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Abstract: This paper addresses development of sensor less control strategy for induction motor (IM) drives. The control 
strategy is developed based on the derived discrete time synchronous frame IM model through the formulation of 
discrete lagrangian. The control scheme mimics the conventional continuous time vector control. The control strategy 
utilizes the robust compensation and loop shaping property of discrete time two degree of freedom (DOF) control 
to ensure satisfactory gain and phase margins. The controllers are designed through root locus technique. Further, a 
discrete time model reference adaptive system (MRAS) observer is derived for the speed sensor less control of the 
IM drive for the discrete IM dynamics. The performance of the two DOF control strategy is compared with discrete 
PI control. The effectiveness of the controller is also found out successfully with MRAS observer even in presence 
of high load disturbance.
Keywords: Induction Motor Drives, Discrete Time Modelling, Discrete Two Degree of Freedom, Discrete MRAS, 
Vector Control.

Introduction1.	
As an effort of designing discrete-time controllers for IMs based on sampled models, one can find some control 
approaches based on the classical explicit Euler approximation as in [2]-[4]. However, this sometime represents the 
continuous time system dynamics badly in discrete domain. That may lead to wrong controller parameter design 
[1]. Instead, [1] proposes discrete time modelling of the IM with the help of geometric integration technique, 
variational integration in stationary two-phase a - b frame. In this work, the proposed stationary frame model is 
transformed into the synchronously rotating d-q frame model. Afterward conventional like rotor field orientation 
control strategy is derived and implemented for discrete time d-q frame IM dynamics.

Degree of freedom of a control system is the number of closed loop TFs that can be adjusted to 
achieve the predefined goals [10]. As controller design process is multi objective process, to fulfil each 
objective with one degree of freedom may not be suitable [10] and hence the two DOF control. Different 
two DOF PID control strategies are mentioned in [6]-[10]. However, it is noticed that, in the IM application 
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of two DOF control the two DOF control strategy is applied to only the inner current control loop or outer 
speed control loop at a time. In this work, the root locus design technique for two DOF strategy is utilized 
and two DOF controller is designed for all the inner loops (d-axis component of stator current and q-axis 
component of stator current) and outer loops (speed and flux) to achieve good set point tracking and load 
disturbance rejection. The performances are also compared with a discrete PI controller designed with same 
bandwidth.

Further, through the last few decades, there has been a significant rise of interest in sensor less 
induction motor drives without mechanical speed sensors. Such drives are attractive because of their 
low cost and high reliability, also it is free from maintenance cost of mechanical sensor. Different speed 
estimation techniques are described in [11]-[17], where the fundamental machine model is utilized to design 
model reference adaptive systems (MRAS), nonlinear observers, extended Kalman filters, or adaptive 
observers. In this work a discrete time MRAS observer is adopted which is based on the derived discrete IM 
dynamics.

This work achieves the following objectives for IM drives.

∑	 Using root locus and loop shaping technique, development of a control strategy for derived discrete 
time induction motor dynamic modal that replicates the conventional vector control strategy of 
continuous time induction motor drives.

∑	 Design and analysis of robustness and performance of two DOF controller. The performance of two 
DOF control is compared against that of a discrete PI control.

∑	 Derivation of a discrete MRAS observer in context with the discrete IM dynamic model for sensor 
less operation of adjustable IM speed drive.

Discrete Time Model of Induction Motor2.	
The stationary (a - b) frame IM dynamics for IM derived through the formulation of discrete lagrangian can 
be written as (1) [1], [5].
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Now to obtain synchronous (d - q) frame model from the stationary (a - b) frame model the d axis is 
aligned with the rotor flux axis [17], [18] as shown Figure 1(a). Hence the d - q discrete IM model frame is 
given by
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Now considering w r rs k k h= -+( )1  as sampled version of synchronous speed and Idqsk as d - q component 
of stator current, the discrete IM dynamic model is obtained as (3)
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Block diagram of the discrete synchronous frame IM is shown in Figure 1(b).

Figure 1: (a) Vector representation of reference frame, (b) Block diagram of the discrete IM model.
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Control Strategy and Two DOF Controller Design3.	

