# RECURRENCE RELATIONS FOR SINGLE AND PRODUCT MOMENTS OF K-TH RECORD VALUES FROM POWER FUNCTION DISTRIBUTION, AND A CHARACTERIZATION

## SANJAY KUMAR SINGH

**ABSTRACT:** In present study we give some recurrence relations satisfied by single and product moments of k-th upper record values from power function distribution using a recurrence relations for single moments we obtain a characterization of power function distribution.

**Keywords and phrases :** Record values; k-record values; moments; product moment; k-th upper record values; power function distribution.

#### **1.** INTRODUCTION

Let {X<sub>n</sub>, n ≥ 1} be a sequence of i.i.d. random variables with c.d.f. F(x)=p[X ≤ x] and p.d.f. f(x).For a fixed k ≥ 1 we define the sequence { $U_n^{(k)}$ , n ≥1} of k-th upper record times of {X<sub>n</sub>, n ≥ 1} as follows:

$$U_1^{(k)} = 1$$
  
$$U_{n+1}^{(k)} = \min\{j > U_n^{(k)} : X_{j:j+k-1} > X_{u_n}^{(k)} : U_n^{(k)} + k - 1\}$$

For K=1 and n=1, 2,..., we write  $U_n^{(1)} = U_n$ . Then  $\{U_n, n \ge 1\}$  is the sequence of record times of  $\{X_n, n \ge 1\}$ , where  $y_n^{(1)} = X_{u_n}^{(k)}$  is called the sequence of k-th upper record values of  $\{X_n, n \ge 1\}$ . For convenience, we shall also take  $y_0^{(k)} = 0$ . Note that for k=1 we have  $y_n^{(1)} = y_{u_n}^{\setminus}$ , ne", which are the record values of  $\{X_n, ne"1\}$  (Ahsanullah(1995)). Moreover, we see that  $y_1^{(k)} = \min(X_1, X_2, ..., X_k) = X_{1:k}$  then the pdf of  $y_n^{(k)}$  and  $(y_m^{(k)}, y_n^{(k)})$  are as follows:

$$f_{y_n}^{(k)}(x) = \frac{k^n}{(n-1)!} \left[ -\ln(1-F(x))^{n-1}(1-F(x))^{k-1}f(x); n \ge 1 \right],$$
(1.1)

$$f_{y_m}^{(k)}, y_n^{(k)}(x, y) = \frac{k^n}{(m-1)!(n-m-1)!} [\ln(1-F(x)) - \ln(1-F(y))]^{n-m-1} [-\ln(1-F(x))]^{m-1}$$
$$\frac{f(x)}{1-F(x)} [1-F(y)]^{k-1} f(y), x < y; 1 \le m \le n; n \ge 2$$
(1.2)

SANJAY KUMAR SINGH

We present recurrence relations for moment of  $y_n^{(k)}$  and product moments of  $(y_m^{(k)}, y_n^{(k)})$  when X has the three parameter power function distribution (Pearson's type I distribution) with the probability density function(p.d.f.) of the form

$$f(x;\alpha,\beta,\gamma) = \gamma \beta^{-\gamma} (\alpha + \beta - x)^{\gamma - 1}, \ \alpha < x < \alpha + \beta, \beta > 0, r > 0,$$
(1.3)

=, otherwise

If shape parameter  $\gamma = 1$  the p.d.f. in (1.3) reduces to uniform distribution on ( $\alpha$ ,  $\alpha+\beta$ ). Without loss of generality, we assume  $\alpha=0$  and  $\beta=1$ ; i.e, the p.d.f. is

$$f(x;\gamma) = \gamma(1-x)^{\gamma-1}, 0 < x < 1$$
(1.4)

= 0, otherwise

And the c.d.f. is

$$F(x;\gamma) = 1 - (1-x)^{\gamma}, 0 < x < 1$$
(1.5)

Here, for  $\gamma = 1$ , the distribution in (1.4) and (1.5) becomes standard uniform distribution.

It is easy to note from (1.4) and (1.5) that

$$\gamma(1-F(x)) = (1-x)f(x)$$

Using these relations we give characterization of the power function distribution.

