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Abstract. We consider two different concepts of positive definiteness, the
metric version due to Schoenberg, and the often used algebraic version for a
hypergroup. The two notions are the same for the unit sphere in euclidean
space and the associated hypergroup of spherical random walks, but in general
the metric concept is stronger. We determine explicit convolution structures
on spheres and classical hyperbolic spaces geometrically and investigate large
dimensional limits.

1. Introduction

Associated with the sphere Sn and hyperbolic space Hn
+ are convolution struc-

tures, called commutative hypergroups, on the intervals [0, π] and [0,∞] respec-
tively. The characters of these hypergroups are Gegenbauer (ultraspherical) poly-
nomials in the case of the sphere, and conical (associated Legendre) functions in the
case of hyperbolic space. These characters are essentially the same as the spherical
functions of these symmetric spaces when viewed as homogeneous spaces. There
is also a related notion of positive definite function, and by a form of Bochner’s
theorem any such hypergroup positive definite function is a suitable non-negative
linear combination (possibly in the integral sense) of characters (see for example
[6]).

In [9] Schoenberg introduced a quite different notion of positive definiteness for
a metric space M. He described these functions for the finite-dimensional spheres
Sn and also the infinite-dimensional sphere S∞, and showed how relations between
them lead to representations of positive definite functions in terms of Gegenbauer
polynomials and powers of cosx respectively. This notion was also investigated in
[1] and [5].

In this paper we would like to reconcile the two notions of positive definiteness
for the sphere and extend these ideas to hyperbolic spaces. The next section
introduces the various notions of positive definiteness. Section 4 describes the
hypergroup associated with the sphere Sn and its characters. Our approach is
geometric and does not rely on any symmetric space theory. In particular, no
detailed knowledge of the isometry groups is required.
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Sections 5 and 6 treat the classical hyperbolic spaces Hn
+ in a similar fashion.

The discussion of the characters, or spherical functions, involves the distinction
between the principal series and supplementary series.

In Section 7 we give a direct proof to show that for either of these families of
spaces, Schoenberg positive definiteness implies hypergroup positive definiteness.
For the sphere, results of Schoenberg together with known descriptions of the
spherical functions also give the converse.

In Section 9 the corresponding result for the non-compact homogeneous space
SL (2,C) //SU (2) (the Naimark hypergroup) is considered, but it isn’t known
whether the notions are equivalent. One problem is that the Plancherel measure
on the dual of this double coset hypergroup has support only on the principal
series characters.

Schoenberg’s work leads us to ask if there is a hypergroup structure on the
infinite sphere S∞ with characters generating its positive definite functions. We
show that in fact the relevant structure is a semigroup, and that this semigroup is
the natural infinite limit of the hypergroups associated with the finite spheres Sn as
n approaches ∞. The corresponding limiting structure for the classical hyperbolic
spaces Hn

+ is also investigated.
Our investigations focus on the important cases of spheres and hyperbolic

spaces, which are rank one symmetric spaces. The study of spherical functions
on higher rank symmetric spaces, called Gelfand pairs, along with their resulting
asymptotics has been studied by others, for example one can consider compact Lie
groups themselves as Gelfand pairs under conjugation and their asymptotics as the
dimension goes to infinity. The main works here are [7] for compact symmetric
spaces of type A, and [8] for those of types B and C, and following a somewhat
different approach, [10] in the unitary case. For a comprehensive overview see [4].

2. Positive Definite Functions

A complex-valued function f on a group G is positive definite if

n∑

i,j=1

f
(
xix

−1
j

)
ξiξj ≥ 0

for all choices of xi ∈ G, ξi ∈ C and n ∈ N. Let P (G) denote the set of all
continuous positive definite functions on G.

If G = R, then Bochner’s theorem establishes that any positive definite function
is the Fourier-Stieltjes transform of a bounded non-decreasing function F , that is

f (x) =

∫ ∞

−∞

eixξF (dξ) .

More generally, if G is a locally compact abelian group, then the Weil-Povzner-

Raikov theorem states that there is a bounded positive measure µ on Ĝ such that
f is the Fourier-Stieltjes transform of µ.

We now consider the corresponding notion on a commutative hypergroupK; see
[2] for details of hypergroups. These structures are defined through a convolution
structure on their measure algebraM (K); there is no actual group multiplication.
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However, the convolution product

f (x ∗ y) :=
∫
f d (ǫx ∗ ǫy)

is defined for any measurable function f for which the integral exists. Note that
ǫx ∗ ǫy as the convolution of two point masses is a probability measure, but rarely
has a single point support, so that x ∗ y has no meaning on its own. Nevertheless
we can use this to develop a theory of positive definiteness. A complex-valued
function f on a hypergroup K is positive definite if

n∑

i,j=1

f
(
xi ∗ x−j

)
ξiξj ≥ 0

for all choices of xi ∈ K, ξi ∈ C and n ∈ N. Let P (K) denote the set of all
continuous positive definite functions on K. Unlike the group case, functions in
P (K) are not necessarily bounded. Nevertheless, they satisfy the properties

(1) f (e) ≥ 0,
(2) f

(
xi ∗ x−i

)
≥ 0 for all x ∈ K,

(3) f (x−) = f (x) for all x ∈ K,
(4) f (e) = ‖f‖∞ whenever f is bounded.

