ON THE $\left|\mathbf{N}, \mathbf{p}_{\mathrm{n}}, \mathbf{q}_{\mathrm{n}}\right|_{\mathrm{k}}$ SUMMABILITY FACTORS OF INFINITE SERIES

Debadutta Mohanty

Abstract

In this paper a theorem on generalized Nörlund Summability Factors has been proved which generalizes some earlier factor theorems on $\left|N, p_{n}\right|_{k}([5]),|C, 1|_{k}([4])$ and $\left|\bar{N}, p_{n}\right|_{k}([1])$ for $k>1$.

1. INTRODUCTION

Given any series $\sum a_{n}$, if there exists a sequence $\left\{\lambda_{n}\right\}$ such that $\sum_{n=0}^{\infty} a_{n} \lambda_{n}$ is summable by a method A, then we say that $\left\{\lambda_{n}\right\}$ is a summability factor for the method A. Results establishing theorems on summability factors are called factor theorems.

In this section we introduce some notations, conventions and definitions which are to be used in this paper. Let $\sum_{0}^{\infty} a_{n}$ be an infinite series with sequences of partial sums $\left\{s_{n}\right\}$.

Let $p=\left\{p_{n}\right\}$ be a positive non-increasing sequence of real numbers such that

$$
\begin{equation*}
p_{n}=\sum_{i=0}^{n} p_{i} \rightarrow \infty \text { as } n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

and

$$
p_{-i}=p_{-i}=0 \text { for } i \geq 1
$$

For a positive real sequence $q=\left(q_{n}\right)$, we define an increasing sequence $\left(r_{n}\right)$ by

$$
\begin{equation*}
r_{n}=(p * q)_{n}=\sum_{i=0}^{n} p_{n-i} q_{i \rightarrow \infty} \text {, as } n \rightarrow \infty \tag{1.2}
\end{equation*}
$$

where $q_{n}=0(1)$ and $1=0\left(q_{n}\right)$ as $n \rightarrow \infty$ and $q_{-i}=Q_{-i}=r_{-i}=0$ for $i \geq 1$, * denotes the convolution product.

The $\left(N, p_{n}, q_{n}\right)$-transform of the sequence $\left(s_{n}\right)$ is defined by ([2]).

$$
\begin{equation*}
t_{n}=\frac{1}{r_{n}} \sum_{i=0}^{n} p_{n-i} q_{i} s_{i} \tag{1.3}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be $\left|N, p_{n}, q_{n}\right|_{k}$ summable for $k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{r_{n}}{q_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty . \tag{1.4}
\end{equation*}
$$

If $\left(d_{n}\right)$ be the sequence of $(\mathrm{C}, 1)$-transform of the sequence $\left(n, a_{n}\right)$, then

$$
\begin{equation*}
d_{n}=\frac{1}{n+1} \sum_{k=0}^{n} k a_{k}=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k} \text { as } a_{0}=0 . \tag{1.5}
\end{equation*}
$$

2. NOTATIONS

We use the following notations

$$
A_{j}^{k}=\sum_{j=i}^{k} p_{k-j} q_{j}=p_{k-i} q_{i}+p_{k-i-1} q_{i+1}+\ldots+p_{0} q_{k}
$$

so that

$$
\begin{align*}
A_{j}^{k} & =\sum_{j=i}^{k} p_{k-j} & q_{j}, & 0 \leq i<k \tag{2.1}\\
& =A_{i}^{n}, & & k \geq n \\
& =0, & & i>k
\end{align*}
$$

and

$$
B_{i}^{k}=\sum_{j=0}^{k} p_{n-j} q_{j-i}=p_{n-i} q_{0}+p_{n-i-1} q_{1}+\ldots+p_{n-k} q_{k-i}
$$

so that

$$
\begin{align*}
B_{i}^{k} & =\sum_{j=i}^{k} p_{n-j} q_{j-i}, \quad 0 \leq i<k<n \tag{2.2}\\
& =B_{i}^{n}, \quad k \geq n \\
& =0, \quad i>k
\end{align*}
$$

