Indian Journal of Mathematics and Mathematical Sciences Vol. 16 No. 1 (June, 2020) Copyright @ Serials Publications

Remains in cliquish functions on GTSs *

S. VADAKASI

Assistant Professor of Mathematics, A.K.D.Dharma Raja Women's College, Rajapalayam e-mail: vadakasisub1992@gmail.com

Abstract

In this paper, we give several interesting properties of cliquish and lower (upper) semi-continuous functions in a generalized topological space. Also, we give more examples for the reverse implications, that is, cliquish implies lower (upper) semi-continuous function need not be true in a generalized topological space.

1 Introduction

The notion of a generalized topological space was introduced by Császár in [3]. Let X be any nonempty set. A family $\mu \subset exp(X)$ is a generalized topology [6] in X if $\emptyset \in \mu$ and $\bigcup_{t \in T} G_t \in \mu$ whenever $\{G_t \mid t \in T\} \subset \mu$ where exp(X) is a power set of X. We call the pair (X, μ) as a generalized topological space (GTS) [6]. If $X \in \mu$, then the pair (X, μ) is called a strong generalized topological space (sGTS) [6]. Let $Y \subset X$. Then the subspace generalized topology is defined by, $\mu_Y = \{Y \cap U \mid U \in \mu\}$ and (Y, μ_Y) is called the subspace GTS.

Let (X, μ) be a GTS and $A \subset X$. The *interior of* A [6] denoted by iA, is the union of all μ -open sets contained in A and the *closure of* A [6] denoted

^{*}AMS Subject Classification(2010):Primary: 54 A 05, 54 A 10.

Key words and phrases — dense, Baire space, cliquish function, lower (upper) semicontinuous function.

by cA, is the intersection of all μ -closed sets containing A when no confusion can arise. The elements in μ are called the μ -open sets, the complement of a μ -open set is called the μ -closed sets and the complement of μ is denoted by μ' . Denote $\{U \in \mu \mid U \neq \emptyset\}$ by $\tilde{\mu}$ [5] and denote $\{U \in \mu \mid x \in U\}$ by $\mu(x)$ [5].

Throughout this paper, $\mathbb{Z}, \mathbb{Q}, \mathbb{N}$ and \mathbb{R} denote the set of all integers, rational numbers, natural numbers and real numbers respectively.

2 Preliminaries

In this section, we recall some basic definitions and lemmas for further development of this paper.

A subset A of a generalized topological space (X, μ) is said to be a μ nowhere dense [5] (resp. μ -dense [6], μ -codense [6]) set if $icA = \emptyset$ (resp. cA = X, c(X - A) = X). A is said to be a μ -meager set [5] if $A = \bigcup_{n \in \mathbb{N}} A_n$ where each A_n is μ -nowhere dense for all $n \in \mathbb{N}$.

Also, every subset of a μ -nowhere dense (resp. μ -meager) set is μ -nowhere dense (resp. μ -meager) [5]. A is said to be a μ -second category (μ -II category) set [5] if A is not a μ -meager set. A is a μ -residual [5] set if X - A is a μ -meager set.

A GTS (X, μ) is said to be μ -II category if X is μ -II category as a subset. A space X is called a *Baire space* (BS) [5] if each set $V \in \tilde{\mu}$ is of μ -II category in X. A space (X, μ) is a *strong Baire space* (sBS) [5] if $V_1 \cap V_2 \cap \ldots \cap V_n$ is a μ -II category set for all $V_1, V_2, \ldots, V_n \in \mu$ such that $V_1 \cap V_2 \cap \ldots \cap V_n \neq \emptyset$.

Moreover, every sBS is a BS [5].

Define $\mu^* = \{\bigcup_t (U_1^t \cap U_2^t \cap U_3^t \cap \dots \cap U_{n_t}^t) \mid U_1^t, U_2^t, \dots, U_{n_t}^t \in \mu\}$ and $\mu^{\star\star} = \{A \subset X \mid A \text{ is a } \mu\text{-II category set}\} \cup \{\emptyset\}$ [5]. Then $\mu \subset \mu^{\star}$ and $\mu \subset \mu^{\star\star}$ if (X, μ) is a BS [5].

A space (X, μ) is called *hyperconnected* [4] if every non-null μ -open set G of (X, μ) is μ -dense. A space (X, μ) is called *generalized submaximal* [4] if every μ -dense subset of X is μ -open.

Let (X, μ) be a GTS. A function $f : X \to \mathbb{R}$ is said to be μ -lower semicontinuous (μ -l.s.c.) (resp. μ -upper semi-continuous (μ -u.s.c.)) [5] at a point $x_0 \in X$ if and only if for any real number $\alpha < f(x_0)$ (resp. $\alpha > f(x_0)$), there exists a set $U \in \mu(x_0)$ such that $f(U) \subset (\alpha, \infty)$ (resp. $f(U) \subset (-\infty, \alpha)$).

Let λ, τ be generalized topologies in X. A function $f: X \to \mathbb{R}$ is (λ, τ) lower semi-continuous $((\lambda, \tau)$ -l.s.c.) (resp. (λ, τ) -upper semi-continuous $((\lambda, \tau)$ -u.s.c.)) [5] at a point $x_0 \in X$ if for any real number $\alpha < f(x_0)$ (resp. $\alpha > f(x_0)$), there exists a set $U \in \tau(x_0)$ being a λ -residual set such that $f(U) \subset (\alpha, \infty)$ (resp. $f(U) \subset (-\infty, \alpha)$).

