
FRACTIONAL STOCHASTIC EVOLUTION EQUATIONS:

WHITE NOISE MODEL

M. ILOLOV, KH.S. KUCHAKSHOEV, AND J.SH. RAHMATOV

Abstract. The paper is dedicated to solvability of fractional order stochastic
evolution equations perturbed with Balakrishnan white noise type additive

terms. The results obtained in this paper can be applied in the analysis of
various stochastic relaxation and diffusion processes in complicate systems or
in fractal and porous media.

1. Introduction

The theory of stochastic evolution equations and it’s applications has devel-
oped significantly in recent decades. On the one hand, this is due to the infinite
dimensional analysis of semi-groups and evolution operators of solutions, but on
the other hand, this is due to the fact that their finite dimensional realizations of-
ten occur as mathematical models in physics, technique, chemistry, mathematical
biology, financial mathematics and other areas of the sciences. Generalization of
the theory of Ito-–Stratonovich-–Skorokhod in the infinite dimensional case was
originated in the works [1,2]. Within the framework of this theory in particular
Ito’s linear differential equation with multiplicative noise was investigated [3-6].
In [7-10] a different approach based on Nelson – Gliklikh derivative was offered
to the analysis of stochastic differential equations. It was found in [10] that Nel-
son – Gliklikh derivative of Wiener process is well consistent with the predictions
of theory of Brownian motion of Einstein-Smoluchowski. Therefore, the relevant
stochastic process was called ”white noise”.

In this paper, we investigate a class of stochastic equations of fractional order
perturbed with absolute random process or Balakrishnan type of white noise. This
type of white noise was first introduced in the monograph [11].

We consider the following Cauchy problem

cDα
t +Au(t) = f(u(t)) +Bω(t), u(0) = u0 (1.1)

where cDα
t - Caputo fractional derivative order α, 0 < α < 1, A - almost sectorial

operator in separable Hilbert space H, f : H → H - given nonlinear mapping, ω(t)
- absolute random process (white noise in the sense of Balkrishnan) in another
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separable Hilbert space Hn, B - linear operator, defined in H with values in the
space of operators from Hn in H.

In analysis of Cauchy problem (1.1) the standard requirement is the generation
of family of resolvent operators by operator A {Sα(t)}t≥0 and {Zα(t)}t≥0. This
condition guarantees the correctness of Cauchy problem for deterministic unper-
turbed homogeneous equation

cDα
t +A(t)u(t) = 0.

Next we should require that nonlinear mapping f(·) satisfies a Lipschitz condition.
Conditions imposed on operator B are closely related to the properties of an
absolute random process (white noise). Next, everywhere in this paper by random
process ω(t) we will understand white noise in the sense of Balakrishnan. We
introduce the space W = L2((0, T ), H), where 0 < T ≤ ∞, which will be a
separable Hilbert space if H is a separable Hilbert space. We use the notations ω
and µ for element of space W and standard Gaussian measure accordingly. The
space W defined in this way is said to be a white noise and each element ω ∈ W
is called a realization of white noise.

Let

W (t, ω) =

t∫

0

ω(s)ds.

Function W (t, ω) is continuous with respect to t when ω is fixed and when t > s
the difference [W (t, ω) − W (s, ω)] is a Gaussian random variable with expected
value equal to zero and variance equal to (t − s)∥h∥2, where h ∈ W . However
[W (t, ω), h] cannot be the realization of Wiener process, because such realization
has bounded variation at each finite interval when ω is fixed.

The space-time correlation Balakrishan model is one of the possible models
based on delta function. Another approach is based on the theory of martingales
and Wiener processes. If we limit ourselves to considering only linear operators
both approaches will lead to the same results. When we use non-linear operators,
there will be a profound difference between these approaches (see, for example,
12-14]).