we find the relations as

$$
B_{k}^{n}=r_{n-k}=A_{0}^{n-k}
$$

and

$$
B_{i}^{k}+A_{k+1-i}^{n-i}=(p * q)_{n-i}=r_{n-i} .
$$

In particular, if $\mathrm{i}=0$, then

$$
B_{0}^{k}+A_{k+1}^{n}=r_{n} .
$$

3. The object of this note is to prove the following theorem on $\left|N, p_{n}, q_{n}\right|_{k}$ summability.

Theorem: Let $\left(p_{n}\right),\left(q_{n}\right)$ and $\left(r_{n}\right)$ be the sequences satisfying (1.1) and (1.2). If $\left(X_{n}\right)$ is a positive monotonic non-decreasing sequence and $\left(\lambda_{n}\right)$ be any sequence such that

$$
\begin{align*}
& \lambda_{m} X_{m}=0(1) \text { as } m \rightarrow \infty \tag{3.1}\\
& \sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|=0(1), m \rightarrow \infty \tag{3.2}\\
& \sum_{n=1}^{m} \frac{q_{n}}{r_{n}}\left|d_{n}\right|^{k}=0\left(X_{m}\right), m \rightarrow \infty \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
r_{n}=0\left(n, q_{n}\right) \text { as } n \rightarrow \infty \tag{3.4}
\end{equation*}
$$

where d_{n} is the n-th $(\mathrm{C}, 1)$ transform of the sequence $\left(n a_{n}\right)$, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|N, p_{n}, q_{n}\right|_{k}, k \geq 1$.

It may be noticed that under the conditions of the theorem, we have that

$$
\begin{equation*}
\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1} \rightarrow 0 \text { as } n \rightarrow \infty . \tag{3.5}
\end{equation*}
$$

4. We require the following Lemmas to prove the theorem.

It is easy to prove the following two equalities as

$$
\begin{equation*}
r_{n-1} A_{i}^{n}-r_{n} A_{i}^{n-1}=B_{i}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{align*}
\left\lvert\, \begin{array}{lll}
B_{1}^{i} A_{i}^{n} & +B_{0}^{i} A_{i+1}^{n-1}-B_{0}^{i-1} A_{i}^{n-1}-B_{1}^{i+1} A_{i+1}^{n} \mid \\
& \left.=\left\lvert\, \begin{array}{ll}
q_{i}\left(r_{n-1} p_{n-i}-r_{n} p_{n-i-1}\right)
\end{array}\right.\right) \\
& =q_{i}\left(r_{n} p_{n-i-1}-r_{n-1} p_{n-i}\right) .
\end{array}\right. \tag{4.2}
\end{align*}
$$

Lemma 1: Under the relations given above, we find
$\frac{1}{q_{n} r_{n-1}} \sum_{i=1}^{n}\left|B_{i}^{i} A_{i}^{n}+B_{0}^{i} A_{i+1}^{n-1}-B_{0}^{i-1} A_{i}^{n-1}-B_{i}^{i+1} A_{i+1}^{n}\right|=0(1)$,
as $n \rightarrow \infty$.
Proof: From (4.2)

$$
\begin{align*}
\text { L.H.S } & =\frac{1}{q_{n} r_{n-1}} \sum_{i=1}^{n-1} q_{i}\left(r_{n} p_{n-i-1}-r_{n-1} p_{n-i}\right) \tag{4.4}\\
& =\frac{r_{n}}{q_{n} r_{n-1}} \sum_{i=1}^{n-1} q_{i} p_{n-i-1}-\frac{1}{q_{n}} \sum_{i=1}^{n-1} q_{i} p_{n-i} \\
& =\frac{r_{n}}{q_{n} r_{n-1}}\left(r_{n-1}-p_{n-1} q_{0}\right)-\frac{1}{q_{n}}\left(r_{n}-p_{n} q_{0}-p_{0} q_{n}\right) \\
& =\frac{p_{n} q_{0}}{q_{n}}+p_{0}-\frac{r_{n} p_{n-1} q_{0}}{q_{n} r_{n-1}} \\
& =\frac{q_{0}}{q_{n}}\left(p_{n}-\frac{r_{n}}{r_{n-1}} p_{n-1}\right)+p_{0}
\end{align*}
$$

$$
\begin{aligned}
& \leq \frac{q_{0}}{q_{n}}\left(p_{n}-p_{n-1}\right)+p_{0}=0(1) \text { as } n \rightarrow \infty \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence the Lemma.
We assume here that

$$
\begin{equation*}
\frac{1}{q_{n} r_{n-1}} \sum_{i=1}^{n-1} \frac{q_{i}\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i+1}^{n-1}\right)}{r_{i}}=0(1) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{q_{n} r_{n-1}} \sum_{i=1}^{n-1} \frac{q_{i}\left(B_{1}^{i} A_{i+1}^{n}-B_{0}^{i} A_{i+1}^{n-1}\right)}{r_{i}}=0(1) \text { as } n \rightarrow \infty . \tag{4.6}
\end{equation*}
$$