Every (λ, τ) -l.(u.)s.c. function is τ -l.(u.)s.c. function and μ -l.(u.)s.c. function is μ^* -l.(u.)s.c. function [5]. Moreover, $f : X \to \mathbb{R}$ is μ -l.s.c. (resp. μ -u.s.c.) if and only if $f^{-1}((\alpha, \infty)) \in \mu$ (resp. $f^{-1}((-\infty, \alpha)) \in \mu$) for any $\alpha \in \mathbb{R}$ [2].

Throughout the paper, We will denote the set of μ -continuity (resp. μ discontinuity) points of f, by $\mathcal{C}_{\mu}(f)$ (resp. $\mathcal{D}_{\mu}(f)$) where $f: X \to \mathbb{R}$.

A function $f: X \to \mathbb{R}$ is (μ, η) -cliquish if the set $\mathcal{C}_{\eta}(f)$ is μ -dense [5]. If (X, μ) is a BS and $\mathcal{D}_{\eta}(f)$ is a μ -meager set, then f is (μ, η) -cliquish [5].

Let (X, μ) be a generalized topological space. Then $x \in X$ is called μ isolated [1] if $\{x\}$ is μ -open. If every point of X is μ -isolated, then X is called μ -discrete [1].

Lemma 2.1. [5, Theorem 3.2] If (X, μ) is a strong Baire sGTS, then

(i) each (μ, μ^*) -l.(u.)s.c. function is (μ, μ^*) -cliquish.

(ii) each μ -l.(u.)s.c. function is (μ, μ^*) -cliquish.

(iii) each (μ^*, μ) -l.(u.)s.c. function is (μ, μ^*) -cliquish.

Lemma 2.2. [6, Lemma 2.2]. Let (X, μ) be a GTS and let $A \subset X$. Then $x \in cA$ if and only if $V \cap A \neq \emptyset$ for any $V \in \mu(x)$.

Lemma 2.3. [6, Proposition 4.7] Let (X, μ) be a GTS. If $F_n \in \mathcal{M}$ for each $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} F_n \in \mathcal{M}$ where \mathcal{M} is the set of all μ -meager sets.

3 Functions on GTSs

In this section, we give some properties for lower (resp. upper) semicontinuous and cliquish functions in a generalized topological space. Also, we give the answer for the question raised by Korczak - Kubiak, et.al in [5]. In [5], Korczak-Kubiak et.al raised the question "Whether the order of topologies μ and μ^* in Theorem 3.2 (i) or (iii) can be changed?". In a sBS-sGTS (X, μ) , there exists a (μ, μ^*) -l.(u.)s.c. function which is not a (μ^*, μ) -cliquish as shown in Example 3.1.

Example 3.1. Consider the GTS (X, μ) as in Example 3.4 in [5] where X = [0,3] and $\mu = \{\emptyset, [0,2), (1,3], X\}$. Then (X, μ) is a sBS and sGTS. Here $\mu^* = \{\emptyset, [0,2), (1,2), (1,3], X\}$. Define a function $f : (X, \mu) \to (\mathbb{R}, \tau_0)$ where τ_0 is the Euclidean topology on \mathbb{R} by

$$f(x) = \begin{cases} 1 & if \quad x \in [0,1] \cup [2,3], \\ 2 & if \quad x \in (1,2). \end{cases}.$$

For any real number $\alpha < f(x)$ for all $x \in X$, there exists $G \in \mu^*(x)$ being a μ residual set such that $f(G) \subset (\alpha, \infty)$. Therefore, f is a (μ, μ^*) -l.s.c. function. Here $(1,2) \subset \mathcal{D}_{\mu}(f)$ so that $(1,2) \cap \mathcal{C}_{\mu}(f) = \emptyset$. Since $(1,2) \in \mu^*, \mathcal{C}_{\mu}(f)$ is not a μ^* -dense set in X. Hence f is not (μ^*, μ) -cliquish. Define a function $g: (X, \mu) \to (\mathbb{R}, \tau_0)$ by

$$g(x) = \begin{cases} 2 & if \quad x \in [0,1] \cup [2,3] \\ 1 & if \quad x \in (1,2). \end{cases}$$

For any real number $\alpha > g(x)$ for all $x \in X$, there exists $G \in \mu^*(x)$ being a μ -residual set such that $g(G) \subset (-\infty, \alpha)$. Therefore, g is a (μ, μ^*) -u.s.c. function. Let x = 0. Then g(x) = 2. If V = (1.5, 2.5) is an neighbourhood of g(x), then there is no $U \in \mu(x)$ such that $g(U) \subset V$. Thus, $x \in \mathcal{D}_{\mu}(g)$. Similarly, we can prove that $[0, 2) \subset \mathcal{D}_{\mu}(g)$ so that $[0, 2) \cap \mathcal{C}_{\mu}(g) = \emptyset$. Since $[0, 2) \in \mu^*$ we have $\mathcal{C}_{\mu}(g)$ is not a μ^* -dense set in X. Hence g is not (μ^*, μ) cliquish.

Theorem 3.2. Let (X, μ) be a GTS, $f : X \to (0, 1)$ and $g : X \to (0, 1)$. If f and g are μ -l.s.c. functions on X, then $f.g : X \to \mathbb{R}^+$ is a μ^* -l.s.c. function on X.

