
An effort estimation model for cleanroom software development approach

An effort estimation model for cleanroom

software development approach

Hitesh Kumar Sharma1, Ravi Tomar1 and J.C. Patni1

1 University of petroleum & Energy Studies, Dehradun, Emails: hkshitesh@ddn.upes.ac.in,

rtomar@ ddn.upes.ac.in , jcpatni@ ddn.upes.ac.in

Abstract: The integration of mathematical modelling, proof of correctness and statistical software quality assurance

lead to extremely high-quality software. The integration was named as cleanroom software engineering. It proof the

correctness of the deliverables of each phase, Instead of the classic analysis, design, code, test, and debug cycle, the

cleanroom approach suggests a different point of view. Due to the evolution in development methodology there is a

strong need of evolution in estimation models also. In this work we have proposed the new cost estimation model.

The evolved model is proposed for the new development methodologies and includes some more factors for estimation

used in these new approaches.

Keywords: Cleanroom Software Engineering, COCOMO, Effort Estimation, Cost Drivers, SDLC.

1. INTRODUCTION

Effort estimation is one of the critical tasks in software project management. The estimation for a software projects is

hard because of the uniqueness of each and every project. The unavailability of the past data cause for the inaccurate

results in effort estimation. Getting 100% accurate estimation is the myth for these kinds of project. As you can see in

the graph shown in figure 1, it has found that there are 400% chances for wrong estimation at the very first stage of the

project development. As we move to the next phases, the estimation will match with the actual efforts given to the

project. As new approaches have been evolved in this decade for software development process, the estimated methods

should also evolve. The traditional COCOMO need some extended feature for accurate calculation of efforts in these

new approaches. To estimate the accurate efforts for a project B. Bohem proposed the COCOMO (Cost Constructive

Model). He proposed some single variable and multi-variable equation to calculate the efforts for a project. The multi-

variable model includes 15 cost drivers involved in traditional development approach. The clean room approach for

the project development involves some more cost driver factors.

2. CLEANROOM SOFTWARE ENGINEERING

The cleanroom approach took the software engineering on another level. It mainly emphasizes on specification

and design and rigorously test the design before move to the development phase. . It uses various box structure

Hitesh Kumar Sharma, Ravi Tomar and J.C. Patni

specification for proof of correctness. The different phase of cleanroom process for each iteration is shown in

fig.1. Once functionality has been assigned to the software element of the system, the continuous pipeline of

cleanroom iteration or increment is started.

The following tasks occur:

Increment planning:- In this phase the project plan for each increment is developed. The functionality,

size and development schedule is created. Special attention is needed to take care that the increments are integrated

in timely manner.

Requirements gathering:- more detailed description is generated in this phase for each increment

Box structure specification:- A box structure is used to specify the increment. It show the main functionality

of each increment in connected boxes.

3. COST CONSTRUCTIVE MODEL (COCOO)

The Cost Constructive Model is the most popular model used for effort and duration estimation. It was proposed

in year 1981 by B. Bohem. It was proposed in three different versions.

• Basic COCOMO

• Intermediate COCOMO

• Detailed COCOMO

3.1. COCOMO Basic

This is a single variable effort estimation method. It takes only the numbers of KLOC and results into the efforts

in P-M (person month). The formula is given below the table. It also considers the range of the project size in its

calculation. As shown in the following tables (Table 1 & 2). The multiplier is changed for the different category

of the project.

Figure 1: Cleanroom Development Model (Ref: Software Engg. : A practitioner Approach, Roger Pressman)

An effort estimation model for cleanroom software development approach

Table 1

Classes of Projects

Project Class Project SizeKLOC Deadline Development Environment

Organic (O) 2-50 Not tight Simple/Familiar/In-house

Semi-Detached (S) 50-300 Medium Medium

Embedded (E) > 300 KLOC Tight Complex

Table 2

Coefficients a
b
, b

b
, c

b
 and d

b
values

Project a
b

b
b

c
b

d
b

O 2.4 1.05 2.5 0.38

S 3.0 1.12 2.5 0.35

E 3.6 1.20 2.5 0.32

where E is effort applied in Person-Months, and D is the development time in months. The coefficients a
b
, b

b
, c

b

and d
b
 are given in table 2.The basic COCOMO does not include the other factors involved in developments

process. It considers only the size of the project. Bohem evolve the new version of COCOMO in which he

considered some more factors involved in effort estimation. This version is explained in the next section.