The paper consists of an introduction, a list of literature and five paragraphs.
The main definitions and results of the theory of integrals and fractional derivatives
are outlined in the §2. §3 is dedicated to the study of the resolvent families of
operators Sα(t) and Zα(t). The main properties of Balakrishnan white noise and
the corresponding stochastic integral are cited in the §4. Linear case of the Cauchy
problem is studied in §5, and non-linear case in §6.

2. Integrals and derivatives of fractional order

Let J = [0, T ], X - Banach space, N - set of natural numbers, R - real number
line, L(J,X) - space of Lebesgue integrable functions defined on J with output
values from X,ACm(J,X) - space of (m − 1) times continuously differentiable
functions on J X - valued functions with absolutely continuous derivative of order
m, Wm.1(J,X) - Sobolev space.
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Definition 2.1. Fractional integral of order α > 0 of function f ∈ L1(J,X) is

Iαt f(t) =
1

Γ(α)

t∫

0

f(s)ds

(t− s)1−α
, t > 0 (2.1)

if, the right side is a pointwise defined function on J , where Γ(·) - Euler gamma
function of second type.

Definition 2.2. Liouville fractional derivative of order α > 0 of function f is

RLDα
t f(t) =

1

Γ(n− α)

dn

dtn

t∫

0

f(s)ds

(t− s)(α+ 1− n)
, t > 0, n− 1 < α < n (2.2)

For convenience integral (2.1) will be written in the form

Iαt f(t) = (gα ∗ f)(t)

for function

gα(t) =




tα−1

Γ(α)
, if t > 0,

0 if t ≤ 0.

Here is a brief summary of the main properties of fractional order integral (2.1)
and derivative (2.2) in the form of the following statements (see, for example.
[15-18]).

Lemma 2.3. Let β > 0 and m = [β].

(1) If f ∈ L1(J,X), then gm−β ∗ (Iβt f) ∈ Wm,1(J,X) and RLDβ
t I

β
t f(t) = f(t)

almost everywhere.

(2) If α > β and f ∈ L1(J,X), then RLDβ
t I

α
t f(t) = Iα−β

t f(t) almost every-

where, in particular, if α > k, then DkIβt f(t) = Iβ−k
t f(t) almost everywhere.

(3) If p > 1
q and f ∈ Lp(J,X), then Iαf is continuous on J .

Riemann-–Liouville derivative is not very convenient for modeling real physical
processes. Therefore, a modified fractional derivative associated with the name
M. Caputo is introduced.

Definition 2.4. Caputo fractional derivative order α > 0 of function f : J → X
is

cDα
t f(t) =

RL Dα[f(t)−
n=1∑
k=0

tk

k!
fk(0)], t > 0, n− 1 < α < n. (2.3)

It is obvious that Caputo derivative of constant function is equal to zero. Note
also that integrals in all definitions (2.1), (2.2) and (2.3) are understood in the
sense of Bochner.
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Lemma 2.5. Let α ∈ (0, 1) and h : J → X is continuous functions. Function
u ∈ C(Y,R) given in the form

u(t) = u0 +
1

Γ(α)

t∫

0

(t− s)α−1h(s)ds

is a unique solution of the following fractional Cauchy problem

cDα
t u(t) = h(t), t ∈ J

u(0) = u0

Corollary 2.6. If instead of a continuous function h in the lemma 2.5 we take
the integrable function, the result of the lemma will remain true.

3. Almost sectorial operators and main properties

LetX be a Banach space with the norm ∥·∥, A closed linear operator,D(A), R(A)
and σ(A) domain, range and spectrum of operator A accordingly.

Definition 3.1. (see. [19]). Let −1 < γ < 0 and 0 ≤ δ ≤ π. By Θγ
δ (X) we denote

the set of closed linear operators A : D(A) ⊆ X → X such that: (1) spectrum
σ(A) belongs to the sector

Σµ = {λ ∈ C � {0} : |argλ| ≤ µ}U{0};
(2)for every δ < µ < π exists a constant cµ > 0 such that

∥(λ−A)−1∥ ≤ cµ|λ|γ for all λ∈̄Σo
π/2−δ.