Lemma 2: ([1], Lemma)
Suppose $\left(X_{n}\right)$ is a positive non-decreasing sequence such that (3.1) and (3.2) hold. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} X_{n}\left|\Delta \quad \lambda_{n}\right|<\infty \tag{4.7}
\end{equation*}
$$

and

$$
n X_{n}\left|\Delta \lambda_{n}\right|=0(1) \text {, as } n \rightarrow \infty
$$

Lemma 3: As the notations defined above, we get

$$
\sum_{n=i+1}^{m+1} \frac{B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}}{r_{n} r_{n-1}}=0(1), \text { as } m \rightarrow \infty
$$

Proof: We have

$$
\begin{aligned}
\sum_{n=i+1}^{m+1} \frac{B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}}{r_{n} r_{n-1}} & =\sum_{n=i+1}^{m+1} \frac{r_{n} B_{1}^{i}-r_{n-1} B_{0}^{i-1}}{r_{n} r_{n-1}} \\
& =\Lambda(m, i), \text { say. }
\end{aligned}
$$

Clearly $\Lambda(m, i)$ is one positive and decreasing sequence for $1 \leq i \leq m$, hence,
$\sup _{1 \leq i \leq m} \Lambda(m . i)=\Lambda(m, 1)$

$$
\begin{gathered}
=\sum_{n=2}^{m+1} \frac{B_{1}^{1} r_{n}-B_{0}^{0} r_{n-1}}{r_{n} r_{n-1}}=\sum_{n=2}^{m+1}\left(\frac{B_{1}^{1}}{r_{n-1}}-\frac{B_{0}^{0}}{r_{n}}\right) \\
=\sum_{n=2}^{m+1}\left(\frac{p_{n-1} q_{0}}{r_{n-1}}-\frac{p_{n} q_{0}}{r_{n}}\right)=\left(\frac{p_{1}}{r_{i}}-\frac{p_{m+1}}{r_{m+1}}\right) q_{0} \rightarrow \frac{p_{1} q_{0}}{r_{1}} \text { as } m \rightarrow \infty .
\end{gathered}
$$

Thus $\Lambda(m, i)=0(1)$ as $m \rightarrow \infty$ for each $i \leq m$; this completes the proof of Lemma.

Similarly we can prove for each i,

$$
\begin{equation*}
\sum_{n=i+1}^{m+1} \frac{B_{1}^{i} A_{i+1}^{n}-B_{0}^{i} A_{i+1}^{n-1}}{r_{n} r_{n-1}}=0(1) \text {, as } m \rightarrow \infty \tag{4.9}
\end{equation*}
$$

5. PROOF OF THE THEOREM

Let T_{n} be the $\mathrm{n}-\mathrm{th}\left(N, p_{n}, q_{n}\right)$ transform of the series $\sum a_{n} \lambda_{n}$, then

$$
\begin{aligned}
T_{n} & =\frac{1}{r_{n}} \sum_{i=0}^{n} p_{n-i} q_{i} \sum_{k=0}^{i} a_{k} \lambda_{k} \\
& =\frac{1}{r_{n}} \sum_{k=0}^{n} a_{k} \lambda_{k} \sum_{i=k}^{n} p_{n-i} q_{i}=\frac{1}{r_{n}} \sum_{k=0}^{n} a_{k} \lambda_{k} A_{k}^{n} .
\end{aligned}
$$

