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Abstract

The paper presents Single Term Haar Wavelet Series (STHWS) approach to the solution
of nonlinear stiff differential equations arising in Physics. The properties of single
term Haar wavelet series are given. The method of implementation is discussed.
Numerical solutions of some model equations are investigated for their stiffness and
stability and numerical solutions are obtained to demonstrate the suitability and
applicability of the method. The results in the form of block-pulse and discrete solutions
are given, for non-linear stiff systems. As compared with the TR BDF2 method of
Shampine [12] and Gill’s metheod. The STHWS turns out to be more effective in its
ability to solve systems ranging from mildly to highly stiff equations. The method
works even when higher order numerical methods for stiff systems fail to give solutions.
The novel feature of the scheme is development of an algorithm exclusively for solving
systems of non-linear algebraic equations resulting from STHWS. It reduces the
computational effort enormously, at the same time, meeting accuracy requirements.
We can see that the STHWS method takes substantially fewer steps and is about three
times faster than Gill’s method.

Keywords: STHWS; Operational matrix; Block-pulse and discrete solutions; Gill’s
Method, Non-Linear Stiff systems.

INTRODUCTION

Many physical systems such as nuclear reactors and laser oscillators etc. give rise to
nonlinear ordinary stiff differential equations, the magnitudes of the eigenvalues of
which vary greatly. Also, some differential equations are characterized by a property;
of having solutions varying on completely different time scales. It is common to refer
to such differential equations as stiff. The problem associated with stiff systems is
twofold; stability and accuracy. The conventional and current methods, have, by and
large, been proved to be stable [15]. However, in some cases, using a small step size
can introduce enough round-off errors to cause instability, making the classical single-
step methods unsuitable. The main focus in the problem of devising numerical methods
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of stiff differential equation is therefore, to reduce the computation time for a given
level of accuracy. Stiff problems typically arise in Ionospheric physics, Chemical
kinetics, Control theory, Biochemistry, Climatology, Electronics etc. where there is a
slowly varying equilibrium solution with rapidly decaying transients. In practical
solutions, the choice of step size, indeed, plays a crucial role. Although, non stiff
methods can solve stiff problems, they just take a long time to do it. Integration of
such equations, for instance, using traditional (Runge-Kutta) methods may consume
too much time. Implicit methods might be the only option to reduce computation

time. However, implicit methods are not very effective.

Carrol [4] presents a scheme for solving the stiff system of initial value problems
which converge very fast. A long-standing work by Pavlov and Rodionova[8] retains
non-linear terms of the original equation. Nevertheless, these methods have not
succeeded in reducing the computation effort substantially. In this paper, an attempt
is made to extend the Single Term Haar Wavelet series (STHWS) method proposed
by Hsiao [6] to solve non-linear stiff systems. The method essentially, consists of
choosing the single-segment approximation using Haar wavelets. To retain the
specified level of accuracy, an interval [0, 1/m) is stretched to unit length in which,
only the first term of the Haar series expansion needs to be considered. Incidentally,
one has the freedom to compute over any number of segments without the restriction
of m = 2k. This method was used with considerable success recently by various authors
for solving linear stiff systems and their variants [6]. In this paper we follow a slightly
a different approach. Following the works of Sepehrian et al. [10], we develop an
algorithm to solve non-linear algebraic system of equations, resulting from the
application of STHWS recursively. This innovative algorithm, in addition to providing
block-pulse (piece-wise constant) solutions, gives discrete (point-wise) solutions as a
by-product. The unique feature of this method is that, it avoids computation of operation
matrices of integration and product matrices, thereby reducing the computation time
to optimum level. It may be remarked that, while STHWS technique has long been
applied to various problems of dynamic systems [6], to the author’s knowledge, they
have not been applied to non-linear stiff systems encountered in Physics. The major
advantage of this approach is that, computations can be continued to any desired
length of time after ensuring stability. Secondly, besides giving the option to choose
between two types of solutions mentioned earlier, the recursive formula lends itself to
the solution of non-linear stiff systems.