If A ∈ Θγ
δ (X), then A named almost sectorial operator.

Let’s introduce family of operators

{T (t)}t∈Σo
π/2−δ

, {Sα(t)}t∈Σo
π/2−δ

, {Zα(t)}t∈Σo
π/2−δ

associated with operator A as follows

T (t) = e−tλ(A) =

=
1

2πi

∫

Γθ

e−tλ(λ−A)−1dλ, t ∈ Σo
π/2−δ, λ ∈ C� (−∞, 0];

Sα(t) = Eα(−λtα)(A)θ =

=
1

2πi

∫

Γθ

Eα(−λtα)(λ−A)−1dλ, t ∈ Σo
π/2−δ, λ ∈ C� (−∞, 0];

Zα(t) = Eα,α(−λtα)(A) =

=
1

2πi

∫

Γθ

Eα,α(−λtα)(λ−A)−1dλ, t ∈ Σo
π/2−δ, λ ∈ C� (−∞, 0], (3.1)

where Eα,α(λ) =
∞∑
k=0

λk

Γ(α(k+1)) , α > 0, λ ∈ C - two-parametric Mittag-Leffler

function, Eα(λ) = E1,α(z), contour Γθ = {R+e
iθ}∪{R+e

−iθ}(0 < θ < π) directed
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in a way that open sector
∑0

θ = {λ ∈ C � {0} : |argλ| < θ} ∪ {0} is on the right
side of Γθ.

Note that the family {T (t)}t ∈ Σo
π/2−δ is a semigroup due to the property

T (s+ t) = T (s)T (t)

for all Σo
π/2−δ, in addition operator T (t) characterized as resolvent (λ + A)−1 of

operator A, which is the Laplace transformation of semigroup T (t), i.e.

(λ+A)1 =

∞∫

0

e−λtT (t)dt, λ ∈ C, Reλ > 0. (3.2)

From (3.1) and (3.2) it follows that there is one to one mapping between oper-
ator A and semigroup T (t) . From Definition (3.1) it follows that operators Sα(t)
and Zα(t) can be presented through T (t) in the following way

Sα(t)x =

∞∫

0

Φα(s)T (st
α)xds, t ∈ Σo

π/2−δ, x ∈ D(Sα(t)), (3.3)

Zα(t)x =

∞∫

0

αΦα(s)T (st
α)xds, t ∈ Σo

π/2−δ, x ∈ D(Zα(t)), (3.4)

where function Φα(s) (see for example [19]) is defined as

Φα(λ) =
1

π

∞∑
k=1

(−λ)k

(k − 1)!
Γ(kα) sin(kπα), 0 < α < 1, λ ∈ C.

The main properties of operators Sα(t) and Zα(t) will be given in the form of
following statements.

Lemma 3.2. Let A ∈ Θγ
δ , −1 < γ < 0, 0 < δ < π/2. There are statements:

(1) For every t ∈
∑0

π/2−δ, Sα(t) and Zα(t) are bounded linear operators on X.

Moreover, there exist constants CS = C(α, γ) > 0 and CZ = C(α, γ) > 0 such
that, for all t ≥ 0

∥Sα(t)∥ ≤ CSt
−α(1+γ) and ∥Zα(t)∥ ≤ Czt

−α(1+γ).

(2) For t > 0, the families Sα(t) and Zα(t) are continuous in uniform operator
topology. Moreover, for every r > 0 uniformly continuous on [r,∞).

(3) For every fixed t ∈ Σπ/2−δ and all x ∈ D(A),

(Sα(t)− I)x =

t∫

0

−sα−1AZα(z)xds.

