 

Chaudhry et al. [7,p.591,Eqs. (2.1 and (2.2))] made use of the extended Beta 

functions ( , )pB x y  in (1.4) to extend the Gauss hypergeometric function 2 1F  as 

follow: The extended Gauss hypergeometric function ( , ; ; )pF a b c z  is defined as 

 
0

( , )
( , ; ; ) ( ) ,

( , ) !

n
p

p n
n

B b n c b z
F a b c z a

B b c b n
 (1.9) 

1; ( ) ( ) 0; ( ) 0z c b p  

Similarly, by appealing to the generalized Beta function ( , ) ( , )pB x y  in (1.3) 

Ozergin [8] and Ozergin et al. [3] introduced and investigated a further potentially 
useful extensions of the generalized hypergeometric functions as follows: The 

extended generalized Gauss hypergeometric function ( , ) (.)pF  is defined by 

 
( , )

( , )

0

( , )
( , ; ; ) ( ) ,

( , ) !

n
p

p n
n

B b n c b z
F a b c z a

B b c b n
 (1.10) 

� �� �1;min ( ), ( ) 0; ( ) ( ) 0; ( ) 0z c b p� �� � � � � �� � � �  
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Based upom the generalized Beta function in (1.2), Parmar [2] introduced and 

studied a family of the generalized Gauss hypergeometric function 
( , , ) (.)pF  

defined by 

 
( , ; )

( , ; )

0

( , )
( , ; ; ) ( ) ,

( , ) !

n
p

p n
n

B b n c b z
F a b c z a

B b c b n
 (1.11) 

1;min ( ), ( ), ( ) 0; ( ) ( ) 0; ( ) 0z c b p  

Recently, Srivastava et al. [9] used the generalized Beta function in (1.1) to 
introduce a family of some extended generalized Gauss hypergeometric function 
defined by 

 
( , ; , )

( , ; , )

0

( , )
( , ; ; ) ( ) ,

( , ) !

n
p

p n
n

B b n c b z
F a b c z a

B b c b n
 (1.12) 

1;min ( ), ( ), ( ), ( ) 0; ( ) ( ) 0; ( ) 0z c b p  

It is easy to see the following relationship: 

 ( , ;1,1) ( , )( , ; ; ) ( , ; ; )p pF a b c z F a b c z  

 ( , ;1) ( , )( , ; ; ) ( , ; ; )p pF a b c z F a b c z  

 ( , ;1) ( , ; ; ) ( , ; ; )p pF a b c z F a b c z  

 ( , ;1)
2 10 ( , ; ; ) ( , ; ; ).F a b c z F a b c z  

The Fox-Wright function p q defined as (see, for details, Srivastava and 

Karlsson 1985, [10]). 

1 1

1 1

( , ),............( , );
( , ),............( , );[ ] p p

p p

a a
p q p q b bz z  
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1,

1,

, ; 0
, ;

0 0

( )
,

!( )

i i p

j j q

p na i ii
p q pb

j jn i

a n z
z

nb n
 (1.13) 

Where the coefficients 1 1,.............., , ,...........,p q �  such that 

 
1 1

1 0
q p

j i
j i

 (1.14) 

To establish the image formulas, we require the following concept of the 
Hadamard products (see[11]). 

DEFINITIONS - 1. 

Let 
0

( ) : n
nn

f z a z
�

�
��  and 

0
( ) : n

nn
g z b z

�

�
� �  be two power series whose radii 

of convergence are given by fR  and gR , respectively, then their Hadamard product 

is power series defined by  

 � �
0

* ( ) : ,n
n n

n

f g z a b z
�

�

� �  (1.15) 

whose radius of convergence R  satisfies .f gR R R� . 

2. FRACTIONAL INTEGRAL FORMULAE  
INVOLVING THE GENERALIZED GAUSS  

HYPERGEOMETRIC FUNCTIONS 

In this section, we will establish some fractional integral formulas for the 

generalized Gauss hypergeometric type functions ( , ; , ) ( , ; ; )pF a b c z  by using 

certain general pair of fractional integral operators. To do this, we need to recall the 
following pair of generalized fractional integral operators (which are generalized 
form of Riemann-Liouville fractional integrals) introduced by Katugampola [12]. 

 

 



260 MEHAR CHAND AND JATINDER KUMAR BANSAL 

 

LEMMA - 1.  