Survey of stiff solvers: We give here a brief survey of stiff solvers designed and
tested, with comments on their relative merits and demerits. Classical numerical
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schemes do have some disadvantages in analyzing stiff differential equations. This
can sometimes present severe problems and much effort has been expended to cope
effectively with stiffness. The simplest remedy is to resort to implicit schemes. But,
the nice features of implicit schemes hold only for linear systems. While implicit
methods are first order accurate, most stiff problems benefit from higher order methods.
There are three higher order methods for stiff systems: The classical Runge-Kutta
method of 4th 0rder, Generalization of Buliresh-Stoer method, and Predictor-Corrector
method.

During 1970’s Walsh functions and their cousins Haar wavelets received
considerable attention in dealing with various problems of dynamical systems. Initially
using orthogonal functions to construct operational matrices for solving optimization
problems of dynamical systems was established. The pioneering work in system analysis
via Haar Wavelets was initiated by Chen and Hsiao [3], who first derived a Haar
Operational matrix for integration. Since then many operational matrices based on
various orthogonal functions, such as Walsh, Block-pulse, Laguerre, Legendre,
Chebyshev and Fourier have been developed. The main characteristic of this technique
was to convert a differential equation into an algebraic equation, as a result of which,
the solution procedures are greatly reduced or simplified. All the orthogonal functions
mentioned above, however, are supported on the whole interval [a, b]. This kind of
global support made them unsuitable for certain analyses, involving abrupt variations
lasting for a very short duration. The operational matrix established for Haar wavelets
eliminated all the drawbacks caused by the whole range support. A new approach
called “single segment approximation” which avoids operational matrices of
prohibitively large size and maximizes the reduction in the computational effort; was
introduced by Rao et al. [9] using Walsh functions. The effectiveness of Single Term
Walsh Series (STWS) method was further demonstrated by Balchandran and Muragesan
[1]. A method for solving time-varying singular nonlinear systems by single-term
Walsh series was proposed by Sepehrian and Razzaghi [10]. Hsiao [6] proposed a
simple and effective algorithm based on the single-term Haar wavelet series (STHWS)
for solving only linear stiff systems. The key idea behind STHWS is to represent the
time-varying functions and their derivatives using only the first term of the Haar
wavelet series and using the locality and orthonormality properties of Haar wavelets
in transforming stiff systems into a system of algebraic equations. For many years the
numerical solution of stiff ordinary differential equations has been an active field of
research motivated by challenging real life applications. The presently most effective
algorithm for this type of problems seems to be the TR BDF2 method of Shampine
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[12] an implicit Runge – Kutta formula with a first stage that is a trapezoidal rule step
and a second stage that is a backward differentiation formula of order two. By
construction the same iteration matrix is used in evaluating both stages. As this method
is based on an implicit discretization , it requires the iterative solution of a nonlinear
algebraic system per each integration step. In view of this feature recent attention has
focused on so called STHWS which uses the solution of nonlinear algebraic system
using the initial values only once and then follows it up recursively. In this paper it is
planned to look for a novel scheme so as to extend STHWS scheme to nonlinear stiff
systems, that too, arising in Physics.

The paper is organized as follows. Section 2 is devoted to theoretical background
of Haar wavelets and STHWS, which is relevant for the material that follows. Section
3 is about the method of solution and its implementation aspects. Section 4 is concerned
with the connection between Stiffness and stability. Section 5 is mainly concerned
with the application of the proposed scheme to the test problems to demonstrate the
efficiency and effectiveness of the algorithm. Numerical findings are presented in

Sec.5 in the form of Tables and graphs.

PROPERTIES OF HAAR WAVELET SERIES AND
SINGLE TERM HAAR WAVELET SERIES

Haar wavelet series

The orthonormal basis � �nh  of Haar wavelets for the Hilbert space ]1,0[2L

consists of j k
1(2 ),    n = 2 .  j 0, 0 k 2j

nh h t k k� � � � � �

 where, 0 1

1.  0 t<0.5
( ) 1.  0 t<1,   h ( )

-1. 0.5 t<1 
h t t

��
� � � � ��

(2.1)

Each Haar wavelet hn has the support � �2 , 2 ( 1)j jk k� � � , so that it is zero elsewhere
in the interval [0, 1). Interestingly, as n increases the Haar wavelets become more and
more localized. Therefore {hn} forms a local basis. In contrast, Walsh functions which
take only the values 1 and -1 form a global basis. They may be expressed as linear
combinations of the Haar wavelets, so many results about the Haar wavelets carry
over to the Walsh system easily [6]. Moreover, the Walsh functions are precisely the
Haar wavelet packets [16].