(4) For all x ∈ D(A) and t > 0
cDα

t Sα(t)x = −ASα(t)x

(5) For all t > 0 Sα(t)I
α
t (t

α−1Zα(t)).
(6) Let β > 1 + γ. For all x ∈ D(Aβ), lim

t→0+
Sα(t)x=x.
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Lemma 3.3. ([19]). Let A ∈ Θγ
δ (X), −1 < γ < 0, 0 < δ < π/2, and let

0 < β < 1− γ, then:
(1) The range R(Zα(t)) of family Zα(t) for t > 0 is contained in D(AB).
(2) S′

α(t)x = −tα−1AZα(t)x, and S′
α(t)x for x ∈ D(A) locally integrable on

(0,∞).
(3) For all x ∈ D(A) and t > 0, ∥ASα(t)x∥ ≤ ct−α(1+γ)∥Ax∥, where n is a

constant depending on γ, α.
(4) For every fixed t ∈ Σo

π/2−δ, Zα(t) is a bounded linear operator on Xβ.

Moreover, there exist a positive constant C0 such that, for all t ≥ 0

∥AβZα(t)x∥ ≤ αC0
Γ(1− α− β)

Γ(1− α(γ + β))
t−α(γ+β+1)∥x∥.

Lemma 3.4. If the resolvent (λ + A)−1 is compact for every λ > 0, then Sα(t)
and Zα(t) are compact for every t > 0

Proof. Let ε > 0 arbitrary number. We will demonstrate that

ζε(t) =

∞∫

ε

Φα(s)T (st
α − εtα)ds, ξε(t) =

∞∫

t

Φα(s)T (st
α)ds,

Then ξε(t) = T (εtα)ζε(t) and it is easy to prove that for every t > 0, ξε(t) is a
bounded linear operator on X. Next, with the use of compactness of T (t), t > 0
we can demonstrate that ξε(t) is compact for every t > 0.

Notice that

∥ξε(t)− Sα(t)∥ ≤ ∥
∞∫

0

Φα(s)T (st
α)ds∥ ≤ c0t

−α(1+γ)

∞∫

0

Φα(s)s
−1−γds.

Therefore, from compactness of ξε(t), t > 0 it follows that Sα(t) is compact for
every t > 0. Using similar reasoning we can conclude that Zα(t) is compact for
every t > 0. Lemma is proven.

4. White noise and Balakrishnan stochastic integral

Let H be a separable Hilbert space and W = L2((0, T ), H) Hilbert space of all
measurable functions

f : [0, T ] → H

such that

∫ T

0

∥f(t)∥2 < ∞,

where ∥ · ∥ is a norm in H.
Let’s define the cylindrical measure µ on (W,Σ) (Σ - algebra of cylindrical sets)

as
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µ(E) =

∫

B̃

G(x)dx,

where B̃ is a Borel set in Rn isomorphically to B- base of cylinder E, and G(x) -
n - dimensional Gaussian density with the zero mean and covariance equal to one.
Such measure µ is said to be Gaussian measure on W .

Let H be a separable Pre-Hilbert space. It is obvious that H ⊂ H. Borel
measurable mapping f : W → H is said to be random vector if the Gaussian
measure µ can be extended to countably additive on σ - algebra of sets of type
(f−1(B), A - Borel set on H).

If H = R1, then f is said to be a random variable.
Under the finitely additive white noise in W we understand the process with

trajectory in ω(·) in W with Gaussian measure µ and with the characteristic
function

C(h) = E[exp(i

∫ T

0

[N(t), h(t)]dt)] = exp(−1

2

∫ T

0

[h(t), h(t)]dt).