A. Control Strategy
In this section a control strategy is developed for the discrete IM model that, replicates the conventional continuous 
time control of IM drives. The IM model (3) is associated with trigonometric terms e-Ghpws and e-Ghp(ws - wk). These 
terms are removed through small-angle approximation, since hpws and hp (ws - wk) are very small (in this case 
0.0001 sec). The small angle approximation is required to decouple the d and q axis components.

Considering the field orientation is perfect i.e., fqrk = 0 together with the small angle approximation a 
relation between fdrk and Idsk can be obtained from the d component of the rotor flux equation in (3) as (4)

	 f aa adrk dsk m d dh zI L= -( ) 	 (4)

Thus from the measured d axis component of stator current, the d axis flux component can be estimated 
from (4) and thus fdrk becomes f drk . The slip speed can be estimated from (5) with measurable q axis component 
of stator current. Which will be utilized in indirect field orientation control just like the conventional continuous 
time control.

The slip speed is written from the q-flux equation as (5).

	 w a fslip L I= m qsk drkp 	 (5)

Again from the stator flux equation in (3), together with the relations fdqsk s dqsk m dqrk= +L I L I
fdqrk r dqrk m dqsk= +L I L I  and small angle approximation the discrete plant transfer function (TF) for the current
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. Similarly, the discrete plant TF for the speed (outer) control loop can 

be written between electromagnetic torque and speed from the mechanical equation in (3) as h
z f hv
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From the mechanical equation electromagnetic torque can be written as t m fel d dqsk dqrkJ= IT G  and is with perfect

field orientation t m fel d qsk drk= JI  . i.e., I Jqsk el d drk= t m f/ ( ) . The control strategy with two DOF controllers 
is shown in Figure 2(a). Two pairs of two DOF controllers are designed as shown in the Figure 2(a). One pair 
is for the outer loop which will eventually generate d and q axis component current references ( )* *I and Idsk qsk  
and another pair is for the inner loop which will ultimately generate d and q components of voltage references 
( ).* *U and Udsk qsk

B. Controller Design
This section presents design procedure for two DOF controller speed loop as well as current loop so as to ensure 
speed tracking and robust compensation. The block diagram of a two DOF control system is depicted in Figure 2(b).

Cf_, Cb_ = forward path and feedback path controllers respectively.

C_s, C_c = Speed and current loop controllers respectively.

The closed loop TFs (CLTFs) from Figure 2(b) are given by (6)

	
G C P C P

G P C P
yr f b

yd b

z z z z z

z z z z

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= +( )
= +( )

1

1
	 (6)



Discrete Lagrangian Mathematical Model Based Sensorless Two DOF Control of Induction Motor

International Journal of Control Theory and Applications235

Figure 2: (a) Block diagram of the sensor less two DOF control scheme, (b) Two DOF controller structure

Thus by looking at the CLTFs it can be stated that, reference tracking is dependent on both Cf(z) and Cb(z) 
whereas disturbance response can be reformulated by adjusting the Cb(z) only. These two are the responses which 
gives a measure of a control system performance. Thus, with two DOF control two sets of controller parameters 
are available to be adjusted unlike one DOF control, to achieve desired response.

The loop TF of the control structure in Figure 2(b), considering an nth order plant P(z) = B(z)/D(z) is given 
by H(z)B(z)/F(z)A(z). The CLTF is given by Q(z)B(z)/D(z) with D(z) = A(z)F(z) + B(z)H(z) of order n + m. Now 
the choice of mth order controller polynomials F(z) and H(z) will characterize the pole polynomial of the closed 
loop system.

The design of the two DOF controller is carried out in w-plane. The CLTF of the control structure depicted 
in Figure 2(b) can be written in w plane as Q(w)B(w)/D(w) with D(w) = A(w)F(w) + B(w)H(w), where,

	 F(w) =	 w f w f w fm
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Where, k is the gain to be obtained from the root locus.