Then for $n \geq 1$, we get, by Abel's Transformation

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{1}{r_{n}} \sum_{i=1}^{n} A_{i}^{n} a_{i} \lambda_{i}-\frac{1}{r_{n-1}} \sum_{i=1}^{n-1} A_{i}^{n-1} a_{i} \lambda_{i} \\
& =\sum_{i=1}^{n}\left(\frac{A_{i}^{n}}{r_{n}}-\frac{A_{i}^{n-1}}{r_{n-1}}\right) a_{i} \lambda_{i}, \text { since } A_{n}^{n-1}=0 \\
& =\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n}\left(r_{n-1} A_{i}^{n}-A_{i}^{n-1} r_{n}\right) a_{i} \lambda_{i} \\
& =\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n}\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{1}^{n-1}\right) a_{i} \lambda_{i}(\text { by (4.1)) }
\end{aligned}
$$

$$
\begin{gathered}
=\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n} \frac{\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right) \lambda_{i}}{i} i a_{i} \\
= \\
\frac{1}{r_{n} r_{n-1}}\left\{\sum_{i=1}^{n-1} \Delta \frac{\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right) \lambda_{i}}{i} \sum_{k=1}^{i} k a_{k}\right. \\
\left.+\frac{\left(B_{1}^{n} A_{n}^{n}-B_{0}^{n-1} A_{n}^{n-1}\right) \lambda_{n}}{n} \sum_{k=1}^{n} k \cdot a_{k}+0\right\} \\
=\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1}\left[\frac{\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right) \lambda_{i}}{i}-\frac{\left(B_{1}^{i+1} A_{i+1}^{n}-B_{0}^{i} A_{i+1}^{n-1}\right) \lambda_{i+1}}{i+1}\right](i+1) d_{i} \\
\\
\\
\quad+\frac{1}{r_{n} r_{n-1}} \frac{\left(B_{1}^{n} A_{n}^{n}-B_{0}^{n-1} \cdot 0\right)}{n}(n+1) d_{n} .
\end{gathered}
$$

As $\Delta \lambda_{i}=\lambda_{i}-\lambda_{i+1}$, we have, by using (4.2)

$$
\begin{aligned}
& T_{n}-T_{n-1}= \frac{(n+1) p_{0} q_{n} \lambda_{n} d_{n}}{n r_{n}}+\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1}\left\{\frac{\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right) \lambda_{i}}{i}\right. \\
&\left.-\frac{B_{1}^{i+1} A_{i+1}^{n}-B_{0}^{i}}{(i+1)} A_{i+1}^{n-1}\left(\lambda_{i}-\Delta \lambda_{i}\right)\right\}(i+1) d_{i} \\
&= \frac{(n+1) p_{0} q_{n} \lambda_{n} d_{n}}{n r_{n}}+\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1}\left\{\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right)\right.
\end{aligned}
$$

$$
\left.-\left(\begin{array}{ll}
B_{1}^{i} & A_{i+1}^{n}-B_{0}^{i} \\
A_{i+1}^{n-1}
\end{array}\right)\right\} \lambda_{i} d_{i}+\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1} \frac{1}{i}\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right) \lambda_{i} d_{i}
$$

$$
+\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1}\left(B_{1}^{i+1} A_{i+1}^{n}-B_{0}^{i} A_{i+1}^{n-1}\right) \Delta \lambda_{i} d_{i}
$$

$$
=\frac{(n+1) p_{0} q_{n} \lambda_{n} d_{n}}{n r_{n}}+\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1} q_{i}\left(r_{n-1} p_{n-i}-r_{n}-p_{n-i-1}\right) \lambda_{i} d_{i}
$$

$$
\begin{aligned}
& \quad+\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1} \frac{1}{i}\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right) \lambda_{i} d_{i}+ \\
& \quad+\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1}\left(B_{1}^{i+1} A_{i+1}^{n}-B_{0}^{i} A_{i+1}^{n-1}\right) \Delta \lambda_{i} d_{i} \\
& =T_{n 1}+
\end{aligned} T_{n 2}+T_{n 3}+T_{n 4}, \text { say. } \quad \text {, }
$$

To prove the Theorem, it is sufficient to show, by Minkowski's inequality, that

$$
\sum_{n=1}^{\infty}\left(\frac{r_{n}}{q_{n}}\right)^{k-1}\left|T_{n j}\right|^{k}<\infty \text { for } j=1,2,3,4
$$