It is easily seen that P (K) is closed under

(1) linear combinations with non-negative coefficients,
(2) pointwise convergence to a continuous limit.

Schoenberg introduced another notion of positive definiteness in the case of a
metric space M with distance function d (x, y). A continuous real-valued even
function g defined on the interval [−d (x, y) , d (x, y)] is positive definite if

n∑

i,j=1

g (d (xi, xj)) ξiξj ≥ 0

for all xi ∈ M , ξi ∈ C and n ∈ N. Schoenberg showed that the set P (M) of
positive definite functions on M is closed under

(1) linear combinations with non-negative coefficients,
(2) pointwise convergence to a continuous limit,
(3) pointwise multiplication.

It should be emphasised that the third property is very strong, one that is not
in general enjoyed by hypergroups.

If M ⊂ N then P (M) ⊃ P (N). This observation led Schoenberg to relations

between Gegenbauer (ultraspherical functions) P
(α)
n (cos t) , generated for α > 0

by the expansion

(
1− 2r cos t+ r2

)−α
=

∞∑

n=0

rnP (α)
n (cos t) , (2.1)

and for α = 0 by

P (0)
n (cos t) = cosnt = Tn (cos t) ,
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where Tn denotes the Tchebychev polynomial of the first kind of degree n. Let Sm

denote the unit sphere in (m+ 1)-space and S∞ the unit sphere in Hilbert space.
Since we may assume that

S
1 ⊂ S

2 ⊂ · · · ⊂ S
m ⊂ · · · ⊂ S

∞

it follows that

P
(
S
1
)
⊃ P

(
S
2
)
⊃ · · · ⊃ P (Sm) ⊃ · · · ⊃ P (S∞)

and in fact P (S∞) is exactly the intersection of all the sets P (Sm) , m = 1, 2, · · · .
Schoenberg showed that each function g ∈ P

(
S
2
)
can be represented as g (t) =∑∞

n=0 anPn (cos t) , where an ≥ 0 satisfies
∑∞

n=0 an < ∞ and Pn is a normalised
Legendre polynomial of degree n. More generally, each function g ∈ P (Sm) has a
similar representation as

g (t) =

∞∑

n=0

anW
1
2
(m−1)

n (cos t)

where the Wα
n are normalisations of the Gegenbauer polynomials via

Wα
n (x) = P (α)

n (x) /P (α)
n (1) .

The functions g in P (S∞) have a similar representation as

g (t) =

∞∑

n=0

an (cos t)
n
,

where an ≥ 0 and
∑∞

n=0 an <∞.

3. Positive Definite Functions and Homogeneous Spaces

Let G be a locally compact group and H a compact subgroup with normalised
Haar measure ωH . (For the sphere Sn and hyperbolic space Hn

+, G,H will be
chosen so that G//H ∼= [0, π] , R+ respectively.) Consider the following sequence
of mappings and an associated correspondence between functions:

G
πH→ G/H

π′

H→ G//H

f ♭ (g) = f ♮ (gH) = f (HgH)
(3.1)

We note that f ♭ is constant on double H−cosets.

Theorem 3.1. If f ♭ is positive definite on the group G, then f is positive definite

on the hypergroup G//H.

Proof. Assume f ♭ to be positive definite on the group G and recall that it is
H− bi-invariant. Then we have

n∑

i=1

n∑

j=1

cicjf
♭
(
gig

−1
j

)
≥ 0
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for all choices of gi ∈ G, ci ∈ C and n ∈ N. Now for k1, k2, ..., kn ∈ H we have
n∑

i=1

n∑

j=1

cicjf
♭
((
kigik

−1
i

) (
kjgjk

−1
j

)−1
)
≥ 0.

Integrating this expression n times over H gives

0 ≤
∫

H

∫

H

...

∫

H

n∑

i=1

n∑

j=1

cicjf
♭
((
kigik

−1
i

) (
kjgjk

−1
j

)−1
)
ωH (dk1)ωH (dk2) ...ωH (dkn)

=
n∑

i=1

n∑

j=1

cicj

∫

H

∫

H

f ♭
(
gi
(
k−1
i kj

)
g−1
j

)
ωH (dki)ωH (dkj)

=

n∑

i=1

n∑

j=1

cicj

∫

H

f ♭
(
gikg

−1
j

)
ωH (dk)

=

n∑

i=1

n∑

j=1

cicj

∫

H

εgi ∗ f ♭ ∗ εg−1

j
(k)ωH (dk)

=

n∑

i=1

n∑

j=1

cicjf
(
HgiH ∗Hg−1

j H
)
,

which shows that f is hypergroup positive definite. Note that in the first equality
we have used the property that f ♭ is constant on H− double cosets. �

4. Convolution on the Sphere Sn

We follow the ideas in [1] to develop the hypergroup structure of the unit
n−sphere Sn in Rn+1. Let G = SO(n + 1) denote the group of rotations of Rn+1

and view H = SO(n) as a subgroup of SO(n + 1). We may assume that G left
acts transitively on the n−sphere Sn, with the stabiliser subgroup of the north

pole s0 = (0, 0, ....., 0, 1) being H . Thus Sn ∼= G/H , the space {gH} of left cosets
of H in G. The orbits of the subgroup H on S

n are the meridian hypercircles Cϕ

parallel to Rn ⊂ Rn+1, indexed by the angle ϕ from 0 to π. At the endpoints 0
and π these hypercircles reduce to the north and south poles s0 and −s0 respec-
tively. The orbits of H on G/H form the double coset space G//H, which can
be identified with the set of double cosets {HgH} of H in G. Referring to (3.1)
we see that f ♮ is a function on Sn constant on meridian circles centered on the
(0, 0, ....., 0, 1)-axis, and f ♭ is a function on G constant on H−double cosets.