Proof. Suppose f and g are μ -l.s.c. functions on X. Let $x_0 \in X$ and $\alpha < (f.g)(x_0)$ where $\alpha \in \mathbb{R}^+$. Then $\alpha < f(x_0).g(x_0)$ and so $\frac{\alpha}{f(x_0)} < g(x_0)$. Take $t = \frac{\alpha}{f(x_0)}$. By assumption, there exists a set $H_1 \in \mu(x_0)$ such that $g(H_1) \subset (t, \infty)$

which implies that $g(H_1) \subset (\alpha, \infty)$. Also, $\frac{\alpha}{g(x_0)} < f(x_0)$. Take $s = \frac{\alpha}{g(x_0)}$. By assumption, there exists a set $H_2 \in \mu(x_0)$ such that $f(H_2) \subset (s, \infty)$ which implies that $f(H_2) \subset (\alpha, \infty)$. Take $H = H_1 \cap H_2$. Then $H \in \mu^*(x_0)$. Let $l \in (f.g)(H)$. Then there is an element $m \in H$ such that l = (f.g)(m). Since $m \in H$ we have $f(m), g(m) \in (\alpha, \infty)$. Thus, $l \in (\alpha, \infty)$. Therefore, $(f.g)(H) \subset (\alpha, \infty)$. Hence f.g is a μ^* -l.s.c. function on X. \Box

Theorem 3.3. Let (X, μ) be a GTS, $f : X \to (0, 1)$ and $g : X \to (0, 1)$. If fand g are (μ, μ) -l.s.c. functions on X, then $f.g : X \to \mathbb{R}^+$ is a (μ^*, μ) -l.s.c. function on X.

Theorem 3.4. Let (X, μ) be a GTS, $f : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$. If f and g are μ -l.(u.)s.c. functions on X, then $min(f,g) : X \to \mathbb{R}$ is a μ^* -l.(u.)s.c. function on X.

Proof. Suppose f and g are μ -l.s.c. functions on X. Let $x_0 \in X$ and $\alpha < min(f,g)(x_0)$ where $\alpha \in \mathbb{R}$. Then $\alpha < min(f(x_0), g(x_0))$ and so $\alpha < g(x_0)$. By assumption, there exists a set $U_1 \in \mu(x_0)$ such that $g(U_1) \subset (\alpha, \infty)$. Also, $\alpha < f(x_0)$. By assumption, there exists a set $U_2 \in \mu(x_0)$ such that $f(U_2) \subset (\alpha, \infty)$. Take $U = U_1 \cap U_2$. Then $U \in \mu^*(x_0)$. Let $a \in min(f,g)(U)$. Then there is an element $b \in U$ such that a = min(f,g)(b). Since $b \in U$ we have $f(b), g(b) \in (\alpha, \infty)$. Thus, $a \in (\alpha, \infty)$. Therefore, $min(f,g)(U) \subset (\alpha, \infty)$. Hence min(f,g) is a μ^* -l.s.c. function on X.

Suppose that, f and g are μ -u.s.c. functions on X. Let $x_0 \in X$ and $\alpha > min(f,g)(x_0)$ where $\alpha \in \mathbb{R}$. Then $\alpha > min(f(x_0),g(x_0))$ and so $\alpha > f(x_0)$ or $\alpha > g(x_0)$ or $\alpha > f(x_0); \alpha > g(x_0)$.

Case-1: Suppose $\alpha > f(x_0)$. Then there is $U_1 \in \mu(x_0)$ such that $f(U) \subset (-\infty, \alpha)$. Take $U = U_1$. Then $U \in \mu^*(x_0)$. Let $s \in min(f, g)(U)$. Then there is an element $t \in U$ such that s = min(f(t), g(t)). Since $t \in U$ we have $f(t) < \alpha$. This implies $min(f(t), g(t)) < \alpha$ which implies that $s \in (-\infty, \alpha)$. Thus, $min(f, g)(U) \subset (-\infty, \alpha)$.

Case-2: Similar considerations in Case-1, we get $U \in \mu^*(x_0)$ such that $\min(f,g)(U) \subset (-\infty, \alpha)$.

Case-3: Suppose $\alpha > f(x_0); \alpha > g(x_0)$. Then there exist $U_1 \in \mu(x_0)$ such that $f(U_1) \subset (-\infty, \alpha)$ and $U_2 \in \mu(x_0)$ such that $g(U_2) \subset (-\infty, \alpha)$. Take U =

 $U_1 \cap U_2$. Then $U \in \mu^*(x_0)$. Let $p \in min(f,g)(U)$. Then there is an element $q \in U$ such that p = min(f(q), g(q)). Since $q \in U$ we have $f(q) < \alpha; g(q) < \alpha$. This implies $min(f(q), g(q)) < \alpha$ which implies that $p \in (-\infty, \alpha)$. Thus, $min(f,g)(U) \subset (-\infty, \alpha)$. From all the cases, we get for any $\alpha \in \mathbb{R}$ with $\alpha > min(f,g)(x_0)$ there is $G \in \mu^*(x_0)$ such that $min(f,g)(G) \subset (-\infty, \alpha)$. Hence min(f,g) is a μ^* -u.s.c. function on X.

Theorem 3.5. Let (X, μ) be a GTS, $f : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$. If f and g are μ -l.(u.)s.c. functions on X, then $max(f,g) : X \to \mathbb{R}$ is a μ^* -l.(u.)s.c. function on X.

Theorem 3.6. Let (X, μ) be a GTS, $f : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$. If fand g are (μ, μ) -l.(u.)s.c. functions on X, then $min(f,g) : X \to \mathbb{R}$ is a (μ^*, μ) -l.(u.)s.c. function on X.