Now, by using Abel's transformation

$$
\begin{aligned}
I_{1} & =\sum_{n=1}^{m+1}\left(\frac{r_{n}}{q_{n}}\right)^{k-1}\left|T_{n 1}\right|^{k} \\
& =\sum_{n=1}^{m+1} \frac{p_{0}^{k} q_{n}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|d_{n}\right|^{k}}{r_{n}}\left(\frac{n+1}{n}\right)^{k} \\
& =0(1) \sum_{n=1}^{m+1} \frac{q_{n}\left|\lambda_{n}\right|\left|d_{n}\right|^{k}}{r_{n}} \\
& =0(1)\left[\sum_{n=1}^{m} \Delta\left|\lambda_{n}\right| \sum_{i=1}^{n} \frac{q_{i}\left|d_{i}\right|^{k}}{r_{i}}+\left|\lambda_{m}\right| \sum_{i=1}^{m} \frac{q_{i}\left|d_{i}\right|^{k}}{r_{i}}\right] \\
& =0(1) \sum_{n=1}^{m} \Delta\left|\lambda_{n}\right| X_{n}+0(1)\left|\lambda_{m}\right| X_{m} \\
& =0(1) \sum_{n=1}^{m} \Delta\left|\lambda_{n}\right| X_{n}+0(1) \\
& =0(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of Lemma 2 and hypothesis.
Next, by using Holder's inequality and (4.4), we get

$$
\begin{aligned}
& I_{2}= \sum_{n=1}^{m+1}\left(\frac{r_{n}}{q_{n}}\right)^{k-1}\left|T_{n 2}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{1}{q_{n}^{k-1} r_{n} r_{n-1}^{k}}\left\{\sum_{i=1}^{n-1} q_{i}\left(r_{n} p_{n-i-1}-r_{n-1} p_{n-i}\right)\left|\lambda_{i}\right|\left|d_{i}\right|\right\}^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1} q_{i}\left(r_{n} p_{n-i-1}-r_{n-1} p_{n-i}\right)\left|\lambda_{i}\right|^{k}\left|d_{i}\right|^{k} \\
& \times\left\{\frac{1}{q_{n} r_{n}} \sum_{i=1}^{n-1} q_{i}\left(r_{n} p_{n-i-1}-r_{n-1} p_{n-i}\right)\right\}^{k-1} \\
&= 0(1) \sum_{i=1}^{m} q_{i}\left|\lambda_{i}\right|^{k}\left|d_{i}\right|^{k} \sum_{n=i+1}^{m+1} \frac{r_{n} p_{n-i-1}-r_{n-1} p_{n-i}}{r_{n} r_{n-1}} \\
&=\left.\left.0(1) \sum_{i=1}^{m} q_{i}\left|\lambda_{i}\right|^{k-1}\left|\lambda_{i}\right|\right|_{i}\right|^{k} \sum_{n=i+1}^{m+1}\left(\frac{p_{n-i-1}}{r_{n-1}}-\frac{p_{n-i}}{r_{n}}\right) \\
&= 0(1) \sum_{i=1}^{m} q_{i}\left|\lambda_{i}\right|\left|d_{i}\right|^{k}\left(\frac{p_{0}}{r_{i}}-\frac{p_{m+1-i}}{r_{m+1}}\right) \\
&= 0(1) \sum_{i=1}^{m} \frac{\left|\lambda_{i}\right| q_{i}\left|d_{i}\right|^{k}}{r_{i}}+0(1) \sum_{i=1}^{m} \frac{\left|\lambda_{i}\right| q_{i}\left|d_{i}\right|^{k}}{r_{m+1}} \\
&=0(1) \text { as m mos, from I. }
\end{aligned}
$$

Also, from the fact that $r_{n}=O\left(n q_{n}\right)$, we find

$$
\begin{aligned}
I_{3} & =\sum_{n=1}^{m+1}\left(\frac{r_{n}}{q_{n}}\right)^{k-1}\left|T_{n 3}\right|^{k} \\
& =\sum_{n=2}^{m+1}\left(\frac{r_{n}}{q_{n}}\right)^{k-1}\left|\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1} \frac{1}{i}\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right) \lambda_{i} d_{i}\right|
\end{aligned}
$$

$$
\begin{aligned}
=0(1) \sum_{n=2}^{m+1} \frac{1}{q_{n}^{k-1} r_{n} r_{n-1}^{k}} & \left\{\sum_{i=1}^{n-1} \frac{q_{i}\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right)}{r_{i}}\left|\lambda_{i}\right|\left|d_{i}\right|\right\}^{k} \\
=0(1) \sum_{n=2}^{m+1} \frac{1}{r_{n} r_{n-1}} & \sum_{i=1}^{n-1} \frac{q_{i}\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right)}{r_{i}}\left|\lambda_{i}\right|^{k}\left|d_{i}\right|^{k} \\
& \times\left\{\frac{1}{q_{n} r_{n-1}} \sum_{i=1}^{n-1} \frac{q_{i}\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right)^{k-1}}{r_{i}}\right\}
\end{aligned}
$$