#### 2. Relations for single and product moments

**Theorem 2.1.** Fix a positive integer  $k \ge 1$ . For  $n \ge 1$  and r=0,1,2,...,

$$E(y_n^{(k)})^{r+1} = \frac{1}{r+1+\gamma k} [(r+1)E(y_n^{(k)})^r + \gamma k(\gamma_{n-1}^{(k)})^{r+1}]$$
(2.1)

**Proof.** For  $n \ge 1$  and r=0,1,2,..., we have from (1.1) and (1.6)

$$E(y_n^{(k)})^r - E(y_n^{(k)})^{r+1} = \frac{k^n}{(n-1)!} \int_0^1 x^r (1-x)(-\ln(1-F(x))^{n-1}(1-F(x))^{k-1}f(x)dx$$
$$E(y_n^{(k)})^r - E(y_n^{(k)})^{r+1} = \frac{k^{n,r}}{(n-1)!} \int_0^1 x^r (-\ln(1-F(x))^{n-1}(1-F(x))^k dx$$

Integrating by parts, taking  $x^r$  as the part to be integrated we get(2.1).

**Remark:** If  $\gamma = 1$  we get the recurrence relation for standard uniform distribution.

$$E(y_n^{(k)})^{r+1} = \frac{1}{(r+1+k)} [(r+1)E(y_n^{(k)})^r + \nu k E(y_{n-1}^{(k)})^{r+1}]$$

RECURRENCE RELATIONS FOR SINGLE AND PRODUCT MOMENTS OF K-TH... 113

**Theorem 2.2.** For  $1 \le m \le n-2$  and r, s=0, 1, 2,...,

$$E[(y_m^{(k)})^r (y_n^{(k)})^{s+1}] = \frac{k\gamma}{(k\gamma+s+1)} E[(y_m^{(k)^r} (y_{n-1}^{(k)})^{s+1}] + \frac{(s+1)}{k\gamma+s+1} E[(y_m^{(k)})^r (y_n^{(k)})^s]$$
(2.2)

And for  $m \ge 1$ ,  $\gamma$ ,  $s = 0, 1, 2, \dots$ ,

$$E[(y_m^{(k)})^r (y_{m+1}^{(k)})^{s+1}] = \frac{k\gamma}{(k\gamma + s + 1)} E[(y_m^{(k)})^{r+s+1}] + \frac{(s+1)}{k\gamma + s + 1} E[(y_m^{(k)})^r (y_{m+1}^{(k)})^s]$$
(2.3)

**Proof:** from (1.2) for  $1 \le m \le n-1$  and  $\gamma$ ,  $s = 0, 1, 2, \dots$ , and on using (1.6) we get,

$$E[(y_m^{(k)})^r(y_n^{(k)})^s] - E[(y_m^{(k)})^r(y_n^{(k)})^{s+1}] = \frac{k^n}{(m-1)!(n-m-1)!} \int_0^1 x^r \frac{f(x)}{1-F(x)} (-\ln(1-F(x))^{m-1}I(x)dx, X < y$$
(2.4)

Where  $I(x) = \gamma \int_{g>x} y^s [\ln(1 - F(x)) - \ln(1 - F(y))]^{n-m-1} (1 - F(y))^k dy$ 

Integrating I(x) by parts, taking  $y^s$  as the part to be integrated

$$I(x) = \frac{\gamma k}{(s+1)} \int y^{s+1} [\ln(1-F(x)) - \ln(1-F(y))]^{n-m-1} (1-F(y))^k dy$$
$$-\frac{(n-m-1)\gamma}{(s+1)} \int y^{s+1} (\ln(1-F(x)) - \ln(1-F(y))^{n-m-2} (1-F(y))^{k-1} f(y) dy$$

Substituting this expression into (2.4) and simplifying, we obtain

$$E[(y_m^{(k)})^r (y_m^{(k)})^s] - E[(y_m^{(k)})^r (y_n^{(k)})^{s+1}] = \frac{k\gamma}{(s+1)} [E\{(y_m^{(k)})^r (y_n^{(k)})^{s+1}\} - E\{(y_m^{(k)})^r (y_{n-1}^{(k)})^{s+1}\}]$$

Hence we have (2.2) when n=m+1 we obtain (2.3)

# **3.** CHARACTERIZATION

This section contains characterization of the power function distribution. We start with the following result of Lin(1986)

Proposition: Let  $n_0$  be any fixed non-negative integer,  $-\infty \le a < b \le \infty$ , and  $g(x)\ge 0$  an absolutely continuous function with  $g'(x) \ne 0$  a.e on (a, b). Then the sequence of function  $\{[g(x)]^n e^{-g(x)}, n\ge n_0\}$  is complete in L(a, b) iff g(x) is strictly monotone on (a,b).