Proof. Suppose f and g are (μ, μ) -l.s.c. functions on X. Let $x_0 \in X$ and $\alpha < min(f,g)(x_0)$ where $\alpha \in \mathbb{R}$. Then $\alpha < min(f(x_0), g(x_0))$ and so $\alpha < g(x_0)$. By assumption, there exists a set $A_1 \in \mu(x_0)$ being a μ -residual set such that $g(A_1) \subset (\alpha, \infty)$. Also, $\alpha < f(x_0)$. By assumption, there exists a set $A_2 \in \mu(x_0)$ being a μ -residual set such that $f(A_2) \subset (\alpha, \infty)$. Take $A = A_1 \cap A_2$. Then $A \in \mu^*(x_0)$ and A is a μ -residual set, by Lemma 2.3. Let $k \in min(f,g)(A)$. Then there is an element $l \in A$ such that k = min(f,g)(l). Since $l \in A$ we have $f(l), g(l) \in (\alpha, \infty)$. Thus, $k \in (\alpha, \infty)$. Therefore, $min(f,g)(A) \subset (\alpha, \infty)$. Hence min(f,g) is a (μ^*, μ) -l.s.c. function on X.

Corollary 3.7. Let (X, μ) be a GTS, $f : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$. If fand g are (μ, μ) -l.(u.)s.c. functions on X, then $max(f,g) : X \to \mathbb{R}$ is a (μ^*, μ) -l.(u.)s.c. function on X.

Theorem 3.8. Let (X, μ_1) be a generalized submaximal space and μ_1 satisfy the codition: if $V_1, V_2 \in \mu_1$ and $V_1 \cap V_2 \neq \emptyset$, then $i_{\mu_1}(V_1 \cap V_2) \neq \emptyset$. If $f : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$ are (μ_1, μ_2) -cliquish functions where μ_2 is any GT in X, then f + g is (μ_1, μ_2) -cliquish.

Proof. Suppose f and g are (μ_1, μ_2) -cliquish functions. Then $\mathcal{C}_{\mu_2}(f)$ and $\mathcal{C}_{\mu_2}(g)$ are μ_1 -dense subsets of X. By hypothesis, $\mathcal{C}_{\mu_2}(f)$ and $\mathcal{C}_{\mu_2}(g)$ are μ_1 open sets in X. Let $G \in \tilde{\mu}_1$. Then $G \cap \mathcal{C}_{\mu_2}(g) \neq \emptyset$ and so $i_{\mu_1}(G \cap \mathcal{C}_{\mu_2}(g)) \neq \emptyset$,

by hypothesis. This implies $\mathcal{C}_{\mu_2}(f) \cap i_{\mu_1}(G \cap \mathcal{C}_{\mu_2}(g)) \neq \emptyset$ which implies that $\mathcal{C}_{\mu_2}(f) \cap G \cap \mathcal{C}_{\mu_2}(g) \neq \emptyset$. Let $a \in \mathcal{C}_{\mu_2}(f) \cap G \cap \mathcal{C}_{\mu_2}(g)$. Then $a \in G$ and also $a \in \mathcal{C}_{\mu_2}(f+g)$. Thus, $G \cap \mathcal{C}_{\mu_2}(f+g) \neq \emptyset$. Therefore, $\mathcal{C}_{\mu_2}(f+g)$ is μ_1 -dense. Hence f + g is (μ_1, μ_2) -cliquish. \Box

Corollary 3.9. Let (X, μ_1) be a generalized submaximal space and μ_1 satisfy the codition: if $V_1, V_2 \in \mu$ and $V_1 \cap V_2 \neq \emptyset$, then $i_{\mu_1}(V_1 \cap V_2) \neq \emptyset$. If $f : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$ are (μ_1, μ_2) -cliquish functions where μ_2 is any GT in X, then the following hold.

- (a) f g is (μ_1, μ_2) -cliquish.
- (b) f.g is (μ_1, μ_2) -cliquish.
- (c) min(f,g) is (μ_1,μ_2) -cliquish.
- (d) max(f,g) is (μ_1,μ_2) -cliquish.

Theorem 3.10. Let (X, μ) be a GTS and $f : X \to \mathbb{R}$ be a map. If X has a μ -isolated point, then the following hold.

- (a) f is a μ -l.(u.)s.c. function at that point in X.
- (b) f is a μ^* -l.(u.)s.c. function at that point in X.

(c) f is a $\mu^{\star\star}$ -l.(u.)s.c. function at that point in X.

Proposition 3.11. Let μ and η be two generalized topologies in $X, f : X \to \mathbb{R}$ be a map. If f is (μ, η) -cliquish, then the following hold. (a) f is η -l.(u.)s.c. function at one point in X.

(b) f is η -l.(u.)s.c. function at some point in G for every $G \in \tilde{\mu}$.

(c) f is η -l.(u.)s.c. function at every μ -isolated point in X.

Proof. It is enough to prove (a) only. Suppose that $f(\mu, \eta)$ -cliquish. Then $C_{\eta}(f)$ is a μ -dense set in X. Let $a \in X$. Then $a \in c_{\mu}(C_{\eta}(f))$ and so $V \cap c_{\mu}(C_{\eta}(f)) \neq \emptyset$ for every $V \in \mu(a)$, by Lemma 2.2. Take $t \in V \cap c_{\mu}(C_{\eta}(f))$. Then $t \in c_{\mu}(C_{\eta}(f))$ and so f is continuous at t with respect to η . Hence f is η -l.(u.)s.c. function at $t \in X$.