The space K = G//H is a natural commutative hypergroup in one of the follow-
ing equivalent ways. Given two functions f and g on K define their convolution
by

(f ∗ g)♭ = f ♭ ∗ g♭
involving the usual convolution of functions on the group G. Alternatively we may

define

(f ∗ g) (x) =
∫

K

f (x ∗ y) g(y−)ωK (dy) ,
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where

f (x ∗ y) =
∫

K

f d (ǫx ∗ ǫy)

is defined in terms of the hypergroup product ǫx ∗ ǫy of the point measures at x
and y. In other words the convolution of functions is determined by knowledge
of the products of pairs of point measures, which are by the definition of a hy-
pergroup necessarily probability measures on K. This gives a clear probabilistic
interpretation to convolution in the case of a double coset hypergroup K = G//H .

Let us now consider how to determine the hypergroup structure geometrically
for the n−sphere

S
n ∼= SO (n+ 1) /SO (n) .

We begin at the north pole s0 = (0, 0, ....., 0, 1) , take a random step of distance x
to a point P and then another random step from P of distance y to a point Q.
In this case random means that if we consider the meridian which is the (n− 1)
sphere

T = {s ∈ S
n : d (P, s) = y} ,

then T is a homogeneous space for the group SO (n) acting as rotations which fix
the point P , and we are taking the probability distribution for Q to be uniform
on T with respect to this group. To determine the probability density function

g
(n)
x,y (r) for the distance r from s0 to Q we analyze the spherical triangle s0PQ.
Here distance means angular distance on the surface of the unit sphere. The
portion of the sphere T for which the angle ∠s0PQ lies in [θ, θ + dθ] has measure
1
cn

sinn−2 θ dθ, where

cn =

∫ π

0

sinn−2 θ dθ =
Γ
(
n−1
2

)√
π

Γ
(
n
2

) . (4.1)

If one of x, y is 0 or π, then the resulting probability is concentrated at one
point. Assume then that neither x nor y is 0 or π. In the spherical triangle s0PQ
let θ denote the angle ∠s0PQ. Then the spherical cosine law asserts that

cos r = cosx cos y + sinx sin y cos θ, (4.2)

and since sinx, sin y ≥ 0 we have

cosx cos y − sinx sin y ≤ cos r ≤ cosx cos y + sinx sin y.

This is just

cos (x+ y) ≤ cos r ≤ cos (x− y) . (4.3)

Consider x and y to be fixed and take infinitesimals in (4.2) to obtain

sin r dr = sinx sin y sin θ dθ. (4.4)
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Then (4.2) gives

sin2 θ = 1−
(
cos r − cosx cos y

sinx sin y

)2

=
1− cos2 y − cos2 x− cos2 r + 2 cos r cosx cos y

(sinx sin y)2

=
(cos (x− y)− cos r) (cos r − cos (x+ y))

(sinx sin y)2
,

and so

sin θ =
[(cos (x− y)− cos r) (cos r − cos (x+ y))]

1
2

sinx sin y
. (4.5)

Now

g(n)x,y (r) dr =
1

cn
sinn−2 θ dθ, (4.6)

and appealing to (4.4) and (4.5) we have

g(n)x,y (r) =
1

cn

sin r sinn−2 θ

sinx sin y sin θ

=
sin r

cn sinx sin y

(
[(cos (x− y)− cos r) (cos r − cos (x+ y))]

1
2

sinx sin y

)n−3

=
sin r

cn

[(cos (x− y)− cos r) (cos r − cos (x+ y))]
n−3

2

[sinx sin y]
n−2 ,

valid for r satisfying (4.3). It follows that K = [0, 1] becomes a hypergroup with

f (x ∗ y) =
∫ 1

0

f (r) g(n)x,y (r) dr,

or equivalently, using (4.6) and appealing to (4.2),

f (x ∗ y) = 1

π

∫ π

0

f
(
cos−1 (cosx cos y + sinx sin y cos θ)

)
dθ (4.7)

We identify K(n) = SO (n+ 1) //S (n) with the interval [0, π] of values of the
angle ϕ parametrising the meridians of Sn. The characters of the associated hy-
pergroups K(n) ∼= [0, π] will be those functions χ satisfying

χ (x)χ (y) =

∫ π

0

χ (r) g(n)x,y (r) dr,

or equivalently, using (4.7),

χ (x)χ (y) =
1

cn

∫ π

0

χ
(
cos−1 (cosx cos y + sinx sin y cos θ)

)
sin n−2θ dθ (4.8)
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for all x, y ∈ K(n). The solutions of (4.8) are given by

ψn
k (r) =

k!Γ (n− 1)

Γ (n− 1 + k)
P
(n−1

2 )
k (cos r)

for k = 0, 1, 2, · · · , where P l
k is the Gegenbauer polynomial of order l, k defined as

in (2.1). The cn are chosen to ensure that ψn
k (0) = 1.