Any function � �2 [0,1)f L�  can be expanded in Haar series:
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The convergence in (2.2) is in the L2 sense i.e. “mean convergence”.

Accordingly, the Haar coefficients ic  are determined such that
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In applications Haar series are always truncated to m terms, that is
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The coefficient vector mc and Haar wavelet vector ( )m th are defined as
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The Haar transform matrix mH is defined as
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� �
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(2.5)

In studying differential equation models of dynamical systems using Haar wavelets,
it is frequently required to perform integrations in order to solve the problem. Since
the differentiation of Haar wavelets results in generalized functions, which in any
case should be avoided, the integration of Haar wavelets are preferred. Integration of

Haar wavelets [3] should be expandable in Haar series:
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� � � �� . If we truncate to 2nm �  terms and use the above vector

notation, then integration is performed by matrix-vector multiplication defined by
[6]:
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where P is called the Operational matrix of integration which satisfies the following
recursive formula:[3].
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Single term Haar wavelet series (STHWS)

With the single Term Haar wavelet series approach, in the first interval, the given

function is expanded as STHWS in the normalized interval ]1,0[��  which corresponds

to t )
1

,0[
m

�  by taking mt�� , m being any integer. In STHWS, the matrix P in (2.6)

becomes 
2

1
�P [6].

Let )(�y�  and )(�y be expanded by STHWS in the first interval as

)()( 0)1( �� hVy �� , )()( 0)1( �� hYy �    ( 2.7)

and in the ith interval as

)()( 0)( �� hVy i�� , )()( 0)( �� hYy i� (2.8)

Integrating (2.7) with P =
2

1
, we get

)0(
2

1
)1()1( yVY �� (2.9)

where y(0) is the initial condition and according to Sannuti[5],we have

� ����
1

0

1 )0()1()( yydyV �� (2.10)

In general for i = 1,2, ... .,

we obtain ,  )1(
2

1
)()( ��� iyVY ii (2.11)

                  )1()( )( ��� iyViy i (2.12)

In (2.11) and (2.12), Y i)(  and )(iy  give the block pulse and the discrete values of

the state, respectively[10].
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SOLUTIONS OF NONLINEAR STIFF SYSTEMS BY
STHWS METHOD

A model of Physical system may be constructed from assumptions concerning the
interaction and behavior of the components of the system. Some models may give
rise to a set of differential equations of order greater than unity. However, such models
lead to a set of differential equations, typically of the form:

))(( tyf
dt

yd
ii

i � (3.1)

each derivative being defined as known function of the concentrations. Here the
functions depend on parameters which are assumed to be known. To complete the

model, conditions are imposed � ii ty �)(  (known) at 0�t , i = 1, 2,- -N, defining an

initial value problem.

Here N is the number of equations and the nonlinear function .Rf n
i �  the state

.)( Rty n
i �  the response )(tyi  is required to be found. The independent variable‘t’

does not appear explicitly in Equation. (3.1). Such a system is called autonomous.

Normalizing the time interval of (3.1) we let .tm��  then we get

��� iiiii yyfym ��� )0()),(()( (3.2)

Let )(�y i�  be expressed by STHWS in the ith interval as

)()( 0)( �� hVy ii �� (3.3)

By using (2.8) and (2.11), we get

)())1(
2

1
()( 0 �� hiyVy ii ��� (3.4)

To solve (3.2) we substitute (3.4) in ))(( �yf ii .

We then express the resulting equation by STHWS as

))())1(
2

1
(( 0)( �hiyVf i �� = )(0

)( �hF i (3.5)
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Using (3.3) and (3.4) in (3.2), we get

FVm i
i

)(� (3.6)

Choosing a fixed value for ‘m’, equation (3.6) becomes

bVa ij

n

j
ij ��

�1
,  i = 1, 2.....n. (3.7)

where sbandsa ii ''  are constants

Equation (3.7) is a nonlinear system of algebraic equations for V i  ( i = 1,2,....n).

First we obtain one set of sV i '  by solving Equation. (3.7) using Brown’s method.

Equation.(2.12) gives syi '  by using sV i '  and the given initial conditions.