From the controller design prospect it is to be taken into account that, the order of controller to be placed. 
i.e. m + (m + 1) ≥ m + n  fi  m ≥ n - 1. Moreover, the desired CLTF can be defined in w-plane as xB( ) ( )w wD . 
The constant c is introduced to make DC gain unity. D(w) is the desired characteristic polynomial. After choosing 
F(w) and H(w), CLTF is obtained as Q(w)B(w)/D(w). However, it is prescribed to have CLTF as xB( ) ( )w wD
which can be obtained by solving (9)

	 Q B B B( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )w w w q w w w q w w wD D D= =x x 	 (9)

Where, Q( ) ( )w q w= x . Thus feedback path controller gain k can be obtained by solving D(w) = A(w)F(w) 
+ B(w)H(w) = D( ) ( ).w q w  It should be pointed out that besides choice of desired closed loop pole polynomial, 
the choice of different q w( )  provides unique solution of k.

The controllers are designed using root locus technique such that resulting loop TF Cb(z)P(z) full fills the 
gain margin > 2 and phase margin >300 to enhance disturbance rejection and robust stability.



Manoj Swargiary, Jayati Dey and Tapas Kumar Saha

International Journal of Control Theory and Applications 236

Design and Robustness Analysis of Two DOF control Scheme4.	
For the verification of the proposed scheme a 1 hp IM with 4 poles 50 Hz is considered. The voltage rating of the 
IM is 415 Volt, stator/rotor resistances 15.12/4.24 Ω, stator, Rotor inductance/mutual inductance 0.7357H/06947 
H, moment of Inertia 0.0148 Kgm2, mechanical damping coefficient 0.0008145 Nms, torque rating 4.91 Nm 
and speed rating 151.77 rad/sec.

The control scheme in Figure 2(a) is implemented in context with the controller structure shown in 
Figure 2(b). The design of the controller parameters are carried out with respect to the theory provided in section 
III.B. To ensure overall stability of the control scheme two constraints are predetermined. (i) The individual 
loops should be faster; and (ii) the inner loop should be faster than the outer loop. The sampling time (h) for the 
discrete time modelling is considered 100 µsec.

The system TF for outer loop following section III.A is obtained as 
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Both outer and inner loop plants are of order one i.e. n = 1 and hence to fulfil the condition for controller 
order as mentioned in section III.B the order of the controller polynomials F(w) and H(w) are chosen to be 
m = 1.

1. Controller design for speed loop: Since the plant is of first order the corresponding root locus would be the 
entire negative real axis beyond the open loop pole -0.05503 in the w-plane. Hence the desired closed loop pole 
location is chosen at -10 so as to ensure first order overdamped response with settling time less than 1 sec. The 

corresponding desired CLTF is 0 148 67 57
10

. .
( )w +

 with x = 0.148 to make DC gain unity.

In F(w) polynomial, coefficients f1 and f0 are set to one and zero respectively. Thus the denominator 
polynomial F(w) becomes F(w) = w i.e. F(w) will provide integral action and will ensure steady state error 
zero.

Besides, a zero is placed to the left of the system pole to have desired loop characteristics with suitable 
bandwidth and phase margin. The zero is placed at -7. Thus H(w) becomes k(w + 7). The zero polynomial of the 
feed forward path compensator q(w) is considered to be (w + 100). The gain of H(w) polynomial k is obtained 
as below

	 (w + 10)(w + 100) = (w + 0.05503)w + 67.57k(w + 7)

By solving the above equation for k, k is obtained as 1.62.

The corresponding controller TFs obtained are tabulated in Table 1.

The bode plot is shown in Figure 3(a) from which, phase margin is identified to be 86.4° at gain crossover 
frequency 110 rad/sec and gain margin is infinite. Hence, one can draw the conclusion that the designed controller 
provides robust compensation satisfactorily.
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Table 1 
Two DOF Controller Parameters for speed loop
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With respect to Table 1, the loop TFs for speed control loop is given by
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H B
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Figure 3: Speed loop (a) Bode plot and (b) Root locus plot

The root locus plot for speed loop TF is shown in Figure 3(b). From the observation of the root locus it 
can be stated that designed control system is unconditionally stable. Thus the system stability is preserved even 
if there is a variation in the open loop gain.