For n = 2 the Gegenbauer polynomial reduces to the Legendre polynomial

P
1
2

k (t) = Pk (t) , and for n = 3 it reduces to the Tchebychev polynomial P 1
k (t) =

Uk (t) of the second kind. The latter has the explicit formula

Uk (cos r) =
sin (k + 1) r

sin r

(see [11]).
It follows that the set of positive definite functions on the hypergroup K(n)

agrees with the set of positive definite functions in the sense of Schoenberg ([9])
for the sphere Sn with the (natural) spherical distance d(n).

5. Convolution on the Hyperbolic Plane

The probabilistic development of the spherical hypergroup of the sphere Sn

given above has a direct analogue for the classical hyperbolic spacesHn
+. Our treat-

ment largely avoids details about the structure of the isometry group SO (n, 1) of
Hn

+ which is a significant advantage over more traditional approaches. In fact just
as in the spherical case the algebraic structure contained in the associated ‘hyper-
bolic hypergroups’ is thus a direct consequence of the geometry of the hyperbolic
spaces.

We begin in three-dimensional space with the Lorentzian inner product

〈v, v′〉 = 〈(x, y, z) , (x′, y′, z′)〉 = −xx′ − yy′ + zz′

and define the classical hyperbolic plane H2
+ to be the sheet of the hyperboloid

{v : 〈v, v〉 = 1}
through the point O = (0, 0, 1) . This is a restricted, classical form of hyperbolic
geometry concentrating only on the interior of the light cone, which is not as
general as the universal hyperbolic geometry introduced in ([12]), which rather
looks at the entire three-dimensional space. The classical metric on H2

+ is given
by the hyperbolic distance d (P,Q) defined by

cosh d (P,Q) = 〈P,Q〉 .
As a homogeneous space

H
2 ∼= SO (2, 1) /SO (2) ∼= [0,∞) ,

with T = SO (2) regarded as those isometries fixing the point O. The orbits of
T on H

2 are circles centered at O indexed by their hyperbolic distance from O,
which can take any value in K = [0,∞). We may describe the convolution of the
circles either indirectly, by appealing to the group convolution of T bi-invariant
measures in G = SO (2, 1) , or directly by analyzing the geometry of random walks



POSITIVE DEFINITENESS ON SPHERES AND HYPERBOLIC SPACES 549

on H2. As in the case of the sphere, it is this latter approach that we prefer on
account of its more immediate and elementary nature.

To convolve the circles of radius x and y around O, note first that if one or
both of x, y is 0, then it acts as the identity, so in what follows we assume both
x and y are non-zero. Choose a point P on the circle of radius x around O, and
then choose randomly a point Q on the circle of radius y around P . Here again,
randomly means with respect to the invariant probability measure on such a circle
coming from the circle of isometries fixing P . The notion of angle between two
directions in the hyperbolic plane is the same as the Euclidean one and is preserved
by isometries. The hyperbolic triangle OPQ with θ representing the angle ∠OPQ
and the length r of the side OQ satisfy the hyperbolic cosine law

cosh r = coshx cosh y − sinhx sinh y cos θ. (5.1)

It follows that r satisfies the inequalities

cosh (x− y) ≤ cosh r ≤ cosh (x+ y) . (5.2)

With x and y fixed, taking differentials of (5.1) gives

sinh r dr = sinhx sinh y sin θ dθ. (5.3)

As in the case of the sphere, the measure of that portion of the circle around P
corresponding to [θ, θ + dθ] is 1

πdθ so that the probability density for the distance
r is

mx,y (r) =
1

π

sinh r

sinhx sinh y sin θ
.

To obtain an expression involving only x, y, r, we have from (5.1)

sin2 θ = 1−
(
coshx cosh y − cosh r

sinhx sinh y

)2

=
1− cosh2 x− cosh2 y − cosh2 r + 2 cosh r coshx cosh y

(sinhx sinh y)
2

=
(cosh r − cosh (x− y)) (cosh (x+ y)− cosh r)

(sinhx sinh y)
2 .

Take a square root to get

sin θ =
[(cosh r − cosh (x− y)) (cosh (x+ y)− cosh r)]

1
2

sinhx sinh y
. (5.4)

Thus

mx,y (r) =
sinh r

π [(cosh r − cosh (x− y)) (cosh (x+ y)− cosh r)]
1
2

,

which is valid for all r satisfying (5.2). It follows that K = [0,∞) becomes a
hypergroup with

f (x ∗ y) =
∫ ∞

0

f (r)mx,y (r) dr
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or equivalently, using mx,y (r) dr = dθ/π and appealing to (5.1),

f (x ∗ y) = 1

π

∫ π

0

f
(
cosh−1 (coshx cosh y − sinhx sinh y cos θ)

)
dθ.

This corresponds to [2], p.236 with a = 1. Haar measure for this hypergroup is

ω (dx) =
(
sinh2 x

)
λR+

(dx) .

A character on this (non-compact) hypergroup is defined to be a continuous func-
tion χ satisfying

χ (x)χ (y) = χ (x ∗ y)

=
1

π

∫ π

0

χ
(
cosh−1 (coshx cosh y − sinhx sinh y cos θ)

)
dθ

=
1

π

∫ π

0

χ
(
cosh−1 (coshx cosh y + sinhx sinh y cos θ)

)
dθ,

where the second equality arises on replacing θ by π− θ. It can be shown that the
bounded characters are the so-called conical functions

χ− 1
2
+iκ (r) = p− 1

2
+iκ (cosh r) =

1

2π

∫ 2π

0

(cosh r + sinh r cos θ)−
1
2
+iκ dθ,

where either κ ∈ R+ (the principal series) or κ ∈ i
[
0, 12
]
(the supplementary se-

ries). The identity character is the element of the supplementary series, where
κ = 1

2 . It is well known that the Plancherel measure for this hypergroup is sup-
ported on the principal series characters. Note the symmetry p− 1

2
+iκ = p− 1

2
−iκ.