This measure cannot be extended to the countably additive on W . Let f(·)
stands for any Borel measurable function mapping W to another (separable)
Hilbert space Hr. In general, there is no need to determine the distribution over
Hr. Let PN be any sequence of finite dimensional projectors on W such that PN

strongly converges to the identity operator. Then for every N, f(PNf) is a random
variable. Assume that

{f(PNω)}
is a Cauchy sequence of probability measures. Then

C(h) = lim
N

CN (h), h ∈ Hr, (4.1)

where
CN (h) = E[exp(i[f(PNω), h])]

determines the countably additive measure on Borel sets of space Hr. If the limit
characteristic function C(h) is independent of the partial sequence of projectors
PN , then we call f(·) physical random variable (PRV) and will determine the limit
measure as distribution f(·). In this regard we recall the famous Prokhorov limit
theorem [12]: for any Borel set A in Hr

µN (B) → µf (B) if µf (∂B) = 0, (4.2)

where µN (·) is a distribution function f(PNω).
Now using relations (4.1) and (4.2) will give the characteristic of the PRV. To

that end, let’s use the following concept of continuity.

Definition 4.1. Let H1, H2 are real separable Hilbert spaces. F : H1 → H2 is
continuous in x ∈ H1 with respect to S - topology if for any ε > 0 exist Hilbert-
–Schmidt operator Lε(x) : H

1 → H1 such that

∥Lε(x)(x− x′)∥ < 1 (4.3)
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follows

∥F (x)− F (x′)∥ < ε (4.4)

F is uniformly S - continuous on U ⊂ H1 if Hilbert-Schmidt operator in (4.3) is
independent of x ∈ U

Definition 4.2. F : H1 → H2 is said to be uniformly S - continuous in the
neighborhood of origin if F is uniformly S - continuous on sets

Un = {u ∈ H1 : ∥Lnu∥ ≤ 1},

where {Ln}1 is the sequence of Hilbert-Schmidt operators such that

{Ln}HS → 0 and
∞∪

n=1

Un = H1.

It is obvious that uniformly S - continuous mapping is also uniformly S - contin-
uous in the neighborhood of the origin.

Taking into account inequalities (4.3), (4.4) and definitions (4.2) we can give a
criterion characterizing the PRV.

Lemma 4.3. Uniformly S - continuity of F : H1 → H2 in the neighborhood of
the origin is the sufficient condition that F is PRV.

5. Stochastic evolution equation with linear drift

Let H be a separable Hilbert space, A - almost sectorial operator, i.e. A ∈
Θγ

σ(H), −1 < γ < 0, 0 < σ < π/2. According to the results from section 4
we determine the functional space W = L2((0, T ), H), where T ≤ ∞. Let Hn -
another separable Hilbert space (here n - stands for white noise) and let Wn =
L2((0, T ), Hn). Let A be a bounded linear operator from Hn to H.

We will consider evolution equation

cDα
t u(t) +Au(t) = Bω(t), t > 0, u(0) = u0, (5.1)

where cDα
t - fractional Caputo derivative order α, 0 < α < 1, A ∈ Qγ

σ(H),−1 <
γ < 0, 0 < σ < π/2, ω(t) - white noise with output values from another separable
Hilbert space Hn, B - linear operator from H to Hn.

Since we want to emphasize the dependence of the solution on the random entry
of ω, we will use the notation u(t, ω) for it.

The equation

[u(t, ω), v] = [u(0), v] +

t∫

0

(t− τ)α−1[u(t, ω), A∗v]dτ+

t∫

0

(t− τ)α−1[Bω(τ), v]dτ, v ∈ D(A∗) (5.2)

has a solution given by
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u(t, ω) = Sα(t)u0 +

t∫

0

(t− τ)α−1Zα(t− τ)Bω(τ)dτ (5.3)

and for every ω this is a unique solution in the class of weakly continuous functions
which satisfies equation (5.2). Here Sα(t), Zα(t) are family of resolvent operators
introduced in section 3. The statement directly follows from theorem 4.8.3 of
monograph [11] and paper [20]. Next, using the formula (5.3), we calculate the
correlation operator corresponding to the process u(t, ω). Since u(t, ω) defined for
every t, it can be found for every moment t. Suppose that u0 is given, we obtain