In the rest of this section, we give more examples for the reverse implications, that is, cliquish implies l.(u.)s.c. function need not be true in a generalized topological space. **Example 3.12.** Consider the generalized topological space (X, μ) where X = [0,4] and $\mu = \{\emptyset, [0,2), \{\frac{3}{2}\} \cup \{\frac{7}{4}\}, (1,3], [0,3]\}$. Then (X, μ) is a sBS. Here $\mu^* = \{\emptyset, [0,2), \{\frac{3}{2}\} \cup \{\frac{7}{4}\}, (1,2), (1,3], [0,3]\}$. Define a function $f : (X, \mu) \to (\mathbb{R}, \tau_0)$ where τ_0 is the Euclidean topology on \mathbb{R} by

$$f(x) = \begin{cases} 0 & if \quad x \in [0,1), \\ 1 & if \quad x \in [1,2), \\ 2 & if \quad x \in [2,3), \\ 3 & if \quad x \in [3,4]. \end{cases}$$

Here $(1,2) \subseteq \mathcal{C}_{\mu^*}(f)$. Hence $\mathcal{C}_{\mu^*}(f)$ is a μ -dense set in X. Therefore, f is (μ, μ^*) -cliquish and also f is a (μ^*, μ^*) -cliquish function. But f is not a μ^* -l.s.c. function and also f is not a μ -l.s.c. function. For, let $x = 1 \in X$. Then f(x) = 1. Take $\alpha = 0.9$ which implies that $\alpha < f(x)$. Here there is no $G \in \mu^*(x)$ (resp. $U \in \mu(x)$) such that $f(G) \subset (\alpha, \infty)$ (resp. $f(U) \subset (\alpha, \infty)$). Define a function $g: (X, \mu) \to (\mathbb{R}, \tau_0)$ by

$$g(x) = \begin{cases} 3 & if \quad x \in [0,1), \\ 2 & if \quad x \in [1,2), \\ 1 & if \quad x \in [2,3), \\ 0 & if \quad x \in [3,4]. \end{cases}$$

Hence $\mathcal{C}_{\mu^*}(g)$ is a μ -dense set in X. Therefore, g is (μ, μ^*) -cliquish and also g is a (μ^*, μ^*) -cliquish function. But g is not a μ^* -u.s.c. function and also g is not a μ -u.s.c. function. For, let $x = 1 \in X$. Then g(x) = 2. Take $\alpha = 2.1$ which implies that $\alpha > g(x)$. Here there is no $G \in \mu^*(x)$ (resp. $U \in \mu(x)$) such that $g(G) \subset (-\infty, \alpha)$ (resp. $g(U) \subset (-\infty, \alpha)$).

Here $\mu^{\star\star} = \{\emptyset\} \cup \{A \mid \text{either } \{\frac{3}{2}\} \in A \text{ or } \{\frac{7}{4}\} \in A\}$. Moreover, f is $(\mu^{\star}, \mu^{\star\star})$ -cliquish, $(\mu, \mu^{\star\star})$ -cliquish, $(\mu^{\star\star}, \mu^{\star\star})$ -cliquish, $(\mu^{\star\star}, \mu^{\star})$ -cliquish. But f is not a μ^{\star} -l.s.c. function and also f is not a μ -l.s.c. function. Also, g is $(\mu^{\star}, \mu^{\star\star})$ -cliquish, $(\mu, \mu^{\star\star})$ -cliquish, $(\mu^{\star\star}, \mu^{\star\star})$ -cliquish, $(\mu^{\star\star}, \mu^{\star\star})$ -cliquish. But g is not a μ^{\star} -u.s.c. function and also g is not a μ -u.s.c. function.

Example 3.13. Consider the generalized topological space (X, μ) where X = [0, 4] and $\mu = \{\emptyset, [0, 2), (1, 3], [0, 3]\}$. Then (X, μ) is a sBS. Here $\mu^{**} = \{\emptyset\} \cup \{A, B \mid A \subseteq exp((1, 2)) - \{\emptyset\}, A \subset B\}$. Define a function $f : (X, \mu) \to (\mathbb{R}, \tau_0)$ where τ_0 is the Euclidean topology on \mathbb{R} by

$$f(x) = \begin{cases} 1 & if \quad x \in [0, 1), \\ 2 & if \quad x \in [1, 2), \\ 3 & if \quad x \in [2, 3), \\ 4 & if \quad x \in [3, 4]. \end{cases}$$

Here $(1,2) \subseteq C_{\mu^{\star\star}}(f)$. Hence $C_{\mu^{\star\star}}(f)$ is a μ -dense set in X. Therefore, f is $(\mu, \mu^{\star\star})$ -cliquish and also f is a $(\mu^{\star\star}, \mu^{\star\star})$ -cliquish function. But f is not a $\mu^{\star\star}$ -l.s.c. function. For, let $x = 2 \in X$. Then f(x) = 3. Take $\alpha = 2.9$ which implies that $\alpha < f(x)$. Here there is no $G \in \mu^{\star\star}(x)$ such that $f(G) \subset (\alpha, \infty)$. Define a function $g: (X, \mu) \to (\mathbb{R}, \tau_0)$ by

$$g(x) = \begin{cases} 4 & if \quad x \in [0,1), \\ 3 & if \quad x \in [1,2), \\ 2 & if \quad x \in [2,3), \\ 1 & if \quad x \in [3,4]. \end{cases}$$

Hence $C_{\mu^{\star\star}}(g)$ is a μ -dense set in X. Therefore, g is $(\mu, \mu^{\star\star})$ -cliquish and also g is a $(\mu^{\star\star}, \mu^{\star\star})$ -cliquish function. But g is not a $\mu^{\star\star}$ -u.s.c. function. For, let $x = 2.5 \in X$. Then g(x) = 2. Take $\alpha = 2.1$ which implies that $\alpha > g(x)$. Here there is no $G \in \mu^{\star\star}(x)$ such that $g(G) \subset (-\infty, \alpha)$.