Conical functions are examples of associated Legendre functions, where the
lower parameter is − 1

2 + iκ for some κ ≥ 0. In this case the upper parameter is 0

and in MAPLE these are given by LegendreP
(
− 1

2 + iκ, 0, coshx
)
.

6. Higher-dimensional Hyperbolic Hypergroups

The discussion of the previous section generalises to the case of hyperbolic (real)
n-space Hn

+. In (n+ 1)-dimensional space with inner product

〈v, v′〉 = 〈(x1, · · · , xn, xn+1) , (x1, · · · , xn, xn+1)〉 = −x1x′1−· · ·−xnx′n+xn+1x
′
n+1

and hyperbolic distance d (v, v′) defined by

coshd (v, v′) = 〈v, v′〉 ,
define Hn

+ to be the sheet of the hyperboloid

{v : 〈v, v〉 = 1}
passing through the point O = (0, · · · 0, 1). As a homogeneous space

H
n
+
∼= SO (n, 1) /SO (n)

with the stabiliser subgroup SO (n) of the point O acting as (ordinary) rotations
about the xn+1 axis. The non-trivial orbits of SO (n) on Hn

+ are n-spheres which
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we call zonal meridians. The meridian consisting of the set of points in Hn
+ with

hyperbolic distance from O some fixed d ≥ 0 may be described as the intersection
of Hn

+ with the hyperplane given by xn+1 = cosh−1 d or
{
v : 〈v, en+1〉 = cosh−1 d

}
.

Since any such meridian is determined by the positive number d, the orbit space
of all zonal meridians is

K ∼= SO (n, 1) //SO (n) ∼= [0,∞) .

Since the group SO (n, 1) acts on Hn
+ as isometries, any point P on Hn

+ may
be obtained as gP for some g ∈ SO (n, 1) (actually we may take g to be in the
connected component SO (n, 1)+ of the identity). Then the set of points with
hyperbolic distance d from a general point P will be called the meridian with
centre P and radius d, and is obtained by intersecting H

n
+ with the SO (n, 1)−

translate of the hyperplane
{
v : 〈v, en+1〉 = cosh−1 d

}
, that is, the hyperplane{

v : 〈v, gen+1〉 = cosh−1 d
}
. Note that gen+1 is also on Hn

+. The general meridian
is topologically an n-sphere and in particular carries a unique probability measure
that is invariant under the subgroup of isometries of SO (n, 1) fixing its centre.

Geodesics through O are precisely the intersections of Hn
+ with planes through

the centre (0, · · · , 0, 0). It follows that general geodesics are obtained by intersect-
ing Hn

+ with general planes passing through the centre.
Fix x, y ∈ R+ both non-zero (otherwise the product is trivial) and suppose we

choose a point P randomly on the meridian of centre O and radius x and then
choose a point Q randomly on the meridian of centre P and radius y. To determine

the probability density function m
(n)
x,y (r) for the hyperbolic distance r from O to

Q we proceed exactly as in the case of H2 and analyze the hyperbolic triangle
OPQ as above. The only difference is that the portion of the meridian sphere T
for which the angle ∠OPQ lies in [θ, θ + dθ] has measure 1

cn
sinn−2 θ dθ, where cn

is as before.
For n ≥ 2, appealing to (5.3) and (5.4) we obtain

m(n)
x,y (r) =

1

cn

sinh r sinn−2 θ

sinhx sinh y sin θ

=
sinh r

cn sinhx sinh y

[
(cosh r − cosh (x− y)) (cosh (x+ y)− cosh r)

(sinhx sinh y)
2

]n−3

2

=
sinh r

cn

[(cosh r − cosh (x− y)) (cosh (x+ y)− cosh r)]
n−3

2

[sinhx sinh y]
n−2 ,

valid for all r satisfying (5.2). As before, K = [0,∞) becomes a hypergroup with

f (x ∗ y) =
∫ ∞

0

f (r)m(n)
x,y (r) dr,
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or equivalently, using m
(n)
x,y (r) dr =

1
cn

sinn−2 θ dθ and appealing to (5.1) with the
obvious change of variable,

f (x ∗ y) = 1

cn

∫ π

0

f
(
cosh−1 (coshx cosh y + sinhx sinh y cos θ)

)
sinn−2 θ dθ.

(6.1)
This hypergroup is sometimes called a hyperbolic hypergroup (see [2], p.237 and
[13]). The characters for this convolution are given by

ψ
(n−1)/2
λ (x) =

Γ(n2 )√
πΓ(n−1

2 )

∫ π

0

(coshx+ cos t sinhx)iκ−
n−1

2 sinn−2 t dt,

where κ =
√
λ− (n−1

2 )2. Those for the hyperbolic plane are obtained when n = 2.