2. Controller design for current loop: Similar to the speed loop, the root locus plot of the inner loop plant will 
be the entire negative real axis of the w-plane beyond the open loop pole -20.55. The desired closed loop pole 
location is chosen to be -200 so as to ensure 20 times lesser settling time. Thus the desired inner close loop 

TF becomes 147 167 1 359
200

. .¥
+( )w

 with constant x = 147.167. Again, similar to the speed loop controller design, 

F(w) polynomial, coefficients f1 and f0 are set to one and zero respectively. For current loop, q(w) is chosen 
to be q w w( ) = +100 . Now, the coefficients of H(w) polynomial h1 and h0 are chosen to be 1 and 72, so 
that loop zero is placed at -72. Gain k is obtained to be 220.8 by solving the following pole-placement 
equation.

	 (w + 200)(w + 100) = (w + 20.55)w + 1.359k(w + 72)

The controller TFs are obtained as in Table 2.

With respect to Table II, the loop TFs for current control loop is given by

	 TF
H B
F Aloop =

( ) ( )
( ) ( ) = ¥ + ¥

+
c c

c c

w w
w w

w
w w

220 8 72 1 359
20 55

. ( ) .
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Table 2 
Two DOF Controller Parameters for current loop

w-plane z-plane

C
Q
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c
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.
.

= ( )
( ) 147 167 100. /w w+( ) 147 167 145 7 1. . /z z- -( ) ( )

C
H
Fbc

c

c
(.)

.
.

= ( )
( ) 220 8 72. ( /w w+( ) 220 8 219 2 1. . /z z- -( ) ( )

From the bode plot depicted in Figure 4(a), phase margin is identified to be 80.7° at 308 rad/sec. The root 
locus plot of the current loop is shown in Figure 4(b). Just like the speed loop, current loop control system is 
also unconditionally stable i.e. change in open loop gain will not affect the stability of the inner loop. Alternately 
the gain margin is infinite.

Figure 4: Current loop (a) Bode plot and (b) Root locus plot

Performance Comparison of Discrete Two DOF with One DOF PI 5.	
control

Two tests are carried out to proof the effectiveness of the proposed control scheme firstly reference speed tracking 
and secondly disturbance rejection. Also the results obtained are compared with that of discrete PI control. The 
parameters for the PI controllers are obtained to have similar bandwidth as in the case of two DOF control. This 
is done for to the comparison purpose only. The PI controller parameters are obtained as in Table 3.

Table 3 
PI Controller Parameters

w-plane z-plane

Speed Loops 1 675 6 7. . /w w+( ) 1 675 1 674 1. . /z z- -( ) ( )

Current Loops 215 860w w+( ) / 215 214 95 1z z- -( ) ( ). /

1.	 Speed tracking: For this test the IM is operated in 100 rad/sec, 50 rad/sec, 100 rad/sec and 150 rad/
sec respectively with step changes at times 10 sec, 20 sec and 30 sec. A load torque of 20.37% is 
maintained throughout the entire period. The corresponding speed responses are shown in Figure 
5(a), which depicts an overdamped response with a settling time of 0.7 sec for two DOF control 
and with PI control shows an underdamped response with overshoot around 10% and settling time 
0.7 sec. The discrete PI control scheme speed response exhibits overshoot which is undesirable for many 
process industries, which can be overcome by the two DOF control scheme as it gives overdamped 
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response for same controller bandwidth or settling time. The reference flux is set at 0.75 Wb and the 
controller is maintaining it during the entire period. The flux response for change in speed reference 
is portrayed in Figure 5(b), which exhibits a settling time of around 0.7 sec.

2.	 Disturbance rejection: To examine this property, the IM is operated at constant speed 100 rad/sec. 
Initially the motor was loaded at 20.37%. The external load torque is then changed to respective levels 
at, 40.73%, 20.37% and 61% at time 10 sec, 20 sec and 30 sec. The corresponding speed response is 
shown in Figure 5(c). With both the control schemes speed settles down to its reference value within 
0.7 sec. The flux responses are shown in Figure 5(d). Figure 5(e) shows the d - q components of 
current changes during the load change. It is observed that the proposed control strategy is capable 
of disturbance rejection.