Let ,a b a b  be a finite interval on the real axis � . The 

generalized fractional integral aI f  of order �  for x a�  and ( ) 0  is 

defined as 

 

1

1

( ) ( )
( ) ,

( ) ( )

x

a
a

t f t
I f x dt

x t
 (2.1) 

Similarly the generalized fractional integral bI f  of order �  for x < b  

and ( ) 0�  is defined as  

 

1

1

( ) ( )
( ) ,

( ) ( )

b

b
x

t f t
I f x dt

t x
 (2.2) 

In our investigation, we choose a = b = 0 the above Lemma 1 reduces to the 
following form: 

LEMMA - 2.  

The generalized fractional integral 0I f  of order �  for 0x and ( ) 0� is 

defined as 

 
1

0 10

( ) ( )
( ) ,

( ) ( )

x t f t
I f x dt

x t
 (2.3) 

Similarly the generalized fractional integral 0I f  of order �  for 0x  

and ( ) 0�  is defined as  

 
1 0

0 1

( ) ( )
( ) ,

( ) ( )x

t f t
I f x dt

t x
 (2.4) 

The main results are given in the following theorem. 
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THEOREM - 1.  

Let , , , , , , , , , , ,a b c p �  be such that ( ) 0,  

min ( ), ( ), ( ), ( ) 0;  ( ) ( ) 0; ( ) 0c b p ,

( ) max 0, ( ) .for 0x , we have the following formulae: 

1 ( , ; , )
0 ( , ; ; ) ( )pI t F a b c t x  

 

1
1,

( , ; , )
1 1 1

1,
( , ; ; ) *p

x
F a b c x x  (2.5) 

Proof. For convenience, we denote the left-hand side of the result (2.5) by I and 

using the definition given in equation (1.12). Further changing the order of 
integration and summation, which is valid under the conditions of Theorem 1, we 
have 

 I
( , ; , )

1
0

0

( , ) 1
( ),

( , ) !
p n

n
n

B b n c b
a I t x

B b c b n
 (2.6) 

employing the definition of fractional integral given in equation (2.1), the above 
equation (2.6) reduces to 

 I
( , ; , ) 1 1

10
0

( , ) 1 ( )
,

( , ) ! ( )

nxp
n

n

B b n c b t
a dt

B b c b n x t
 (2.7) 

Choose t x z  in equation (2.7), after simplification we have 

 I 
1( , ; , )

1

0 0

( , ) 1 ( )
1 ,

( , ) ! ( )

n
p n

n
n

B b n c b
a x z z dz

B b c b n
 (2.8) 

further using the definition of the Beta integral in (2.8), after simplification we 
get 
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 I
( , ; , )

0

1
1

( , )
,

( , ) ! 1
1

n
p

n
n

n
B b n c bx x

a
B b c b n

n

 (2.9) 

Interpreting the above the above (2.9) in the view of the Hypergeometric 
function given in equation (1.12) and Wright function following the definition of 
Hadmard product given in equation (1.15) for two Series of function, we have the 
required result. 

THEOREM - 2.  

Let , , , , , , , , , , ,a b c p �  be such that ( ) 0,  

min ( ), ( ), ( ), ( ) 0;  ( ) ( ) 0; ( ) 0c b p ,

( ) max 0, ( ) , for 0x , we have the following formulae: 

1 ( , ; , )
0 ( , ; ; ) ( )pI t F a b c t x  

 

1
1,

( , ; , )
1 1 1

1,
( 1) ( , ; ; ) *p

x
F a b c x x  (2.10) 

Proof.  

The proof of the Theorem 2 would run parallel to that of Theorem 1. Therefore, the 
same is skipped here. 

In the following sections, we establish certain theorems involving the results 
obtained in this section associated with the integral transforms like Beta transform 
and Laplace Transform. 

3. IMAGE FORMULAE ASSOCIATED WITH BETA 
TRANSFORM 

The Beta transform of f(z) is defined as [13] 

 
1 1 1

0
( ) : , (1 ) ( )a bB f z a b z z f z dz  (3.1) 
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THEOREM 3.  

Let , , , , , , , , , , ,a b c p �  be such that ( ) 0,  

min ( ), ( ), ( ), ( ) 0;  ( ) ( ) 0; ( ) 0c b p ,

( ) max 0, ( ) , for 0x , we have the following formulae: 

1 ( , ; , )
0 ( , ; ; ) ( ) : ,pB I t F a b c tz x l m  

1
,1 , 1,

( , ; , )
2 2 1

,1 , 1,
( ) ( , ; ; ) * .

l

p
l m

x
m F a b c x x  (3.2) 

Proof.  