Later using known syi '  as a initial values, Equation (3.7) have to be solved by

iteration using the following recurrence relation

a

Vabi

V
ii

j
ji

ij

i

�
�

�
� ,      i = 1,2,- - n (3.8)

together with Equations. (2.11) and (2.12) recursively, to get block-pulse and discrete

solutions at any specified level of accuracy.

THE CONNECTION BETWEEN STIFFNESS AND STABILITY

The fast change of iy�  in (3.1) occurs over a very short time scale. We therefore have
a situation where the step size is controlled by the maximum eigenvalue (i.e., very
small step size), whereas the full evolution is controlled by the smallest eigenvalue.
The values of the eigenvalues are therefore crucial in assessing the behavior of the
system. This is one of the features of stiff systems. This occurs when small and large
time constants occur in the same system. The small time constant controls earlier

response, whereas the large one controls tailing.

To measure the degree of stiffness, one can introduce the following stiffness ratio:

�

�

min

max
�SR (4.1)
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When 20�SR  the problem is not stiff, up to 1000�SR  the problem is classified

stiff, and when 000,000,1��SR  the problem is very stiff (Finlayson [5]).

For a nonlinear problem of the type (3.1), we linearize the above equation around

time )( nn yt  using a Taylor expansion. Retaining only the first two terms

)).(()( nnn
i yytJyf

dt

dy
��� (4.2)

where

��

�
�
�

��

�
�
�

�
�

�� n
j

i
ijn t

y

yf
JtJ ]

)(
[)( (4.3)

which is the Jacobin matrix for the problem at .ntt �

Here, Jit  is the element of J in row i , column j. The definition of stiffness in Eq.
(4.2) utilizes the eigenvalues obtained from the Jacobin, and since this Jacobin matrix
changes with time, the stiffness of the problem also changes with time.

Let us briefly review how (Byrne & Hindmarsh [7], Shampine & Gear [13])
investigate stability. Suppose we have two distinct solutions y and w. Then

         ),(  ),('' wtfytfwy ���

If we neglect higher order terms, then

'' wy � ))(,(f y wywt ��

If we assume that y-w is sufficiently small, in an approximate sense, then

)('' wyJwy ���

We assume that J is locally a constant. If J  is a stable matrix (all eigenvalues of

J have negative real parts) then 0)( �� wy  as ��t . If we reevaluate J as t

increases, requiring that each J be locally constant and a stable matrix, then it follows
that y and w tend to the same finite function as ��t . That is, (3.1) is stable. By

stable, we mean that given any two particular solutions y  and w  of (3.1), they tend to
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the same finite function as ��t . (Other kinds of stability are also important, but this

is the one needed here.) The connection between stiff ODEs and stable ODEs is this:
Stiff ODEs are extremely stable, in that there is at least one eigenvalue with a large
negative real part. In fact, they can be called super-stable (Shampine & Gear[13]).

APPLICATIONS

We apply in this section, the STHWS Method to three nonlinear stiff differential
equations, which arise in physics. We present them here mainly with a view to using

the algorithm given in section 3.

A Ruby Laser Oscillator Model

This pair of coupled non linear stiff system (Byrne and Hindmarsh[2] )represents a
model of a ruby laser oscillator. If we let � denote photon density and � denote
dimensionless population inversion, then we can write

�����
�

���� )(
dt

d
(5.1)

)1()( ������
�

����
dt

d
(5.2)

where the parameters are as follows:

101.2,105.2,105.1 6618 ��� ������ ��� , 016.0,18.0,6.0 ��� ��� .

The initial conditions are:

1)0(,1)0( ��� �� (5.3)

This problem is challenging because it is stiff initially, but mildly damped and
oscillatory later.

with the initial conditions (5.3). The Jacobian at time t = 0,

�
�

�
�
�

�
�

��
�

��

78.06.0
10*5.110*5.2 186

J

The eigenvalues of this Jacobian are, ]10*5.2,78.0[ 6�����



208 Dr. Sushil Kumar Agarwal

Stiff Ratio, 312000�SR , which indicates that the present problem is very stiff at

time t = 0. Further this, problem is super stable since there is at least one eigenvalue
with a negative real part.