This is due to Hölder's inequality. Now from (4.5) and Lemma 3, we get

$$
\begin{aligned}
I_{3} & =0(1) \sum_{n=2}^{m+1} \frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1} \frac{q_{i}\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right)}{r_{i}}\left|\lambda_{i}\right|^{k}\left|d_{i}\right|^{k} \\
& =0(1) \sum_{n=1}^{m} \frac{q_{i}\left|\lambda_{i}\right|^{k}\left|d_{i}\right|^{k}}{r_{i}} \sum_{n=i+1}^{m+1} \frac{\left(B_{1}^{i} A_{i}^{n}-B_{0}^{i-1} A_{i}^{n-1}\right)}{r_{n} r_{n-1}} \\
& =0(1) \sum_{i=1}^{m} \frac{q_{i}\left|\lambda_{i}\right|\left|\lambda_{i}\right|^{k-1}\left|d_{i}\right|^{k}}{r_{i}} \\
& =0(1) \sum_{i=1}^{m} \frac{\left|\lambda_{i}\right| q_{i}\left|d_{i}\right|^{k}}{r_{i}} \\
& =0(1) \text { as } m \rightarrow \infty, \text { from } I_{1} .
\end{aligned}
$$

Lastly, from (4.6) and (4.9) and by applying Hölder's inequality, we have that

$$
\begin{aligned}
I_{4} & =\sum_{n=1}^{m+1}\left(\frac{r_{n}}{q_{n}}\right)^{k-1}\left|T_{n 4}\right|^{k} \\
& =\sum_{n=2}^{m+1}\left(\frac{r_{n}}{q_{n}}\right)^{k-1}\left|\frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1}\left(B_{1}^{i+1} A_{i+1}^{n}-B_{0}^{i} A_{i+1}^{n-1}\right) \Delta \lambda_{i} d_{i}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{1}{q_{n}^{k-1} r_{n} r_{n-1}^{k}}\left\{\sum_{i=1}^{n-1} \frac{i\left(B_{1}^{i+1} A_{i+1}^{n}-B_{0}^{i} A_{i+1}^{n-1}\right)}{i}\left|\Delta \lambda_{i}\right|\left|d_{i}\right|\right\}^{k}
\end{aligned}
$$

$$
\begin{aligned}
&=0(1) \sum_{n=2}^{m+1} \frac{1}{q_{n}^{k-1} r_{n} r_{n-1}^{k}}\left\{\left.\sum_{i=1}^{n-1} \frac{i\left(B_{1}^{i+1} A_{i+1}^{n}-B_{0}^{i} A_{i+1}^{n-1}\right) q_{i}}{r_{i}}\left|\Delta \lambda_{i}\right| \right\rvert\, d_{i}\right\}^{k} \\
&=0(1) \sum_{n=2}^{m+1} \frac{1}{r_{n} r_{n-1}} \sum_{i=1}^{n-1} i^{k} \frac{\left(B_{1}^{i+1} A_{i+1}^{n}-B_{0}^{i} A_{i+1}^{n-1}\right)}{r_{i}}\left|\Delta \lambda_{i}\right|^{k}\left|d_{i}\right|^{k} \\
& \times\left\{\frac{1}{q_{n} r_{n-1}} \sum_{i=1}^{n-1} \frac{B_{1}^{i+1} A_{i+1}^{n}-B_{0}^{i} A_{i+1}^{n-1}}{r_{i}}\right\}^{k-1} \\
&=0(1) \sum_{i=1}^{m} \frac{q_{i}}{r_{i}} i^{k}\left|\Delta \lambda_{i}\right|^{k}\left|d_{i}\right|^{k} \sum_{n=i+1}^{m+1} \frac{\left(B_{1}^{i+1} A_{i+1}^{n}-B_{0}^{i} A_{i+1}^{n-1}\right)}{r_{n} r_{n-1}} \\
&=0(1) \sum_{i=1}^{m}\left(i\left|\Delta \lambda_{i}\right|\right)^{k-1}\left(i\left|\Delta \lambda_{i}\right|\right) \frac{q_{i}}{r_{i}}\left|d_{i}\right|^{k} \\
&=0(1) \sum_{i=1}^{m} i\left|\Delta \lambda_{i}\right| \frac{q_{i}\left|d_{i}\right|^{k}}{r_{i}} \\
&=0(1)\left[\sum_{i=1}^{m-1} \Delta\left(i\left|\Delta \lambda_{i}\right|\right) \sum_{v=1}^{i} \frac{q_{v}\left|d_{v}\right|^{k}}{r_{v}}+m\left|\Delta \lambda_{m}\right| \sum_{i=1}^{m} \frac{q_{i}\left|d_{i}\right|^{k}}{r_{i}}\right] \\
&=0(1) \sum_{i=1}^{m-1} \Delta\left(i\left|\Delta \lambda_{i}\right|\right) X_{i}+0(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
&=0(1) \sum_{i=1}^{m-1} i X_{i}\left|\Delta^{2} \lambda_{i}\right|+0(1) \sum_{i=1}^{m-1}\left|\Delta \lambda_{i+1}\right| X_{i}+0(1) \\
&=0(1), \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypothesis and Lemma 2.
This completes the proof of the theorem.
Corollary 1 ([1]): Let $\left(q_{n}\right)$ be a sequence of positive number such that