For convenience, we denote the left-hand side of the result (3.2) by B, then using 

the definition of Beta transform, we have 

 B 
1 11 1 ( , ; , )

0
0

1 ( , ; ; ) ( ) ,
ml

pz z I t F a b c tz x dz  (3.3) 

now using the definition of family of extended Gauss hypergeometric function 
given in (1.12) and then changing the order of integration and summation, we have 

 

 B 
1( , ; , )

11 1
0

0 0

( , ) 1
( ) 1 ,

( , ) !
mp n l n

n
n

B b n c b
a I t x z z dz

B b c b n
 (3.4) 

applying the result in equation (2.9) and the integral formula after simplification 
the equation (3.4) reduced to the following form: 

 B 
( , ; , )

0

1
1

( , ) ( )
( )

( , ) ( ) !1
1

n
p

n
n

n
B b n c bx l n x

m a
B b c b l m n n

n

 (3.5) 
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Interpreting the above the above (3.5) in the view of the Hypergeometric 
function given in equation (1.12) and Wright function following the definition of 
Hadmard product given in equation (1.15) for two series of function, we have the 
required result. 

THEOREM 4.  

Let , , , , , , , , , , ,a b c p �  be such that ( ) 0,   

min ( ), ( ), ( ), ( ) 0;  ( ) ( ) 0; ( ) 0c b p , 

( ) max 0, ( ) , for 0x , we have the following formulae: 

1 ( , ; , )
0 ( , ; ; ) ( ) : ,pB I t F a b c tz x l m  

1
,1 , 1,

( , ; , )
2 2 1

,1 , 1,
( 1) ( ) ( , ; ; ) *

l

p
l m

x
m F a b c x x  (3.6) 

Proof.  

The proof of the Theorem 4 is same as that of Theorem 3. Therefore, it is omitted. 

4. IMAGE FORMULAE ASSOCIATED WITH  
LAPLACE TRANSFORM 

The Laplace transform f(z) is defined as [13] : 

 
0

( ) ( )szL f z e f z dz  (4.1) 

THEOREM 5.  

Let , , , , , , , , , , ,a b c p �  be such that ( ) 0,  

min ( ), ( ), ( ), ( ) 0;  ( ) ( ) 0; ( ) 0c b p ,

( ) max 0, ( ) , for 0x , we have the following formulae: 
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1 1 ( , ; , )
0 ( , ; ; ) ( )l

pL z I t F a b c tz x  

 

1
1, , ,1

( , ; , )
2 1 1

1,
, ; ; *

l

pl

x x x
F a b c

s ss
 (4.2) 

Proof.  

For convenience, we denote the left-hand side of the result (4.2) by L. After using 

the definition of Laplace transform, we have: 

 L 1 1 ( , ; , )
0

0
( , ; ; ) ( )sz l

pe z I t F a b c tz x dz  (4.3) 

using the result from (2.9), then changing the order of integration and 
summation, the above equation (4.3) reduces to the following form: 

L 
( , ; , )

1

0
0

1
1

( , )
,

( , ) ! 1
1

n
p sz l n

n
n

n
B b n c bx x

a e z dz
B b c b n

n

 (4.4) 

after simplification the above equation (4.4) reduces to the following the form: 

L 

( , ; , )

0

1
1

( , ) ( )
,

( , ) ! 1
1

n
p

l nn
n

n
B b n c bx x l n

a
B b c b n s

n
 (4.5) 

Interpreting the above (4.5) in the view of the Hypergeometric function given 
in equation (1.12) and Wright function following the definition of Hadmard product 
given in equation (1.15) for two series of function, we have the required result. 

THEOREM 6.  

Let , , , , , , , , , , ,a b c p �  be such that ( ) 0,   
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min ( ), ( ), ( ), ( ) 0;  ( ) ( ) 0; ( ) 0c b p , 

( ) max 0, ( ) , for 0x , we have the following formulae: 

1 1 ( , ; , )
0 ( , ; ; ) ( )l

pL z I t F a b c tz x  

( , ; , )

2 1
0

1
1, , ( ,1)

( , )
( 1) *

( , ) 1
1,

p

l n
n

n l
B b n c bx x

a
B b c b ss

 (4.6) 

Proof.  

The proof of the Theorem 6 is same as that of Theorem 5, therefore, it is omitted. 