The solution is presented in Table 1. and Fig. 1. with m = 1000, The STHWS

solution agrees with the TR BDF2 method of Shampine[12]. But Gill’s Method gives

least accuracy.

Table 1
Comparison of STHWS solution with TR BDF2 method of Shampine [12] and

Gill’s Method solutions of Eq. (5.1)-(5.3)

T STHWS (m = 1000) TR BDF2[12] Gill’s Method
�(t) �(t) �(t) �(t) �(t) �(t)

DISC BP DISC BP

0 -1 -1 1 1 -1 1 -1 1

0.1 -1 -1 0.9401 0.9409 -1 0.9401 -1 1

0.2 -1 -1 0.8837 0.8849 -1 0.8837 -1 1

0.3 -1 -1 0.8307 0.8320 -1 0.8307 -1 1

0.4 -1 -1 0.7809 0.7822 -1 0.7809 -1 1

0.5 -1 -1 0.7341 0.7352 -1 0.7341 -1 1

0.6 -1 -1 0.6901 0.6911 -1 0.6901 -1 1

0.7 -1 -1 0.6487 0.6495 -1 0.6487 -1 1

0.8 -1 -1 0.6098 0.6105 -1 0.6098 -1 1

0.9 -1 -1 0.5732 0.5738 -1 0.5732 -1 1

1 -1 -1 0.5388 0.5394 -1 0.5388 -1 1

1.1 -1 -1 0.5065 0.5070 -1 0.5065 -1 1

1.2 -1 -1 0.4762 0.4766 -1 0.4762 -1 1

1.3 -1 -1 0.4476 0.4481 -1 0.4476 -1 1

1.4 -1 -1 0.4208 0.4212 -1 0.4208 -1 1

1.5 -1 -1 0.3955 0.3960 -1 0.3955 -1 1

1.6 -1 -1 0.3718 0.3723 -1 0.3718 -1 1

1.7 -1 -1 0.3495 0.3500 -1 0.3495 -1 1

1.8 -1 -1 0.3286 0.3290 -1 0.3286 -1 1

1.9 -1 -1 0.3088 0.3093 -1 0.3088 -1 1

2 -1 -1 0.2903 0.2907 -1 0.2903 -1 1
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Next consider a nuclear reactor model (Scraton, [14]).

)]11)(10001(1[)2101.0(01.01 ��������� yyyyy (5.4)

)2
21)(2101.0(01.02 yyyy ������ (5.5)

with .0)0(2,0)0(1 �� yy (5.6)

This is a nonlinear very stiff system that arises in nuclear reactor theory.

with the initial conditions

The Jacobian at time t = 0, �
�

�
�
�

�
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��
�

11

100101.1011
J

Fig. 1: Comparision of STHWS with TR BDF2 method of Shapine [12] and
Gill’s solutions of Eq. (5.1)-(5.3)
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The eigenvalues of this Jacobian are, ]0098913.0,1012[ ����

Stiff Ratio, 102312�SR , which indicates that the present problem is very stiff at

time t = 0. Further this, problem is super stable since there is at least one eigenvalue
with a negative real part.

The solution is presented in Table 2. and Fig.2. with m =1000 , the STHWS solution
agrees with the TR BDF2 method of Shampine[12] solution up to four decimal places.

But Gill’s method fails to give solution.

Table 2
Comparison of STHWS Solution with TR BDF2 Method of Shampine [12]

Solution of Eq. (5.4)-(5.6)

t STHWS (m = 1000) TR BDF2 [12]
y

1
(t) y

1
(t) y

1
(t) y

2
(t)