7. Schoenberg Positive Definite Implies Hypergroup Positive Definite

In this section M will denote either the sphere Sn or the hyperbolic space Hn
+,

each considered as a metric space with distance function d. Then as a homogeneous
space M ≃ G/H, where G is the group of isometries of M and H is the compact
subgroup fixing a distinguished point O. The double coset hypergroup K = G//H
is then either the finite interval [0, π] in the case of Sn or the infinite interval [0,∞]
in the case of Hn

+, where an H orbit on M (or a double coset) is identified with
its distance from O. Let dh denote the normalised invariant (Haar) measure on H
so that ∫

H

dh = 1.

Lemma 7.1. Fix points m,m′ on M and let x = d (O,m) , y = d (O,m′) so that

x, y ∈ K. Then for any function f on K
∫

H

f (d (m,hm′)) dh = f (x ∗ y) .

Proof. For fixed m and m′ consider the quantity d (m,hm′) as h varies over the
subgroup H . To go from m to hm′ we can take a step of size x to O and then a
step of distance y to hm′. This means the average of the values of f (d (m,hm′))
over H is equal to f (x ∗ y) by the definition of hypergroup convolution. �

Theorem 7.2. If a function f on K is positive definite in the metric sense of

Schoenberg, then it is a positive definite function on the hypergroup K = G//H.

Proof. Suppose that f ∈ P (K), which means that

n∑

i,j=1

f (d (mi,mj)) ξiξj ≥ 0

for any positive integer n, any points mi onM and any complex numbers ξi, where
i = 1, 2, · · · , n. Averaging each ofm1, · · · ,mn along its respective orbit by H gives

∫

H

· · ·
∫

H

n∑

i,j=1

f (d (himi, hjmj)) ξiξjdh1 · · · dhn ≥ 0
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or
n∑

i,j=1

(∫

H

∫

H

f (d (himi, hjmj)) dhidhj

)
ξiξj ≥ 0.

If we consider just one term in this double sum, say the one involving mi and mj ,
then by H−invariance of the spherical distance d and Lemma 7.1

∫

H

∫

H

f (d (himi, hjmj)) dhidhj =

∫

H

f (d (mi, hmj)) dh

= f (xi ∗ xj) ,
where xi = d (O,mi) is interpreted as an element of the hypergroupK. This shows
that

n∑

i,j=1

f (xi ∗ xj) ξiξj ≥ 0

for all choices of xi ∈ K, ξi ∈ C and n ∈ N. �

Remark 7.3. The proof immediately extends to rank-one symmetric spaces.

8. Hyperbolic Hypergroups

The hyperbolic hypergroup (R+, ∗) convolution is given by (with the notation
in [2], 3.5.65, p.237)

ǫx ∗ ǫy =
Γ(b+ 1)√
πΓ(b+ 1

2 )

∫ π

0

ǫarccosh(cosh x cosh y+cos t sinh x sinh y) sin
2b t dt, (8.1)

where b = ρ/2 and ρ > 0 so that A(x) = sinh2ρ t = sinh4b t. In [13] the convolution
(taking into account the different notation) is exactly the same but with ρ > −1.
However in the body of this paper (p.217), (8.1) takes the form

ǫx ∗ ǫy =
Γ(β + 1

2 )√
πΓ(β)

∫ 1

−1

ǫarccosh(cosh x cosh y+u sinh x sinh y)

(
1− u2

)β−1
du,

which is easily obtained from (8.1) with the substitution u = cos t and replacing
b by β − 1

2 , in which case b > − 1
2 (that is ρ > −1) is equivalent to β > 0.

We now consider explicit representations for these characters. In [13] the func-
tion

ψβ
λ (x) =

Γ(β + 1
2 )√

πΓ(β)

∫ 1

−1

(coshx+ u sinhx)
√

β2−λ−β (
1− u2

)β−1
du

satisfies ψβ
λ (0) =

∥∥∥ψβ
λ

∥∥∥
∞

= 1 when 4β2 Reλ ≥ (Imλ)
2
(in which case ψβ

λ is

bounded), ψβ
λ is real-valued when λ ≥ 0 (in which case ψβ

λ is a character) and ψβ
λ

is non-negative when λ ∈
[
0, β2

]
. With the change of variable u = cos t we obtain

ψβ
λ (x) =

Γ(β + 1
2 )√

πΓ(β)

∫ π

0

(coshx+ cos t sinhx)
√

β2−λ−β
sin2β−1 t dt. (8.2)
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The integrand in (8.2) is just that given for the toroidal function

Pµ

ν− 1
2

(coshx) =
Γ
(
ν + µ+ 1

2

)
sinhµ x

Γ
(
ν − µ+ 1

2

)
2µ

√
πΓ
(
µ+ 1

2

)
∫ π

0

sin2µ t

(coshx+ cos t sinhx)
ν+µ+ 1

2

dt

in [3], Section 3.13, p.173.
Now the above parametrisation of the characters of (R+, ∗) in [13] differs from

that in [2]. In [13] we have R∧
+
∼= R+, where the supplementary series corresponds

to
[
0, β2

]
and the principal series

[
β2,∞

)
, whereas in [2] the dual space is given

by

R
∧
+
∼= R+ ∪ i [0, ρ] ,

where the supplementary series corresponds to i [0, ρ] and the principal series
[0,∞) . The correspondence is easily described as

Correspondence Supplementary Principal Identity
Zeuner ψρ

λ2+ρ2

[
0, ρ2

] [
ρ2,∞

)
ψρ
0

l l l l
Bloom/Heyer φρλ i [0, ρ] [0,∞) φρiρ

The difference is that the characters in [2] are solutions to the Sturm-Liouville
equation

Lρ
Aφ

ρ
λ =

(
λ2 + ρ2

)
φρλ, φ

ρ
λ (0) = 1, (φρλ)

′
(0) = 0 (8.3)

whereas those in [13] solve the equation

Lβ
Aψ

β
λ = λψβ

λ , ψ
β
λ (0) = 1,

(
ψβ
λ

)′
(0) = 0. (8.4)

In both cases the differential operator is given by

Lα
Af = −f ′′ − A′

A
f ′ = −f ′′ − 2α

cosh

sinh
f ′.