5. SPECIAL CASES OF THE MAIN FORMULAE 

By assigning the different particular values to the parameters we have the following 
special cases of our main results established in Section 2. 

1. Choose 1� �  , the result in equations (2.5) and (2.10) reduce to the following 

form: 

 Corollary 1. Let , , , , , , , , , , ,a b c p �  be such that ( ) 0,  

min ( ), ( ), ( ) 0;  ( ) ( ) 0; ( ) 0c b p ,

( ) max 0, ( ) ; 

 for 0x � , we have the following formulae: 

1 ( , ; )
0 ( , ; ; ) ( )pI t F a b c t x  

  

1
1,

( , ; )
1 1 1

1,
( , ; ; ) *p

x
F a b c x x  (5.1) 
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 Corollary 2. Let , , , , , , , , , , ,a b c p �  be such that ( ) 0,  

min ( ), ( ), ( ) 0;  ( ) ( ) 0; ( ) 0c b p ,

( ) max 0, ( ) , 

 for 0x , we have the following formulae: 

1 ( , ; )
0 ( , ; ; ) ( )pI t F a b c t x  

  

1
1,

( , ; )
1 1 1

1,
( 1) ( , ; ; ) *p

x
F a b c x x  (5.2) 

2. Choose 1, the results in equations (2.5) and (2.10) reduces to the 

following form: 

 Corollary 3. Let , , , , , , , , , , ,a b c p �  be such that ( ) 0,   

min ( ), ( ) 0;  ( ) ( ) 0; ( ) 0c b p , ( ) max 0, ( ) , 

for 0x , we have the following formulae: 

1 ( , )
0 ( , ; ; ) ( )pI t F a b c t x  

  

1
1,

( , )
1 1 1

1,
( , ; ; ) *p

x
F a b c x x  (5.3) 

 Corollary 4. Let , , , , , , , , , , ,a b c p �  be such that ( ) 0,  

min ( ), ( ) 0; ( ) ( ) 0; ( ) 0c b p , ( ) max 0, ( ) , 

for 0x , we have the following formulae: 

1 ( , )
0 ( , ; ; ) ( )pI t F a b c t x  
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1
1,

( , ; )
1 1 1

1,
( 1) ( , ; ; ) * .p

x
F a b c x x  (5.4) 

3. If we select 1  then the established results in equations (2.5) 

and (2.10) reduces to the following form: 

 Corollary 5. Let , , , , , , , , , , ,a b c p �  be such that ( ) 0;  

( ) ( ) 0; ( ) 0c b p  , ( ) max 0, ( ) .for 0x , we have the 

following formulae: 

 

1
1,

1
0 1 1 1

1,
( , ; ; ) ( ) ( , ; ; ) *p p

x
I t F a b c t x F a b c x x  (5.5) 

 Corollary 6. Let , , , , , , , , , , ,a b c p �  be such that ( ) 0  

( ) ( ) 0; ( ) 0c b p  , ( ) max 0, ( ) .for 0x , we have the 

following formulae: 

1
0 ( , ; ; ) ( )pI t F a b c t x  

  

1
1,

1 1 1
1,

( 1) ( , ; ; )*p
x

F a b c x x  (5.6) 

4.  If we select 0; 1p  the established results in equations (2.5) 

and (2.10) reduces to the following form: 

 Corollary 7. Let , , , , , , , , , , ,a b c p �  be such that ( ) 0;

( ) ( ) 0;c b , ( ) max 0, ( ) , for 0x , we have the following 

formulae: 

  

1
1,

1
0 2 1 2 1 1 1 1

1,
( , ; ; ) ( ) ( , ; ; ) *

x
I t F a b c t x F a b c x x  (5.7) 
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 Corollary 8. Let , , , , , , , , , , ,a b c p �  be such that ( ) 0;  

( ) ( ) 0;c b  ( ) max 0, ( ) , for 0x , we have the following 

formulae: 

 

1
1,

1
0 2 1 2 1 1 1 1

1,
( , ; ; ) ( ) ( 1) ( , ; ; ) *

x
I t F a b c t x F a b c x x  (5.8) 

 

6. CONCLUSION 

In the present paper we establish numerous fractional integral formulae involving 
the family of extended Gauss hypergeometric function by using the generalized 
form of Riemann-Liouville fractional integrals.  

The special cases of the main results are also presented in Section 5. Also by 
assigning the particular values to the parameters, we can obtained more result from 
image formulae associated with Beta transform and Laplace transform. 
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