Here $\mu^* = \{\emptyset, [0, 2), (1, 2), (1, 3], [0, 3]\}$. Moreover, f is (μ^*, μ^{**}) -cliquish, (μ, μ^*) -cliquish, (μ^{**}, μ^*) -cliquish. But f is not a μ^{**} -l.s.c. function. Also, g is (μ^*, μ^{**}) -cliquish, (μ, μ^*) -cliquish, (μ^{**}, μ^*) -cliquish. But g is not a μ^{**} -u.s.c. function.

Example 3.14. Consider the generalized topological space (X, μ) where X = [0,3] and $\mu = \{\emptyset, [0,2), [2,3], (1,3], X\}$. Then (X, μ) is a sBS and sGTS. Here $\mu^* = \{\emptyset, [0,2), (1,2), [2,3], (1,3], X\}$. Define a function $f : (X, \mu) \to (\mathbb{R}, \tau_0)$ where τ_0 is the Euclidean topology on \mathbb{R} by

$$f(x) = \begin{cases} 1 & if \quad x \in [0, 1), \\ 2 & if \quad x \in [1, 2), \\ 3 & if \quad x \in [2, 3]. \end{cases}$$

Here $(1,3] \subseteq C_{\mu^*}(f)$. Hence $C_{\mu^*}(f)$ is a μ^* -dense set in X. Therefore, f is (μ^*, μ^*) -cliquish and also f is a (μ, μ^*) -cliquish function. But f is not a (μ^*, μ^*) -l.s.c. function and also f is not a (μ, μ^*) -l.s.c. function. For, let

 $x = 1.5 \in X$. Then f(x) = 2. Take $\alpha = 1.9$ which implies that $\alpha < f(x)$. Take U = (1, 2). Then $U \in \mu^*(x)$ and $f(U) \subset (\alpha, \infty)$. But U is not a μ^* -residual set and also U is not a μ -residual set. Thus, there is no $G \in \mu^*(x)$ being μ^* -residual (resp. being μ -residual) such that $f(G) \subset (\alpha, \infty)$. Let $x = 2 \in X$. Then f(x) = 3. Take $\alpha = 2.9$ which implies that $\alpha < f(x)$. Take U = [2,3]. Then $U \in \mu(x)$ and $f(U) \subset (\alpha, \infty)$. But U is not a μ -residual set and also U is not a μ^* -residual set. Thus, there is no $G \in \mu(x)$ being μ -residual (resp. being μ^* -residual set. Thus, there is no $G \in \mu(x)$ being μ -residual (resp. being μ^* -residual) such that $f(G) \subset (\alpha, \infty)$. Hence f is not a (μ, μ) -l.s.c. function and also f is not a (μ^*, μ) -l.s.c. function. Define a function $g: (X, \mu) \to (\mathbb{R}, \tau_0)$ by

$$g(x) = \begin{cases} 3 & if \quad x \in [0,1), \\ 2 & if \quad x \in [1,2), \\ 1 & if \quad x \in [2,3]. \end{cases}$$

Hence $\mathcal{C}_{\mu^*}(g)$ is a μ^* -dense set in X. Therefore, g is (μ^*, μ^*) -cliquish and also g is a (μ, μ^*) -cliquish function. But g is not a (μ^*, μ^*) -u.s.c. function and also g is not a (μ, μ^*) -u.s.c. function. For, let $x = 3 \in X$. Then g(x) = 1. Take $\alpha = 1.1$ which implies that $\alpha > g(x)$. Take U = [2,3]. Then $U \in \mu^*(x)$ and $g(U) \subset (-\infty, \alpha)$. But U is not a μ^* -residual set and also U is not a μ -residual set. Thus, there is no $G \in \mu^*(x)$ being μ^* -residual (resp. being μ -residual) such that $g(G) \subset (-\infty, \alpha)$. Let $x = 2 \in X$. Then g(x) = 1. Take $\alpha = 1.1$ which implies that $\alpha > g(x)$. Take U = [2,3]. Then $U \in \mu(x)$ and $g(U) \subset (-\infty, \alpha)$. But U is not a μ -residual set and also U is not a μ and $g(U) \subset (-\infty, \alpha)$. But U is not a μ -residual set and also U is not a μ and $g(U) \subset (-\infty, \alpha)$. But U is not a μ -residual set and also U is not a μ -residual set. Thus, there is no $G \in \mu(x)$ being μ -residual (resp. being μ -residual set. Thus, there is no $G \in \mu(x)$ being μ -residual (resp. being μ -residual set. Thus, there is no $G \in \mu(x)$ being μ -residual (resp. being μ -residual set. Thus, there is no $G \in \mu(x)$ being μ -residual (resp. being μ -residual set. Thus, there is no $G \in \mu(x)$ being μ -residual (resp. being μ -residual set. Thus, there is no $G \in \mu(x)$ being μ -residual (resp. being μ -residual set. Thus, there is no $G \in \mu(x)$ being μ -residual (resp. being μ -residual such that $g(G) \subset (-\infty, \alpha)$. Thus, g is not a (μ, μ) -u.s.c. function and also g is not a (μ^*, μ) -u.s.c. function.