E([u(t, ω)− Sαu0v][u(τ, ω)− Sαu0, z]) =

E(

t∫

0

[(t− τ)α−1Zα(t− τ)Bω(τ), v])dτ

∫ τ

0

[(τ − σ)α−1Zα(τ − σ)Bω(τ), z]dσ) =

= E(

t∫

0

[ω(τ), B∗(t− τ)α−1Z∗
α(t− τ)v]dτ

τ∫

0

[ω(σ), B∗(τ − σ)α−1Z∗
α(τ − σ)]dτ) =

t∫

0

[ω(σ), B∗(t− σ)α−1Z∗
α(τ − σ)v,B∗(t− σ)α−1Z∗

α(τ − σ)z]dσ =

[v, (t− τ)α−1Rα(τ, τ)z], t ≥ τ.

Hence, the correlation operator Rα(t,τ) is determined by the formula

Rα(t, τ) = Sα(t− τ)Rα(τ, τ), t ≥ τ, (5.4)

where

Rα(τ, τ)u0 =

τ∫

0

(τ − σ)α−1Zα(τ − σ)BB∗Z∗
α(τ − σ)u0dτ. (5.5)

From the last formulas directly follows the equation

cDα
t [Rα(τ, τ)u0, v] = [Rα(τ, τ)A

∗u0, v]+

+[Rα(τ, τ)u0, A
∗v] + [B∗u0, A

∗v]Rα(0, 0) = 0 (5.6)

for all u0, v from the domain of D(A∗). And vice versa, the equation (5.6) has
unique solution and the solution determines by formula (5.5).

Next, for every u0 the following equation is true

[Rα(τ, τ)u0, u0] =

τ∫

0

∥B∗S∗(τ − σ)u0∥2dσ,

and therefore this value does not decrease when τ ≥ 0.
Let
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[Rα∞u0, u0] = lim
τ→∞

[Rα(τ, τ)u0, u0].

The limit on the right side is finite if the following conditions are satisfied

lim
t→∞

1

t
log∥S(t)∥ = ω0 < 0 (5.7)

In this case the operator Rα∞ will be a bounded linear operator determined by
the equation

[R∞u0, v] = lim
τ→∞

[Rα(τ, τ)u0, v], u0, v ∈ H (5.8)

Taking into account equations (5.6) we can say that Rα∞ satisfies the equation

[Rα∞A∗u0, v] + [Rα∞u0, A
∗v] + [B∗u0, B

∗v] = 0 (5.9)

for all u0, v ∈ H from the domain of operator A∗.
It is obvious that condition (5.7) is not necessary for the operator Rα∞ to

be defined correctly. As an example, we might consider the case of a compact
semigroup such that S(t)Bx = exp(−ζt)x, ζ > 0. Notice that condition

[Rα(τ, τ)u0, u0] = 0 implies u0

does not mean that zero belongs to the resolvent set. This fact reflects the specifics
of the infinite case.

The fact is that in finite dimensional case operator R(τ, τ) is always compact.
Next, let

ũ(t, ω) =

t∫

0

(t− s)α−1Zα(t− s)Bω(s)ds.

Then the equation

Lω = ũ(·, ω) (5.10)

determines the bounded linear operator, which maps space Wn to W . The formula
χ(c) = µ[ω : Lω ∈ C}] (see section 4) determines Gaussian cylindrical measure
on the class of cylindrical sets from W . It will be countably additive τ algebra of
Borel sets of this space if an only if when L is a Hilbert-Schmidt operator, or if
and only if whenZα(t)B is Hilbert-Schmidt operator for almost all t ∈ (0, T ) and

t∫

0

t∫

0

∥(t− τ)α−1Zα(t− τ)B∥2dτdt < ∞.

This condition will be satisfied if Zα(t) is a Hibert-Schmidt operator, or if B is
Hilbert- Schmidt operator. Notice that

E((Lω)(Lω)∗) = LL∗.

The above reasoning makes it possible to formulate the following statement.
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Theorem 5.1. Let f(ω) = L(ω), where L is any bounded linear transformation
from H to Hn. f(·) is physical random variable if and only if when L is Hilbert-
Schmidt operator.