$$
Q_{n}=0\left(n, q_{n}\right) \text { as } n \rightarrow \infty .
$$

If $\left(x_{n}\right)$ is a positive monotonic non decreasing sequence such that

$$
\begin{aligned}
& \lambda_{m} X_{m}=0(1) \text { as } m \rightarrow \infty, \\
& \sum_{n=1}^{\infty} n X_{i}\left|\Delta^{2} \lambda_{n}\right|=0(1)
\end{aligned}
$$

and

$$
\sum_{n=1}^{\infty} \frac{q_{n}}{Q_{n}}\left|t_{n}\right|^{k}=0\left(X_{m}\right) \text { as } m \rightarrow \infty
$$

where t_{n} is the n-th $(\mathrm{C}, 1)$ transform of $\left(n a_{n}\right)$, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, q_{n}\right|_{k}, k \geq 1$.

Taking $p_{n}=1$ for all n in the theorem we get the corollary. In addition to this if we take $q_{n}=1$ for all values of n we find,

Corollary 2([4]): If $\left(X_{n}\right)$ is a positive monotonic non-decreasing sequence such that

$$
\begin{aligned}
& \lambda_{m} X_{m}=0(1) \text { as } m \rightarrow \infty \\
& \sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|=0(1)
\end{aligned}
$$

and

$$
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=0\left(X_{m}\right) \text { as } m \rightarrow \infty
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}, k \geq 1$.
Corollary 3 ([5]): Let $\left(p_{n}\right)$ be a monotonic decreasing sequence such that

$$
P_{n}=0(n) \text { as } n \rightarrow \infty .
$$

If $\left(X_{n}\right)$ is a positive monotonic non-decreasing sequence such that

$$
\begin{aligned}
& \lambda_{m} X_{m}=0(1) \text { as } m \rightarrow \infty \\
& \sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|=0(1)
\end{aligned}
$$

and

$$
\sum_{n=1}^{m} \frac{1}{P_{n}}\left|d_{n}\right|^{k}=0\left(X_{m}\right) \text { as } m \rightarrow \infty
$$

where d_{n} is the n -th $(\mathrm{C}, 1)$ transform of the sequence $\left(n a_{n}\right)$ then the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$.

Putting $q_{n}=1$ for all n, we get the corollary.

REFERENCES

[1] Bor, H: On absolute summability factors, Proceedings of the American Mathematical Society, 118 (No.1) May 1993, pp. 71-75.
[2] Borwein, D: On product of sequence, Jour. Lond. Math. Soc. 33 (1958) pp. 352-357.
[3] Hardy, G. H: Divergent Series, Oxford Univ. Press, New York and London, 1949.
[4] Mazhar, S.M: On $|C, 1|_{k}$ summability factors of infinite series, Indian J. Math. 14 (1972), pp. 44-45.
[5] Mohanty, D: A study of some aspects of the theory of summability, Ph.D. Thesis (June, 1995), Berhampur University, Berhampur, Orissa, India, under the guidance of Prof. B.K. Tripathy.

Debadutta Mohanty

Department of Mathematics
Seemanta College, Jharpokharia
Mayurbhanja, Orissa, INDIA

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.
http://www.win2pdf.com/purchase/