Here $\mu^{\star\star} = \{\emptyset\} \cup \{A, B \mid A \in exp((1,3]) - \{\emptyset\}, A \subset B\}$. Thus, $(1,3] \subseteq \mathcal{C}_{\mu^{\star\star}}(f)$ which implies that $\mathcal{C}_{\mu^{\star\star}}(f)$ is a $\mu^{\star\star}$ -dense set in X. Therefore, f is $(\mu^{\star\star}, \mu^{\star\star})$ cliquish, $(\mu, \mu^{\star\star})$ -cliquish, $(\mu^{\star}, \mu^{\star\star})$ -cliquish. Moreover, f is $(\mu^{\star\star}, \mu^{\star})$ -cliquish. But f is not a $(\mu, \mu^{\star\star})$ -l.s.c. function, f is not a $(\mu^{\star}, \mu^{\star\star})$ -l.s.c. function, fis not a $(\mu^{\star\star}, \mu^{\star\star})$ -l.s.c. function. f is not a $(\mu^{\star\star}, \mu^{\star})$ -l.s.c. function, f is not a $(\mu^{\star\star}, \mu)$ -l.s.c. function. Also, g is $(\mu, \mu^{\star\star})$ -cliquish, $(\mu^{\star}, \mu^{\star\star})$ -cliquish, $(\mu^{\star\star}, \mu^{\star\star})$ -cliquish, $(\mu^{\star\star}, \mu^{\star})$ -cliquish. But g is not a $(\mu, \mu^{\star\star})$ -u.s.c. function, g is not a $(\mu^{\star}, \mu^{\star\star})$ -u.s.c. function, g is not a $(\mu^{\star\star}, \mu^{\star\star})$ -u.s.c. function, g is not a $(\mu^{\star\star}, \mu^{\star})$ -u.s.c. function, g is not a $(\mu^{\star\star}, \mu^{\star\star})$ -u.s.c. function, g is not a $(\mu^{\star\star}, \mu^{\star\star})$ -u.s.c. function, g is not a $(\mu^{\star\star}, \mu^{\star\star})$ -u.s.c. function. **Example 3.15.** Consider the generalized topological space (X, μ) where X = [0,4] and $\mu = \{\emptyset, [0,2), \{\frac{4}{3}\} \cup \{\frac{3}{2}\}, (1,3], [0,3]\}$. Then (X, μ) is a sBS. Here $\mu^* = \{\emptyset, [0,2), \{\frac{4}{3}\} \cup \{\frac{3}{2}\}, (1,2), (1,3], [0,3]\}$. Define a function $f : (X, \mu) \to (\mathbb{R}, \tau_0)$ where τ_0 is the Euclidean topology on \mathbb{R} by

$$f(x) = \begin{cases} 0 & if \quad x \in [0,1), \\ 1 & if \quad x \in [1,2), \\ 2 & if \quad x \in [2,3), \\ 3 & if \quad x \in [3,4]. \end{cases}$$

Here $(\{\frac{4}{3}\} \cup \{\frac{3}{2}\}) \subseteq C_{\mu}(f)$. Hence $C_{\mu}(f)$ is a μ -dense set in X. Therefore, f is (μ, μ) -cliquish and also f is a (μ^*, μ) -cliquish function. But f is not a μ -l.s.c. function and also f is not a μ^* -l.s.c. function. For, let $x = 1 \in X$. Then f(x) = 1. Take $\alpha = 0.9$ which implies that $\alpha < f(x)$. Here there is no $G \in \mu(x)$ (resp. $U \in \mu^*(x)$) such that $f(G) \subset (\alpha, \infty)$ (resp. $f(U) \subset (\alpha, \infty)$). Define a function $g: (X, \mu) \to (\mathbb{R}, \tau_0)$ by

$$g(x) = \begin{cases} 3 & if \quad x \in [0, 1), \\ 2 & if \quad x \in [1, 2), \\ 1 & if \quad x \in [2, 3), \\ 0 & if \quad x \in [3, 4]. \end{cases}$$

Hence $C_{\mu}(g)$ is a μ -dense set in X. Therefore, g is (μ, μ) -cliquish and also g is a (μ^{\star}, μ) -cliquish function. But g is not a μ -u.s.c. function and also g is not a μ^{\star} -u.s.c. function. For, let $x = 1 \in X$. Then g(x) = 2. Take $\alpha = 2.1$ which implies that $\alpha > g(x)$. Here there is no $G \in \mu(x)$ (resp. $U \in \mu^{\star}(x)$) such that $g(G) \subset (-\infty, \alpha)$ (resp. $g(U) \subset (-\infty, \alpha)$).

Here $\mu^{\star\star} = \{\emptyset\} \cup \{A \mid \text{either } \{\frac{4}{3}\} \in A \text{ or } \{\frac{3}{2}\} \in A\}$. Moreover, f is $(\mu^{\star\star}, \mu)$ -cliquish. But f is not a μ -l.s.c. function and also f is not a μ^{\star} -l.s.c. function. Also, g is $(\mu^{\star\star}, \mu)$ -cliquish. But g is not a μ -u.s.c. function and also g is not a μ^{\star} -u.s.c. function.