6. Stochastic evolution equations with nonlinear drift

In this section we will consider nonlinear fractional Cauchy problem

cDα
t u(t) +Au(t) = f(u(t)) +Bω(t), t > 0, u(0) = u0, (6.1)

where A ∈ Θγ
σ,−1 < γ < 0, 0 < σ < π/2. Under weak solution of problem (6.1)

we understand function u(t, ω) : Wn = L2((0, T ), Hn) → H which satisfies the
equation

u(t, ω) = Sα(t)u0 +

t∫

0

(t− τ)α−1Zα(t− τ)dτ [f(u(τ, ω)) +Bω(τ)]dτ, (6.2)

µG - Gaussian measure on Wn, ω point in Hn, B : H → Hn - bounded operator
and f : H → H Lipschitz uniformly mapping such that

∥f(u1)− f(u2)∥ ≤ L(f)∥u1 − u2∥, (6.3)

where L(f) is a constant which depends on f .
We will determine the integral contour Γσ directed in a way that open sector Σ0

σ

is on the right side of Γσ. Let β ∈ C and A ∈ Θγ
σ(H),−1 < γ < 0, 0 < σ < π/2.

Then the complex power Aβ of operator A determines in the following way

Aβ = λβ(A) =
1

2πi

∫

Γσ

λβ(λ−A)−1dλ, λ ∈ C� (−∞, 0]

In the case Re(β) > 1 + γ,A−β belongs to L(H) - space of all bounded linear
operators from H to H. Linear space Hβ = D(Aβ) is a Banach space with the
norm

∥u∥β = ∥Aβu∥, u ∈ Hβ .

Let’s formulate and prove the following statement.

Theorem 6.1. Suppose (6.3) and u(t, ω) satisfies the problem (6.1). Then for
every u0 ∈ Hβ function u(t, ω) satisfies the equation

u(t, ω) = Sα(t) +

t∫

0

(t− τ)α−1Zα(t− τ)f(u(t, ω))dτ+

t∫

0

(t− τ)α−1Zα(t− τ)Bω(τ)dτ (6.4)
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Proof. It is obvious that in the conditions of theorem the problem (6.1) is
equivalent to the solution of integral stochastic equation

u(t, ω) = u0 −
1

Γ(α)

t∫

0

(t− τ)α−1Au(τ, ω)dτ +
1

Γ(α)

t∫

0

(t− τ)α−1f(u(τ, ω))dτ+

+
1

Γ(α)

t∫

0

(t− τ)α−1Bω(τ)dτ, t ≥ 0. (6.5)

Applying Laplace transformation to both sides of (6.5), we obtain

U(s) = Sα−1(Sα +A)−1u0 + (Sα +A)−1F (s) + (Sα +A)−1Gω(s), (6.6)

where

U(s) =

∫ ∞

0

e−stu(t)dt, F (s) =

∫ ∞

0

e−stf(u(t))dt,

Gω(s) =

∫ ∞

0

e−tsGω(t)dt,Res > γ.

Using lemmas from section 3, integration by parts and taking into consideration
(6.5) we obtain

Sα−1(Sα +A)−1u0 + (Sα +A)−1Gω(s) =

=

∫ ∞

0

e−stSα(t)u0dt+

∫ ∞

0

e−st(

∫ t

0

(t− τ)α−1Zα(t− τ)f(u(τ)dt))dt+

+

∫ ∞

0

e−st(

∫ t

0

(t− τ)α−1Zα(t− τ)Bω(τ)dτ)dt. (6.7)

Combining (6.6) and (6.7) and taking into consideration theorem about unique-
ness of Laplace transformation, we obtain

u(t, ω) = Sα(t)u0

∫ t

0

(t− τ)α−1Zα(t− τ)f(u(τ, ω))dt+

∫ t

0

(t− τ)α−1Zα(t− τ)Bω(τ)dτ.