Discrete MRAS Observer6.	
The MRAS type observer is a well-established observer technique. The basic idea of MRAS is to compare the 
output rotor fluxes from the two reference and adaptive systems and correspondingly adapt the speed variable to 
be observed. In this work, a discrete time MRAS observer is modelled with respect to the discrete mathematical 
model in (1). The sampled version of the continuous time rotor and stator flux equation can be written as:

Figure 5: (a) Speed response to step change in reference speed (b) Flux response to step change in reference speed (c) 
Speed response to step change in Load torque (d) Flux response to step change in Load torque (e) d-q component stator 
current profile during load changes.



Manoj Swargiary, Jayati Dey and Tapas Kumar Saha

International Journal of Control Theory and Applications 240

	
f

f
ab ab ab

ab ab ab

rk r rk m sk

sk s sk m rk

= +

= +

L I L I

L I L I
	 (10)

From these equations the reference model for the discreet IM model can obtained as
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Again the rotor flux equation in (1), by removing trigonometric terms, neglecting the terms associated with 
higher order h, the following adaptive model is obtained
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Now for estimation of the speed w k  the following equation can be written [17]

	 w f f f fa b a b
  k rk rk rk rk p i

h
z

= - +
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Ê
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ˆ
¯̃

( ) K K
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Therefore, considering (9) as reference model and (12) as adaptive model, speed can be observed to nullify 
error term in (13) with the help of the discrete PI type regulator.

Performance of Discrete MRAS Observer7.	
The effectiveness of the derived discrete time MRAS observer is examined for reference tracking and disturbance 
rejection with discrete time two DOF control strategy. The controller parameters are maintained at their same 
respective values as in case of without observer.

Figure 6: Speed response with observer feedback (a) During reference speed variation (b) % speed error during 
reference speed variation (c) During load torque variation (d) % speed error during load torque variation.
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The same control topology is utilized as shown in Figure 2(a). Also the command reference speed for 
tracking test and the command load disturbance profiles are same as in case of without observer. The results 
obtained from discrete time MRAS observer are shown in Figure 6. The proportional and integral gains for the 
adaptive mechanism of MRAS observer in section VI are set at 200 and 800, respectively.

Figure 6(a) exhibits the comparative responses of MRAS observer and actual speed in case of reference 
tracking and corresponding % error is depicted in Figure 6(b), while the speed response and corresponding % 
error during the load disturbance rejection test are shown in Figure 6(c) and Figure 6(d) respectively. From the 
observation of the results following conclusions can be drawn.

∑	 The derived discrete time MRAS observer is capable of estimating the speed with some acceptable 
error in the estimation.

∑	 The maximum % error in speed tracking test is found to be -1.15% which is exhibited during 150 
rad/sec speed reference.

∑	 The maximum % error in load disturbance rejection test is found to be -1.27% which is exhibited 
during 61% load.

Conclusion8.	
In this work, a synchronous frame discrete time model for induction motor is considered. A conventional 
continuous time field orientation like control strategy is developed in context with the two DOF controller for 
the derived IM dynamics. Two pairs of two DOF controllers are used to control speed, flux, d-axis component 
of stator current and q-axis component of stator current. The two DOF controllers are designed through root 
locus technique so as to achieve robust loop shaping and performance. The performance of the two DOF control 
strategy is compared with that of the PI controller designed with same bandwidth. The two DOF controllers 
are found to be fulfilling the pre-set robustness standards. Disturbance rejection capability of the proposed two 
DOF controllers is examined through load torque perturbation. From the performance point of view the two 
DOF control scheme exhibits better response without any overshoot in speed response compared to one DOF 
PI control. Further, the effectiveness of the derived discrete MRAS observer is tested by feeding the estimated 
speed to the two DOF control strategy. The discrete MRAS observer is found to be worked successfully even 
under load perturbation with allowable estimation error.
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