9. Positive Definiteness on the Naimark Hypergroup

In the case ρ = 1 (so that b = 1
2 and A (x) = sinh2 x) our hyperbolic hypergroup

is the well-known Naimark hypergroup, which has convolution

ǫx ∗ ǫy =
1

2 sinhx sinh y

∫ x+y

|x−y|

ǫt sinh t dt. (9.1)

Indeed, with the substitution

coshu = coshx cosh y + sinhx sinh y cos t

we have

sinhu
du

dt
= − sinhx sinh y sin t,

and t = 0 gives

coshu = coshx cosh y + sinhx sinh y = cosh(x+ y),

so that u = x+ y, and t = π gives

coshu = coshx cosh y − sinhx sinh y = cosh(x− y),
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so that u = |x− y| . Thus the integral (6.1) becomes (with n = 3)

εx ∗ εy =
1

2

∫ |x−y|

x+y

εu sinhu(− sinhx sinh y)−1 du

=
1

2 sinhx sinh y

∫ x+y

|x−y|

εu sinhu du.

The characters of the Naimark hypergroup are given by

φ1λ (x) =





sinλx

λ sinhx
, λ 6= 0,

x

sinhx
, λ = 0.

Note that with λ = β = 1 we have

ψ1
1 (x) =

x

sinhx
= φ10 (x) .

Now it should be observed that for λ ∈ (0,∞) the characters oscillate, whereas for
λ = iξ where 0 < ξ ≤ 1 we have

φ1iξ (x) =
sin iξx

iξ sinhx
=

sinh ξx

ξ sinhx
≥ 0.

In both cases (except when ξ = 1) the characters belong to C0 (R+) . All characters
are automatically positive definite.

Now Zeuner ([13], Proposition 6.1) has shown that the product of two characters
on the Naimark hypergroup is also positive definite. Since continuous positive
definite functions are themselves positive mixtures of characters it follows that the
product of two continuous positive definite functions on the Naimark hypergroup
is also positive definite.

This result indicates that the positive definite functions on the Naimark hy-
pergroup satisfy the stronger multiplicative property (3) of Schoenberg positive
definiteness, and indeed it is to be expected that the two notions of positive defi-
niteness would coincide for this hyperbolic hypergroup, but this remains open.

10. Convolution Measures in Higher Dimensions

Our formulae for the explicit hypergroup structures on spheres and classical
hyperbolic spaces are worth looking at separately for the interesting dependence
on the dimension that they exhibit. For example, the formula that describes the
measures appearing in the hypergroup structure on the n dimensional sphere

g(n)x,y (r) =
sin r

cn

[(cos (x− y)− cos r) (cos r − cos (x+ y))]
n−3

2

[sinx sin y]n−2 ,

where cn is given by (4.1), has quite a different character for different values
of n. This connects with the well-known geometrical understanding that low-
dimensional spheres have a lot of surface area around the poles, while higher-
dimensional spheres have a lot of surface area around the equator. We consider
two examples, with both distributions centring on cos−1 (cos 1 cos 2) ≃ 1.797 6.The

first is g
(5)
1,2 (r) and the second is g

(1500)
1,2 (r) . Both are probability measures obtained
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by convolving circles of radii 1 and 2 on respectively a 5-dimensional sphere and
1500-dimensional sphere. The distribution in the latter case concentrates much
more on the value cos−1 (cos 1 cos 2) .

The corresponding convolutions in hyperbolic space exhibit a similar phenom-
enon. The measure appearing in the hypergroup structure on the n dimensional
classical hyperbolic space is given by

m(n)
x,y (r) =

sinh r

cn

[(cosh r − cosh (x− y)) (cosh (x+ y)− cosh r)]
n−3

2

[sinhx sinh y]n−2 .

The probability measures m
(5)
1,2 (r) and m

(1500)
1,2 (r) concentrate on

cosh−1 (cosh 1 cosh 2) ≃ 2.4444.

They are obtained by convolving circles of radii 1 and 2 on respectively a 5-
dimensional classical hyperbolic space and 1500-dimensional hyperbolic space.

It is natural to ask what happens in the limit with these measures as the di-
mension n goes to infinity.

11. Infinite Limits

We first consider the convolution of spheres in Rn.

Proposition 11.1. For x, y > 0

lim
n→∞

2r

cn

[(
r2 − (x− y)

2
)(

(x+ y)
2 − r2

)]n−3

2

(2xy)n−2 χ[|x−y|,x+y] (r) = ε√
x2+y2

, (11.1)

where the limit is taken distributionally.