Using the above proposition we get a stronger version of theorem 2.1.

Sanjay Kumar Singh

**Theorem 3.1** Fix a positive integer  $k \ge 1$  and let r be a non-negative integer. A necessary and sufficient condition for a random variable x to be distributed with pdf given by (1.4) is that

$$E(y_n^{(k)})^{r+1} = \frac{1}{r+1+\gamma k} [(r+1)E(y_n^{(k)})^r + \gamma k E(\gamma_{n-1}^{(k)})^{r+1}]$$
(3.1)

**Proof:** The necessary part follows immediately from (2.1) on the other hand if the recurrence relation(3.1) is satisfied, then

$$(r+1+\gamma k)E(y_n^{(k)})^{r+1} = (r+1)E(y_n^{(k)})^r + \gamma kE(y_{n-1}^{(k)})^{r+1}$$
$$= (r+1)\frac{k^{n}}{(n-1)!}\int_0^1 x^r (-\ln(1-F(x))^{n-1}(1-F(x))^{k-1}f(x)dx$$

Integrating last integral by parts we have

$$(r+1+\gamma k)E(y_n^{(k)})^{r+1} = (r+1)\frac{k^n}{(n-1)!}\int x^r (-\ln(1-F(x))^{n-1}(1-F(x))^{k-1}f(x)dx$$
$$-\frac{\gamma k^n}{(n-1)!}(r+1)\int x^r (-\ln(1-F(x))^{n-1}(1-F(x))^k dx$$
$$+\frac{\gamma k^{r+1}}{(n-1)!}\int x^{r+1}(-\ln(1-F(x))^{n-1}(1-F(x))^{k-1}f(x)dx$$

Which reduces to

$$\int x^{r} (-\ln(1-F(x))^{n-1}(1-F(x))^{k-1}\{(r+1+\gamma k)xf(x)-(r+1)f(x)+\gamma(r+1)(1-F(x))-\gamma kx(fx)\}dx = 0$$
  
$$\int x^{r} (-\ln(1-F(x))^{n-1}(1-F(x))^{k-1}\{(r+1)(x-1)f(x)+\gamma(r+1)(1-F(x))\}dx = 0$$

It now follows from the above proposition with

$$G(x) = -I_n(1-F(x))$$

That  $f(x) (1-x) = \gamma (1-F(x))$ 

Which proves that f(x) has the form (1.4)

Now we shall show that Theorem 3.1 can be used as in a characterization of the power function distribution in terms of minimal order statistics

Letting n = 1 in theorem (3.1) and we get

RECURRENCE RELATIONS FOR SINGLE AND PRODUCT MOMENTS OF K-TH... 115

$$E(x_{1:k}^{r+1}) = \frac{r+1}{r+1+\gamma k} E(x_{1:k}^{r}), \text{ for fixed integer } k \ge 1$$

From the above result we can make the following observation.

**Theorem 3.2.** Let r be a non negative integer. A necessary and sufficient condition for a random variable X to be distributed with the p.d.f. (1.3) is that

$$E(X_{1:k}^{r+1}) = \frac{r+1}{r+1+r_k} E(X_{1:k}^r), \text{ for } k=1,2,...,$$
(3.2)

**Proof:** The necessary part follows from (2.1) on the other hand if (3.2) is satisfied then,

$$(r+1+r_{k})\int_{0}^{1} x^{r+1} (1-F(x))^{k-1} f(x) dx = (r+1)\int_{0}^{1} x^{r} (1-F(x))^{k-1} f(x) dx$$
  
$$(r+1)\int_{0}^{1} x^{r} (1-F(x)^{k-1} f(x) dx + \gamma k \int_{0}^{1} x^{r+1} (1-F(x)^{k-1} f(x) dx = (r+1) \int x^{r} (1-F(x))^{k-1} f(x) dx$$
  
$$\int_{0}^{1} x^{r} (1-F(x)^{k-1} f(x) dx + \gamma k \int_{0}^{1} x^{r+1} (1-F(x)^{k-1} f(x) dx = (r+1) \int x^{r} (1-F(x))^{k-1} f(x) dx$$
  