Example 3.16. Consider the generalized topological space (X, μ) where X = [0,3] and $\mu = \{\emptyset, [0,2), \{\frac{3}{2}\} \cup \{\frac{5}{3}\}, [2,3], (1,3], X\}$. Then (X, μ) is a sBS and sGTS. Here $\mu^* = \{\emptyset, [0,2), (1,2), \{\frac{3}{2}\} \cup \{\frac{5}{3}\}, [2,3], (1,3], X\}$. Define a function $f: (X, \mu) \to (\mathbb{R}, \tau_0)$ where τ_0 is the Euclidean topology on \mathbb{R} by

$$f(x) = \begin{cases} 1 & if \quad x \in [0, 1), \\ 2 & if \quad x \in [1, 2), \\ 3 & if \quad x \in [2, 3]. \end{cases}$$

Here $(\{\frac{3}{2}\}\cup\{\frac{5}{3}\})\cup[2,3]\subseteq \mathcal{C}_{\mu}(f)$. Hence $\mathcal{C}_{\mu}(f)$ is a μ -dense set in X. Therefore, f is (μ,μ) -cliquish and also f is a (μ^*,μ) -cliquish function. But f is not a (μ,μ) -l.s.c. function and also f is not a (μ^*,μ) -l.s.c. function. For, let $x = 2 \in X$. Then f(x) = 3. Take $\alpha = 2.9$ which implies that $\alpha < f(x)$. Take U = [2,3]. Then $U \in \mu(x)$ and $f(U) \subset (\alpha,\infty)$. But U is not a μ -residual set and also U is not a μ^* -residual set. Thus, there is no $G \in \mu(x)$ being μ -residual (resp. being μ^* -residual) such that $f(G) \subset (\alpha,\infty)$. Let $x = 3 \in X$. Then f(x) = 3. Take $\alpha = 2.9$ which implies that $\alpha < f(x)$. Take U = [2,3]. Then $U \in \mu^*(x)$ and $f(U) \subset (\alpha,\infty)$. But U is not a μ^* -residual set and also U is not a μ -residual set. Thus, there is no $a \mu^*$ -residual set and also U is not a $f(U) \subset (\alpha,\infty)$. But U is not a μ^* -residual (resp. being μ -residual set. Thus, there is no $a \mu^*$ -residual set and also U is not a $f(U) \subset (\alpha,\infty)$. But U is not a μ^* -residual (resp. being μ -residual set. Thus, there is no $G \in \mu^*(x)$ being μ^* -residual (resp. being μ -residual set. Thus, there is no $G \in \mu^*(x)$ being μ^* -residual (resp. being μ -residual set. Thus, there is no $G \in \mu^*(x)$ being μ^* -residual (resp. being μ -residual set. Thus, there is no $G \in \mu^*(x)$ being μ^* -residual (resp. being μ -residual set. Thus, there is no $G \in \mu^*(x)$ being μ^* -residual (resp. being μ -residual set. Thus, there is no $G \in \mu^*(x)$ being μ^* -residual (resp. being μ -residual) such that $f(G) \subset (\alpha,\infty)$. Hence f is not a (μ^*,μ^*) -l.s.c. function and also f is not a (μ,μ^*) -l.s.c. function.

$$g(x) = \begin{cases} 3 & if \quad x \in [0, 1), \\ 2 & if \quad x \in [1, 2), \\ 1 & if \quad x \in [2, 3]. \end{cases}$$

Hence $C_{\mu}(g)$ is a μ -dense set in X. Therefore, g is (μ, μ) -cliquish and also g is a (μ^{\star}, μ) -cliquish function. Here, there is no $G \in \mu(x)$ being μ -residual (resp. being μ^{\star} -residual) such that $g(G) \subset (-\infty, \alpha)$. Hence g is not a (μ, μ) -u.s.c. function and also g is not a (μ^{\star}, μ) -u.s.c. function. Also, there is no $G \in \mu^{\star}(x)$ being μ^{\star} -residual (resp. being μ -residual) such that $g(G) \subset (-\infty, \alpha)$. Thus, g is not a $(\mu^{\star}, \mu^{\star})$ -u.s.c. function and also g is not a (μ, μ^{\star}) -u.s.c. function. Here $\mu^{\star \star} = \{\emptyset\} \cup \{A, B, C \mid A \in exp([2, 3]) - \{\emptyset\}, A \subset B$, either $\{\frac{3}{2}\} \in C$ or $\{\frac{5}{3}\} \in C\}$. Hence f is $(\mu^{\star \star}, \mu)$ -cliquish. But f is not a (μ, μ) -l.s.c. function, f is not a (μ^{\star}, μ) -l.s.c. function, f is not a $(\mu^{\star}, \mu^{\star})$ -l.s.c. function, f is not a (μ^{\star}, μ) -l.s.c. function, f is not a $(\mu^{\star}, \mu^{\star})$ -u.s.c. function, g is not a (μ^{\star}, μ) -u.s.c. function, g is not a $(\mu^{\star}, \mu^{\star})$ -u.s.c. function, g is not a (μ^{\star}, μ) -u.s.c. function, g is not a $(\mu^{\star}, \mu^{\star})$ -u.s.c. function, g is not a $(\mu^{\star}, \mu^{\star})$ -u.s.c. function.

References

- [1] M. R. Ahmadi Zand and R. Khayyeri, Generalized G_{δ} -submaximal spaces, Acta Math. Hungar., 149 (2) (2016), 274 - 285.
- J. Borsik, Points of generalized continuities, Tatra Mt. Math. Publ., 52, (2012), 153 160.
- [3] Á. Császár, Generalized open sets, Acta Math. Hungar., 75 (1997), 65 87.
- [4] E. Ekici, Generalized Submaximal Spaces, Acta Math. Hungar., 134 (1 2) (2012), 132-138.
- [5] E. Korczak Kubiak, A. Loranty and R. J. Pawlak, Baire Generalized topological spaces, Generalized metric spaces and infinite Games, Acta Math. Hungar., 140 (2013), 203 - 231.
- [6] Z. Li and F. Lin, Baireness on generalized topological spaces, Acta Math. Hungar., 139 (4) (2013), 320 - 336.