DISC BP DISC BP

0 0 0 0 0 0 0
0.1 -0.0110 -0.0109 0.0010 0.0009 -0.0110 0.0010
0.2 -0.0120 -0.0119 0.0020 0.0019 -0.0120 0.0020
0.3 -0.0130 -0.0129 0.0030 0.0029 -0.0130 0.0030
0.4 -0.0140 -0.0139 0.0040 0.0039 -0.0140 0.0040
0.5 -0.0150 -0.0149 0.0050 0.0049 -0.0150 0.0050
0.6 -0.0160 -0.0159 0.0060 0.0059 -0.0160 0.0060
0.7 -0.170 -0.168 0.0070 0.0069 -0.170 0.0070
0.8 -0.0180 -0.0178 0.0080 0.0079 -0.0180 0.0080
0.9 -0.0190 -0.0189 0.0090 0.0089 -0.0190 0.0090
1 -0.0199 -0.0199 0.0100 0.0100 -0.0199 0.0100
1.1 -0.0209 -0.0208 0.0110 0.0109 -0.0209 0.0110
1.2 -0.0219 -0.0218 0.0120 0.0119 -0.0219 0.0120
1.3 -0.0229 -0.0228 0.0130 0.0129 -0.0229 0.0130
1.4 -0.0239 -0.0239 0.0140 0.0139 -0.0239 0.0140
1.5 -0.0249 -0.0248 0.0150 0.0149 -0.0249 0.0150
1.6 -0.0259 -0.0258 0.0160 0.0159 -0.0259 0.0160
1.7 -0.0269 -0.0268 0.0170 0.0169 -0.0269 0.0170
1.8 -0.0279 -0.0279 0.0180 0.0179 -0.0279 0.0180
1.9 -0.0289 -0.0289 0.0190 0.0190 -0.0289 0.0190
2 -0.0299 -0.0299 0.0199 0.0199 -0.0299 0.0199
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Lastly consider fourth order non-linear stiff system, Ionospheric physics problem.

(David s.Watkins [17])

14211 ����� yyyy (5.7)

12
4222 ����� yyy (5.8)

yyyy 21333 ���� (5.9)

yyyyy 2
3

2
2

2
1410004 ������ (5.10)

with the initial values

,1)0(1 �y  1)0(2 �y , 4975.34)0(3 �y , .003006.0)0(4 �y (5.11)

For a pair of coupled differential equations, the Jacobian will be a 44�  matrix. To

Fig. 2: Comparision of STHWS with TR BDF2 method of Shampine [12]
solutions of Eq. (5.4)-(5.6)
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find the Jacobian at time t = 0, we simply replace yi by their values at t = 0.

i.e,
�
�
�
�

�

�

�
�
�
�

�

�

�
�

�

�

�
�

100995068.62             2         2  

0                3            1        1
10*012.6                0                2       0

1                 0    003006.0      1
3

J

The associated eigenvalues are ]966975.0,99963.1,03144.3,1000[ ������
therefore 15.1034�SR , which indicates that the present problem is classified stiff at
time t = 0. Further this, problem is super stable since there is at least one eigenvalue
with a negative real part.

The solution is presented in Fig.3.with m = 1000. The STHWS solution agrees
with the TR BDF2 method of Shampine[12] solution up to four decimals. But Gill’s

method fails to give solution.

Fig. 3: Comparision of STHWS with TR BDF2 method of Shampine [12]
solution of Eq. (5.7)-(5.11)
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For the above three problems, we can see that the STHWS method takes
substantially fewer steps and is about three times faster than Gill’s method. Therefore
STHWS technique is suitable for studying the behavior of this type of physical systems.
The recurrence relationship give the discrete time solution for any length of time and

it is easily amenable to digital computer.

CONCLUSION

In this paper, a novel efficient STHWS method based on a Haar wavelet series has been
presented. From theoretical point of view the elegance of the Haar wavelets is appreciated
from their simplicity and compact derivations and proofs. From practical standpoint,
the accuracy and overall performance of the method is demonstrated by applying it to
nonlinear stiff differential equations arising from Physics. It is observed that, it is the
most reliable method; especially for non-linear stiff systems. In the ultimate analysis, an
attempt is made to demonstrate the built-in features of STHWS in achieving accuracy
without causing instability, no matter how small the step-size is chosen.

In general, the degree of stiffness (if any) of a problem is usually unknown.
Normally, a conventional explicit method (such as Runge-kutta 4) is chosen to carry
out the integration. It is only when such a method starts to take very small step sizes
that stiffness is suspected and an STHWS method is chosen instead. Since the STHWS
method has better stability properties than the classical explicit methods, it would be
better to use first. If the Gill’s method is taking an excessive amount of computing
time (as for above problems) or fails to give a solution, then we would have to switch
to an STHWS method. Hence regardless of the degree of stiffness, using the STHWS
method instead of conventional explicit methods would generally save time. The
numerical results show that the new stiff integrator compares favorably to existing

integrators–even in large scale stiff ODE systems.
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