Theorem 6.2. Let the conditions of theorem 6.1. are satisfied. Then the solution
u(t, ω) of problem (6.1)is a physical random variable, if A is Hilbert- Schmidt
operator and/or B is Hilbert-Schmidt operator

Proof. Let’s write down the equation (6.1) in an integral form

u(t, ω) = u0 +

∫ t

0

(t− τ)α−1Au(τ, ω)dτ+

∫ t

0

(t− τ)α−1f(u(τ, ω))dτ +

∫ t

0

(t− τ)α−1Bω(τ)dτ (6.8)

or equivalently
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u(t, ω) = Sα(t)u0 +

∫ t

0

(t− τ)α−1Zα(t− τ)f(u(τ, ω))dτ+

∫ t

0

(t− τ)α−1Zα(t−τ)Bω(τ)dτ (6.9)

Solution (6.9) is a unique weak continuous solution of problem (6.1)

[u(t, ω), v] = [u0, v] +

∫ t

0

[(t− τ)α−1u(t, ω), v]dτ+

+

∫ t

0

[(t− τ)α−1f(u(τ, ω)), v]dτ +

∫ t

0

[(t− τ)α−1Bω(τ), v]dτ

for every v ∈ D(A∗), where D(A∗) is the domain of conjugate almost sectorial
operator A∗. We would like to demonstrate that u(·, ω) is a physical random
variable.

From (6.9) we obtain

∥u(·, ω1)− u(·, ω2)∥2W ≤

≤ 2

∫ T

0

∥
∫ t

0

(t− τ)α−1Zα(t− τ)[f(u(τ, ω1))− f(u(τ, ω2))]dτ∥2dt+

2

∫ T

0

∥
∫ t

0

(t− τ)α−1B[ω1(τ)− ω2(τ)]dτ∥2dt ≤

≤ 2

∫ T

0

∥
∫ t

0

(t− τ)α−1Zα(t− τ)∥2∥[f(u(τ, ω1))− f(u(τ, ω2))]∥2dτdt+

2

∫ T

0

∥
∫ t

0

(t− τ)α−1Zα(t− τ)B[ω1(τ)− ω2(τ)]dτ∥2dt ≤

2M(α)ekTL(f)

∫ T

0

∥
∫ t

0

∥u(τ, ω1))− f(u(τ, ω2)∥2Hdτdt+

2

∫ T

0

∥
∫ t

0

(t− τ)α−1Zα(t− τ)B[ω1(τ)− ω2(τ)]dτ∥2Hdt. (6.10)

Let m(t) =
∫ t

0
∥u(τ, ω1))− f(u(τ, ω2)∥2Hdτ ,

P (α) = 2M(α)ekTL(f), β(T ) =

= 2

∫ T

0

∥
∫ t

0

(t− τ)α−1Zα(t− τ)×BL[ω1(τ)− ω2(τ)]dτ∥2Hdt,

then (6.10) can be written in the form

m(T ) ≤
∫ T

0

Nm(t)dt+ β(T ) (6.11)

and from Gronwall inequality it follows that

m(t) ≤ eNTβ(T ) (6.12)

or
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∥u(·, ω1)− u(·, ω2)∥2W ≤ 2eNT ∥
∫ t

0

(t− τ)α−1Zα(t− τ)B[ω1(τ)− ω2(τ)]dτ∥2W .

Now, since Zα(t− τ)(t− τ)α−1 is Hilbert-Schmidt operator, we can determine
operator L : W 1 → W 2 such that

Lf = g, g =

∫ t

0

(t− τ)α−1Zα(t− τ)Bfdτ.

then introducing γ(N) = 2eNT , we obtain

∥u(·, ω1)− u(·, ω2)∥2W ≤ γ(N)∥L(ω1 − ω2)∥2W
or u(·, ω) is uniformly continuous in S - topology and u(·, ω) is physical random
variable.

The theorem is proven.
Notice that similar problems were considered also in the papers [23-26].
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