  bb

bE a KLOC

  bd

bD c E

Formula for basic COCOMO

3.2. Intermediate COCOMO

Intermediate COCOMO model uses the multivariable approach. It consider and effort adjustment factor (EAF)

in calculation of actual effort. The EAF is the multiplication of the values of 15 cost drivers. The formula for

calculation is given below.

Table 3

Coefficients a
i
, b

i
, c

i
 and d

i
values

Project a
i

b
i

c
i

d
i

O 3.2 1.05 2.5 0.38

S 3.0 1.12 2.5 0.35

E 2.8 1.20 2.5 0.32

Table 4

15 Cost Drivers

S. No. Attribute Cost Driver

1 Product Related RELY

DATA

CPLX

2 Hardware Related TURN

VIRT

Hitesh Kumar Sharma, Ravi Tomar and J.C. Patni

STOR

TIME

3 Personal Related ACAP

LEXP

VEXP

PCAP

AEXP

4 Project Related MODP

SCED

TOOL

  *
ib

iE a KLOC EAF

  id

iD c E

Formula for intermediate COCOMO

There will be six levels for each cost drivers, which ranges from “very low” to “ultra high”. The value for

each level has been defined in the table (Table 5). EAF (Effort Adj. Factor) is the multiplication of all efforts

ranges from 0.9 to 1.4. The same E is used for calculation of time D.

3.3. Detailed COCOMO

Detailed COCOMO focuses on phase wise effort calculation for different phases in SDLC. This model introduced

two new constants. The values of these two constants given in table 5 and 6.

The formula is:

p p

p p

E E

D D









4. E-COCOMO (EXTENDED COST CONSTRUCTIVE MODEL)

As we have adapted new approaches in software development, There is a strong need of adding some more cost

drivers in the list of 15 cost drivers. We have worked on two new approaches.

• Cleanroom Software Engineering

• Formal methods for specification

We have identified that there is a need of inclusion of the one cost driver i.e. Formal Method Knowledge

Capability(FMKC). This cost driver should involve in intermediate COCOMO. The detailed COCOMO should

also evolve with some updated phases. IPRG (Increment planning and Requirement gathering), BSSFD (Box

structure specification and Formal Design), CVCG (Correctness verification and code generation), STPUT

(Statistical Test planning and Use Testing). The tables (Table 5 and Table 6) is given below for the values of

effort and time constants for these updated phases.

(contd...Table 4)

S. No. Attribute Cost Driver

An effort estimation model for cleanroom software development approach

Table 5

Table for E-COOCMO µ
p
used for cleanroom engineering phases

Mode & code size IRPG BSSFD CVCG STPUT

Small Org 0.150 0.650 0.170 0.030

Medium org 0.150 0.640 0.170 0.040

Mediun S 0.160 0.640 0.160 0.040

Large S 0160 0.630 0.150 0.060

Large E 0.180 0.620 0.140 0.060

Large extra 0.180 0.610 0.140 0.070

Table 6

Table for E-COOCMO 
p
used for cleanroom engineering phases

Mode & code size IRPG BSSFD CVCG STPUT

Small Org 0.140 0.660 0.170 0.030

Medium org 0.140 0.650 0.170 0.040

Mediun S 0.150 0.650 0.160 0.040

Large S 0.150 0.640 0.150 0.060

Large E 0.170 0.630 0.140 0.060

Large extra 0.170 0.620 0.140 0.070

5. ALGORITHMS TO IMPLEMENT E-COCOMO

5.1. Algorithm to Implement Basic COCOMO

Basic COCOMO follows one variable function as defined in equation 1. To implement these functions we have

written two algorithms. Algorithm 4.1.1 to calculate the efforts in basic COCOMO.

5.1.1. Calculate_efforts (int, float[][])

This algorithm takes the input of KLOC and the basic COCOMO constant values array and returns the calculated

efforts in P-M (person-month).

