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ON THE
knn q,pN,  SUMMABILITY

FACTORS OF INFINITE SERIES

Debadutta Mohanty

Abstract

In this paper a theorem on generalized Nörlund Summability Factors has
been proved which generalizes some earlier factor theorems on

� �� � � �� �41,,5,
kkn CpN  and � �� �1,

knpN  for k > 1.

1. INTRODUCTION

Given any series na� , if there exists a sequence {�
n
} such that 

0
n n

n

a �
�

�
�  is

summable by a method A, then we say that {�
n
} is a summability factor for the

method A. Results establishing theorems on summability factors are called factor
theorems.

In this section we introduce some notations, conventions and definitions which

are to be used in this paper. Let
0

na
�

�  be an infinite series with sequences of partial

sums {s
n
}.

Let p = {p
n
} be a positive non-increasing sequence of real numbers such that

0

n

n i
i

p p as n
�

� � � � �� ; (1.1)

and

0 1i ip p for i� �� � � .

For a positive real sequence q = (q
n
), we define an increasing sequence (r

n
) by
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� � ����� ��
�

�� nasqpqpr i

n

i
innn ,

0
(1.2)

where � � � �nn qandq 0110 ��  as ��n  and 0��� ��� iii rQq  for �� ,1i
denotes the convolution product.

The � �nn qpN ,, -transform of the sequence (s
n
) is defined by ([2]).

�
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n

i
iiin

n
n sqp

r
t

0

1
. (1.3)

The series � na  is said to be 
knn qpN ,,  summable for 1�k , if
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�

�
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�

�
�

�

�

�

� k

nn
n

k

n

n tt
q

r
1

1

1

. (1.4)

If (d
n
) be the sequence of (C, 1)-transform of the sequence (n, a

n
), then

0
1

1

1

1
0

10

�
�

�
�

� ��
��

aasak
n

ak
n

d
n

k
k

n

k
kn . (1.5)

2. NOTATIONS

We use the following notations

kiikiikj

k

ij
jk

k
j qpqpqpqpA 011 ... ����� ����

�
��

so that

kiqpA
k

ij
jjk

k
j ��� �

�
� 0, (2.1)

       nkAn
i �� ,

       ki �� ,0

and

ik

k

j
knininijjn

k
i qpqpqpqpB �

�
������� �����

0
110 ...
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so that

�
�

�� ����
k

ij
ijjn

k
i nkiqpB 0, (2.2)

      nkBn
i �� ,

      ki �� ,0

we find the relations as

kn
kn

n
k ArB �

� �� 0

and

� � inin
in

ik
k
i rqpAB ��

�
�� ���� 1 .

In particular, if i = 0, then

n
n
k

k rAB �� � 10 .

3. The object of this note is to prove the following theorem on
knn qpN ,,

summability.

Theorem: Let (p
n
) , (q

n
) and (r

n
) be the sequences satisfying (1.1) and (1.2). If

(X
n
) is a positive monotonic non-decreasing sequence and (�

n
) be any sequence

such that

� � ��� masX mm 10� (3.1)

� � �����
�

mXn
m

n
nn ,10

1

2 � (3.2)

� � ����
�

mXd
r

q
m

k

n

m

n n

n ,0
1

(3.3)

and

� � ��� nasqnr nn ,0 (3.4)

where d
n
 is the n-th (C, 1) transform of the sequence (na

n
), then the series � nna �

is summable 1,,, �kqpN
knn .
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It may be noticed that under the conditions of the theorem, we have that

������ � nasnnn 01��� . (3.5)

4. We require the following Lemmas to prove the theorem.

It is easy to prove the following two equalities as

11
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1
1

���
� ��� n

i
in

i
i
i

n
in

n
in ABABArAr (4.1)

and

n
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in
i
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i
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i

i ABABABAB 1
1

1
11

0
1

101 �
����

� ��� (4.2)

� �11 ���� �� inninni prprq

� �inninni prprq ���� �� 11 .

Lemma 1: Under the relations given above, we find
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as n��.

Proof: From (4.2)
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(4.4)
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� � 01
0 ppp

q

q
nn

n

��� �  � � ��� nas10

= R.H.S.

Hence the Lemma.

We assume here that

� � � �10
1 1

1

1
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1
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�

�
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n

i i

n
i
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i
i

nn r

ABABq

rq (4.5)

and

� � � �10
1 1

1

1
1011

1

�
�

�
�

�

�
��

�

n

i i

n
i

in
i

i
i

nn r

ABABq

rq  as ��n . (4.6)

Lemma 2: ([1], Lemma)

Suppose (X
n
) is a positive non-decreasing sequence such that (3.1) and (3.2)

hold. Then

����
�

� 1n
nnX � (4.7)

and

� � ���� nasXn nn ,10� .

Lemma 3: As the notations defined above, we get

� � ���
��

�
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n
i

in
i

i

,10
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.

Proof: We have
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� �im,�� , say..

Clearly � �im,�  is one positive and decreasing sequence for mi ��1 , hence,

� � � �1,.sup
1

mim
mi

���
��
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qp

1

01
.

Thus � � � � ���� masim 10,  for each mi � ; this completes the proof of

Lemma.

Similarly we can prove for each i,

� � ���
�

�
�

�� �

�
�� mas

rr

ABABm

in nn

n
i

in
i

i

,10
1

1 1

1
1011

. (4.9)

5. PROOF OF THE THEOREM

Let T
n
 be the n-th � �nn qpN ,,  transform of the series � nna � , then
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Then for 1�n , we get, by Abel’s Transformation
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To prove the Theorem, it is sufficient to show, by Minkowski’s inequality, that
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by virtue of Lemma 2 and hypothesis.

Next, by using Holder’s inequality and (4.4), we get
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Also, from the fact that r
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), we find
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This is due to Hölder’s inequality. Now from (4.5) and Lemma 3, we get
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Lastly, from (4.6) and (4.9) and by applying Hölder’s inequality, we have that
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by virtue of the hypothesis and Lemma 2.

This completes the proof of the theorem.

Corollary 1 ([1]):  Let (q
n
) be a sequence of positive number such that

� � ��� nasqnQ nn ,0 .

If (x
n
) is a positive monotonic non decreasing sequence such that
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where t
n
 is the n-th (C, 1) transform of (na

n
), then the series nna ��  is summable

1,, �kqN
kn .

Taking p
n
 = 1 for all n in the theorem we get the corollary. In addition to this if

we take q
n
 = 1 for all values of n we find,

Corollary 2([4]): If (X
n
) is a positive monotonic non-decreasing sequence such

that

� � ��� masX mm 10�
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,

then the series� nna �  is summable 1,1, �kC
k

.

Corollary 3 ([5]): Let (p
n
) be a monotonic decreasing sequence such that

   � � ��� nasnPn 0 .

If (X
n
) is a positive monotonic non-decreasing sequence such that

� � ��� masX mm 10�
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�
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n
nnXn
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and
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�

masXd
P m
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k

n
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0
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,

where d
n
 is the n-th (C, 1) transform of the sequence (na

n
) then the series �

�

� 1n
nna �

is summable 1,, �kpN
kn .

Putting q
n
 = 1 for all n, we get the corollary.
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