Proof. First observe that |x− y| ≤
√
x2 + y2 ≤ x+ y for all x, y ≥ 0. We consider

∫ x+y

|x−y|

2r

cn

[(
r2 − (x− y)2

)(
(x+ y)2 − r2

)]n−3

2

(2xy)
n−2 dr

=
1

cn (2xy)
n−2

∫ (x+y)2

(x−y)2

(
u− (x− y)

2
)n−3

2
(
(x+ y)

2 − u
)n−3

2

du

=
Γ
(
n
2

)

Γ
(
n−1
2

)√
π (2xy)

n−2

Γ
(
n−1
2

)2
(4xy)

n−2

Γ (n− 1)
= 1,

the latter step using the Legendre duplication formula, so that the left-hand side
of (11.1) is a limit of probability density functions on R+. We show that as a

pointwise limit this vanishes for r 6=
√
x2 + y2 and the result will then follow.

For r 6=
√
x2 + y2 we first consider

|x− y| < r <
√
x2 + y2.



POSITIVE DEFINITENESS ON SPHERES AND HYPERBOLIC SPACES 557

Then r2 = x2 + y2 − γ for some γ ∈ (0, 2xy) and

2r

cn

[(
r2 − (x− y)

2
)(

(x+ y)
2 − r2

)]n−3

2

(2xy)
n−2

=
2
√
x2 + y2 − γ

cn

[(
x2 + y2 − γ − (r1 − r2)

2
)(

(x+ y)
2 −

(
x2 + y2 − γ

))]n−3

2

(2xy)n−2

=
2
√
x2 + y2 − γ

cn

[(2xy − γ) (2xy + γ)]
n−3

2

(2xy)
n−2

=
2
√
x2 + y2 − γ

cn

[
4x2y2 − γ2

]n−3

2

(2xy)
n−2 =

√
x2 + y2 − γ

cnxy

[
1− γ2

4x2y2

]n−3

2

=

√
x2 + y2 − γ

xy
√
π

[
1− γ2

4x2y2

]n−3

2 Γ
(
n
2

)

Γ
(
n−1
2

) (11.2)

∼

√
x2 + y2 − γ

xy
√
π

[
1− γ2

4x2y2

]n−3

2 (n
2

) 1
2

(11.3)

→ 0 as n→ ∞,

where for (11.2) we refer to (4.1), and for (11.3) see in [3], 1.18(5). A similar

argument holds for
√
x2 + y2 < r < x+ y. �

The corresponding result, with an analogous proof, for the convolution of hy-
percircles in Sn is the following.

Proposition 11.2. The limit

lim
n→∞

sin r

cn

[(cos (x− y)− cos r) (cos r − cos (x+ y))]
n−3

2

(sinx sin y)
n−2 χ[|x−y|,x+y] (r)

= εcos−1(cos x cos y)

exists distributionally.

Similarly, for the convolution of hypercircles in Hn we can provide an analogous
computation to show the following.
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Proposition 11.3. The limit

lim
n→∞

sinh r

cn

[(cosh (x− y)− cosh r) (cosh r − cosh (x+ y))]
n−3

2

(sinhx sinh y)
n−2 χ[|x−y|,x+y] (r)

= εcosh−1(cosh x cosh y)

exists distributionally.

12. Schoenberg Sets of Positive Definite Functions

We can relate the above calculations to a semigroup structure in the limiting
cases. Let Pn = P (Sn) denote the set of functions on [0, π] that are of the form

f (r) =
∑∞

k=0 akψ
n
k (r) where ak ≥ 0,

∑∞
k=0 ak <∞.

(In [1] it is observed that the definition of these sets is valid for arbitrary strictly
positive n using the definition of the Gegenbauer polynomials given above.) While

this definition does not extend to the case n = ∞, it is true that ψn
k (r) → (cos r)k

as n→ ∞. This leads us to define P∞ to be the set of functions on [0, π] that are
of the form

f (r) =
∑∞

k=0 ak (cos r)
k where ak ≥ 0,

∑∞
k=0 ak <∞,

which is consistent with Schoenberg’s result that P∞ so defined consists exactly
of the positive definite functions on [0, π] for the metric space (S∞, d).

From the general considerations of Schoenberg it follows that Pn is a semigroup
for all values n = 1, 2, · · · ,∞ and that

P1 ⊃ P2 ⊃ P3 · · · ⊃ P∞.

From what we have observed for any positive integer n, Pn consists of exactly all
the positive definite functions on the hypergroup

K(n) = SO (n+ 1) //SO (n) ∼= [0, π] .

It is then reasonable to ask if there is a hypergroupK(∞) associated with meridian
‘circles’ on the infinite-dimensional sphere S∞ and whether P∞ is then the set of
positive definite functions on K(∞).

The problem with the definition of the hypergroup K(∞) is that although S(∞)

is a homogeneous space for an infinite-dimensional Lie group there is no invariant
probability measure on it that will readily allow a convenient notion of convolution.
Nevertheless there is in a precise sense a limiting object of the hypergroups K(n)

as n → ∞, which we see is not a hypergroup but rather a semigroup, and its
positive definite functions are then exactly P∞. The semigroup multiplication is
given by

x · y := cos−1 (cosx cos y) ,

which is a consequence of Proposition 11.2.

Conjecture 12.1. It would be expected that a similar observation would be valid for
P (Hn) for which a hyperbolic version of the Schoenberg results would be needed.
At this stage the question is still open.
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