Calculate_efforts(int kloc, float basic[][])

{

double e = 0.0

 if (kloc > 2 && kloc < 50)

{

e = Math.Round(basic[0, 0] * Math.Pow(kloc, basic[0, 1]), 2);

}

if (kloc > 50 && kloc < 300)

{

e = Math.Round(basic[1, 0] * Math.Pow(kloc, basic[1, 1]), 2);

}

if (kloc > 300)

{

e = Math.Round(basic[2, 0] * Math.Pow(kloc, basic[2, 1]), 2);

}

return e;

}

Hitesh Kumar Sharma, Ravi Tomar and J.C. Patni

public double calculate_duration(int kloc, float eff)

{

double d =0.0;

 if (kloc > 2 && kloc < 50)

{

d = Math.Round(basic[0, 2] * Math.Pow(eff, basic[0, 3]), 2);

}

if (kloc > 50 && kloc < 300)

{

d = Math.Round(basic[1, 2] * Math.Pow(eff, basic[1, 3]), 2);

}

if (kloc > 300)

{

d = Math.Round(basic[2, 2] * Math.Pow(eff, basic[2, 3]), 2);

}

return d;

}

5.1.2. Calculate_duration (int, float)

This algorithm takes the input of KLOC and efforts from algorithm 4.1.1. and return the calculated duration in month.

5.2. Algorithm to Implement Basic COCOMO

E-COCOMO follows multi variable function as defined in equation 2. To implement these functions we have

written three algorithms. Calculate_efforts (int, float[][])This algorithm takes the input of KLOC and the array

of basic COCOMO constant values and return the calculated efforts in P-M (person-month).

Calculate_efforts(int kloc, float basic[][])

{

double e = 0.0

if (kloc > 2 && kloc < 50)

{

e = Math.Round(inter[0, 0] * Math.Pow(kloc, inter[0, 1]), 2);

}

if (kloc > 50 && kloc < 300)

{

e = Math.Round(inter[1, 0] * Math.Pow(kloc, inter[1, 1]), 2);

}

if (kloc > 300)

{

e = Math.Round(inter[2, 0] * Math.Pow(kloc, inter[2, 1]), 2);

}

return e;

}

An effort estimation model for cleanroom software development approach

public double calculate_duration(int kloc, float eff)

{

double d =0.0;

if (kloc > 2 && kloc < 50)

{

d = Math.Round(inter[0, 2] * Math.Pow(eff, inter[0, 3]), 2);

}

if (kloc > 50 && kloc < 300)

{

d = Math.Round(inter[1, 2] * Math.Pow(eff, inter[1, 3]), 2);

}

if (kloc > 300)

{

d = Math.Round(inter[2, 2] * Math.Pow(eff, inter[2, 3]), 2);

}

return d;

}

5.2.1. Calculate_duration (int, float)

This algorithm takes the input of KLOC and efforts from algorithm 4.2.2. and return the calculated duration in

month.

5.2.2. Calculate_EAF ()

This algorithm is used to calculate the EAF (Effort Adjustment Factor). It uses the values of 16 Cost drivers and

returns the calculated value of EAF.

public double Calculate_EAF()

{

double eaf=0.0;

double c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16;

if (DATA.Equals(“Very Low”))

{

c1 = .75;

}

if (DATA.SelectedItem.Equals(“Low”))

{

c1 = .88;

}

if (DATA.SelectedItem.Equals(“Nominal”))

{

c1 = 1.00;

}

if (DATA.SelectedItem.Equals(“High”))

Hitesh Kumar Sharma, Ravi Tomar and J.C. Patni

{

c1 = 1.15;

}

if (DATA.SelectedItem.Equals(“Very High”))

{

c1 = 1.40;

}

if (DATA.SelectedItem.Equals(“Ultra High”))

{

c1 = 1.00;

}

//////////// for Second Cost Driver ////////////////////////////////////

if (STOR.SelectedItem.Equals(“Very Low”))

{

c2 = .75;

}

if (STOR.SelectedItem.Equals(“Low”))

{

c2 = .88;

}

if (STOR.SelectedItem.Equals(“Nominal”))