$$\int_{0}^{1} x^{r} (1-F(x)^{k-1} f(x) dx + \gamma k \int_{0}^{1} x^{r+1} (1-F(x)^{k-1} f(x) dx = (r+1) \int x^{r} (1-F(x))^{k-1} f(x) dx$$
  
$$\int_{0}^{1} x^{r} (1-F(x)^{k-1} f(x) dx + \gamma k \int_{0}^{1} x^{r+1} (1-F(x)^{k-1} f(x) dx = (r+1) \int x^{r} (1-F(x))^{k-1} f(x) dx$$
  
$$\int_{0}^{1} x^{r} (1-F(x)^{k-1} f(x) dx + \gamma k \int_{0}^{1} x^{r+1} (1-F(x)^{k-1} f(x) dx = (r+1) \int x^{r} (1-F(x))^{k-1} f(x) dx$$
  
$$\int_{0}^{1} x^{r} (1-F(x)^{k-1} f(x) dx + \gamma k \int_{0}^{1} x^{r+1} (1-F(x)^{k-1} f(x) dx = (r+1) \int x^{r} (1-F(x))^{k-1} f(x) dx$$
  
$$\int_{0}^{1} x^{r} (1-F(x)^{k-1} f(x) dx + \gamma k \int_{0}^{1} x^{r+1} (1-F(x)^{k-1} f(x) dx = (r+1) \int x^{r} (1-F(x))^{k-1} f(x) dx$$
  
$$= (1-F(x)^{k-1} f(x) f(x) dx + \gamma k \int_{0}^{1} x^{r+1} (1-F(x)^{k-1} f(x) dx = (r+1) \int x^{r} (1-F(x)^{k-1} f(x) dx =$$

Now applying a generalization of the Muntz-szasz theorem (cf.hwang and Lin(1988)) to (3.3) we obtain

 $\gamma(1-F(x))=f(x)(1-x)$ 

which proves  $F(x)=1-(1-x)^{\gamma}$ , 0 < x < 1

# CONCLUSION

In this study some recurrence relations for single and product moments of k-th upper record values from the power function distribution have been established, which generalize the correspondirig results for upper 1-record values from the power function distribution. Further, these recurrence relations have been utilized to obtain a characterization of the power function distribution by using a result of Lin (1986). Similar results for Weibull distribution have been obtained by Pawlas and Szynal (2000).

## SANJAY KUMAR SINGH

#### References

Ahsanullah, M.(1995), Record statistics .Nova Science Publishers, Inc. Commack, NY, USA.

- Balakrishnan, R. and Ahsanullah, M. (1994). Recurrence relations for single and product moments of record values from generalized aPareto distribution. Commun. Statist. Theory Meth., 23(10), 2841-2852.
- Balakrishnan, R. Ahsanullah, M. (1995). Relations for single and product moments of record values from exponential distribution. J.Appl.Statist.Sc., 2(1), 73-87.
- Dziubdziela, W. and Kopocinski, B. (1976). Limiting properties of k-th record value. Appl. Math. 15, 187-190.
- Glick, N., 1978. Breaking records and breaking boards. Am. Math. MontNy, 85: 2-26.
- Grudzien, Z., 1982. Characterization of Distribution of Time Limits in Record Statistics as Well as Distribution and Moments of Linear Record Statistics from the Samples of Random Numbers. Praca Doktorska, UMCS, Lublin.
- Hwang, J.S. and G.D. Lin, 1988. On a generalized moment problem II. Proc. Amer. Math. Soc., 91: 577-580.
- Lin, G.D., 1986. On a moment problem. Tohoku Math. J., 38: 595-598. Nevzorov, V. B., 1987. Records. Theor. Prob. Appl., 32: 201-228.
- Pawlas, P. and D. Szynal, 2000. Recurrence relations for single and product moments of k-th record values from Weibull distributions and a characterization. J. Appl. Stat. Sci., 10: 17-25.
- Resnick, S.I., 1987. Extreme Values, Regular Variation and Point Processes. 1st Edu., Springer-Verlag, New York.

#### Sanjay Kumar Singh

Department of Statistics, PGDAV College University of Delhi, India



This document was created with the Win2PDF "print to PDF" printer available at <a href="http://www.win2pdf.com">http://www.win2pdf.com</a>

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/