{

c2 = 1.00;

}

if (STOR.SelectedItem.Equals(“High”))

{

c2 = 1.15;

}

if (STOR.SelectedItem.Equals(“Very High”))

{

c2 = 1.40;

}

if (STOR.SelectedItem.Equals(“Ultra High”))

{

c2 = 1.00;

}

 [****************same conditions for other 14 cost drivers*******]

eaf = c1 * c2 * c3 * c4 * c5 * c6*c7*c8*c9*c10*c11*c12*c13*c14*c15*c16;

return eaf;

}

An effort estimation model for cleanroom software development approach

The values of the cost drivers are taken from a predefined array as defined in Table 4. The user only enters

the level of the cost driver.

6. IMPLEMENTATION OF E-COCOMO (I.E. OPENECOCOMO)

The implementation of E-COCOMO is done in .net framework using C# programming language. The tool is

based on the algorithms defined in previous section. It has 7 Main panels from figure 2 to figure 8.

The Login panel (figure 2) is used to take the user login credentials. After entering the correct login

credentials the user will be able to enter the tool and he/she will be switched to the model selection panel (figure

3). This panel is used to choose any one model between Basic COCOMO and E-COCOMO. If the user chooses

the Basic COCOCMO then he/she will switch to Basic COCOMO input panel (figure 4) and the panel will asked

Figure 2: Login Panel Figure 3: Model Selection Panel

Figure 4: Basic COCOMO input Panel Figure 5: Basic COCOMO Result Panel

Figure 6: Basic COCOMO Result Panel Figure 7: E-COCOMO Result Panel

Hitesh Kumar Sharma, Ravi Tomar and J.C. Patni

for number of KLOC. After entering the KLOC and clicking on calculate button the user will get the result

shown in Basic COCOMO result panel (figure 5). In the same way if the user choose E-COCOMO from model

selection panel (figure 6) then he/she will be switched to E-COCOMO input panel (figure 7). In this panel the

user has to enter the value for KLOC and the level for different 16 cost drivers. In panel shown in figure 7 six

possible levels for the different cost drivers has been given to the user. If the user chooses a level for a cost driver

then it will pass the value as per the table 4. Otherwise it passes nominal level for rest of the cost drivers.

After entering the values of the various factors on E-COCOMO Input Panel and clicking on calculate

button the user will get the required result on E-COCOMO result panel (figure 7). The tool has been designed to

solve the real-time problem of effort calculation of the software projects.

7. CONCLUSION

In this work we have implemented E-COCOMO using C# and developed a new tool (i.e. OpenECOCOMO).

This tool can be used to calculate the efforts and time for basic model and E-COCOCMO model both on a single

click. In the future work the tool will be evolved with some new parameters for some new approaches like Agile

Development, Component based design.

REFERENCES

[1] Dyer, M., The Cleanroom Approach to Quality Software Development, Wiley,1992.

[2] Mills, H.D., M. Dyer, and R. Linger, “Cleanroom Software Engineering,” IEEE Software, September 1987, pp. 19–25.

[3] Dyer, M., “An Approach to Software Reliability Measurement,” Information and Software Technology, vol. 29 no. 8, October

1987.

[4] Head, G.E., “Six-Sigma Software Using Cleanroom Software Engineering Techniques,” Hewlett-Packard Journal, June

1994, pp. 40–50.

[5] Oshana, R., “Quality Software via a Cleanroom Methodology,” Embedded Systems Programming,September. 1996, pp. 36–

52.

[6] Boehm, B., et al., Software Cost Estimation in COCOMO II, Prentice-Hall, 2000.

[7] Jones, C., “How Software Estimation Tools Work,” American Programmer,vol. 9, no. 7, July 1996, pp. 19–27.

[8] Matson, J., B. Barrett, and J. Mellichamp, “Software Development Cost Estimation Using Function Points,” IEEE Trans.

Software Engineering, vol. SE-20, no. 4, April 1994, pp. 275–287.

[9] Minoli, D., Analyzing Outsourcing, McGraw-Hill, 1995.

[10] Phillips, D., The Software Project Manager’s Handbook, IEEE Computer Society Press, 1998.

