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Abstract: Software development methodologies have changed from static Waterfall Models to highly dynamic Rapid 
Application Development model; but the need to resolve bugs in the most efficient manner has remained constant. 
This lead towards the need of systems that can help to effectively record the changes in the states of the open bug as 
well as effectively aligning them to the most suitable developer, commonly known as Bug Triaging Systems (BTS). 
This paper aims at providing support in the development of Ideal BTS by creating a precedence list of various mining 
algorithms which are used in Software Bug classification. Hence, using the precedence list the BTS creators can 
enhance the capabilities.
Keywords: Bug, Bug reports, Bug Tracking System, Bug Life Cycle, Bug Triaging, Feature Selection, Machine 
Learning Algorithm.

Introduction1.	
Software repositories contain important information about software projects. It is a vital component in modern 
software development. Many software projects create and maintain bug repositories for effective and efficient 
bug tracking and controlling 1.This information can facilitate to manage the improvement of these projects. 
In the last decade, practitioners have analyzed and mined these software repositories to support software 
development and evolution. Bug tracking systems are one of the important repositories among all available 
software repositories. Development of bug tracking system has targeted one of the most important repositories 
that are bug repository.

Many open source software projects have an open bug repository that allows both developers and users to 
submit defects or issues in the software, suggest possible enhancements, and comment on existing bug reports. 
One potential advantage of an open bug repository is that it may allow more bugs to be identified and solved, 
improving the quality of the software produced2. Example of such bug repository is Eclipse bug repository 
(https://bugzilla.Eclipse.org).

Now a days many open source software provide Bug Tracking System along with it that keeps track of the 
reported bug. “Bugzilla”, “jira”, “FogBugz”, “Fossile” and “ikiwiki” are some example of bug tracking systems3.
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Users can file bug in this tracking system and this bug reports are sent to developers for fixation. To report a bug 
in bug tracking system, a user is asked to fill a form that provides necessary details about the bug. Fundamental 
testing principles of bug reporting systems are:

1.	 Report the bug as soon as it is found.

2.	 Describe the bug in effective manner- Bug report should be precise and concise but clearly state about 
the problem encountered. There should be good attachments like snapshots or narrate a story that tells 
how bug was produced so that one should be able to reproduce the bug.

3.	 Do not be judgmental while reporting the bug- Bug report should target on the problem encountered 
but not on the developer.

4.	 Follow up your bug report- Bug report should be followed up and also give necessary comments 
when it is required.

This form has one-line summary of the failures which are observed and particular component in which that 
bug occurs. Important elements of bug reports are:

i.	 Reporter’s Name or ID-One who encounter bug and file report to fix it.

ii.	 Type of change request - It states the type of bug report i.e. if the reported bug is new enhancement, 
bug or new requirement. User fills this element when he/she report the bug.

iii.	 Bug Id- It is unique id of bug that distinguishes it from other bug. It is automatically generated when 
bug is filed.

iv.	 Description- A brief description of the problem is stated in this column. User is asked to fill this 
attribute at the time of reporting bug. This description must be clear to understand e.g. “Switching to 
“Design” mode in SWT closes Eclipse.” is brief and good example of description of bug.

v.	 Component- Component where bug is found, should be specified. It helps in assigning the bug to a 
developer who is assigned to that component of the product.

vi.	 Resolution- This field describe that whether bug is fixed or not. This element is filled and updated 
by developer when bug is assigned to him.

vii.	 Status- This field specifies the present status of the bug e.g. NEW, RESOLVED. This element is set 
by project manager when a bug is reported or when bug all necessary changes are made to resolve 
the bug.

viii.	 Create Date- This field is filled when bug is reported. It tells the date when the bug was reported.

ix.	 Date of Close- This field is set by project manager, it tells the date when the bug was closed.

x.	 Version number- This field indicates the version number of software in which bug was found. This 
is important part of information that tells that if the bug was found in shipping version or in build 
under testing and development. It is filled at the time of reporting bug by reporter of the bug.

xi.	 Operating system and Platform- This field is filled by bug reporter, it depicts the environment on 
which the bug was occurred.

xii.	 Attachment - This field tells the number of attachment that was uploaded by reporter of bug that can 
help developer to understand the bug and reproduce it.

xiii.	 CC List - A user can add himself in cc list if he finds the bug encountered by him is already reported. 
Users in cc list also get mail when any progress is made related to that bug.



Mining Algorithms Precedence List for Software Bug Classification

International Journal of Control Theory and Applications3

xiv.	 Bug Fixed Time - It is time taken to fix the bug i.e. difference between the time when the bug was 
opened first time to the time when the bug was closed. This field is filled by project manager.

xv.	 Priority- This field describes the importance of bug from other bug and tells the order in which bugs 
should be fixed. Users fill this element when he files the bug report. There are five levels of priority 
from P1 to P5. P1 is having highest priority and P5 is having least priority.

xvi.	 Severity- Severity of bug depicts the impact, it is filled by user when he reports the bug. This field 
is used by developer for classifying bug. In Table 1, description of severity of bugs that is used in 
Bugzilla (BTS) is described:

Table 1 
Description of Severity

Severity Description
Blocker Blocks development and/or testing work, production could not run
Critical When there is memory leak, crash or data loss
Major When there is major loss of function
Minor When there is minor loss of function
Normal It is default option in bug tracking system for bug severity
Trivial These are cosmetic problem e.g. Wrong alignment of text or wrong spelling of words.
Enhancement It is request for new enhancement

These elements of bug reports are not only filled by users but project manager or developer also fills some 
of the element of bug report at different time and phases of bug life cycle. User guidelines are provided for the 
information about how to fill each field of bug report so that bug reports produced are consistent and of good 
quality. Bug goes through different phases during its life cycle. The cycle starts when bug is reported and ends 
when that bug is closed and never reproduced.

Figure 1: Generic Bug Life Cycle

Various BTS have chosen their own terminologies for the different phases of the bug life cycle. The 
Figure1 shows the generic bug life cycle. When a new bug is reported, the bug is analyzed to check its validity 
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and importance. If the reported bug is valid then only bug triaging task is performed otherwise it is assigned 
deferred status

Bug Triaging is the task that is performed to evaluate the bug and to decide when the bug is considered 
as resolved and to whom this bug should be assigned. Bug is assessed based on its severity and priority, the 
complete bug triaging task is shown in Figure 2.

Figure 2: Bug Triage Process

Bug severity indicates the impact of the reported bugs i.e. which bug may act as a showstopper and which 
bug may simply be put in the deferred state It helps Traiger to triage the reported bugs, Triager is person who triage 
the bugs manually based on his past experience and knowledge. But, it is observed that there are large numbers of 
bugs reported on the daily basis 4. So, the task of triaging the bugs has become tedious and cumbersome. There 
is need to put a lot of effort to manually assign the severity to bugs and then assign the bug reports to developer. 
The solution of this problem could be to automate the triaging process that can save a lot of effort and time. 
Additionally, the accuracy of triaging process depends on triager’s knowledge and past experience that vary from 
person to person, but automation of this task could improve the accuracy level of this task as well.

In past, many researchers have made an attempt to automate the triaging task, and still there is scope of 
improvement in this domain. This paper focuses on automation of the severity classification of the bug report 
which further aids to automate the triaging task. It is based on the hypothesis that there are terms used in 
summary of bug report that are called severity terms which could help in identifying the severity level of the 
bug reports. Dictionary of these terms are created with help of feature selection algorithms and then supervised 
machine learning approach is used for predicting the severity. The number of terms that are required to train 
classifier are analyzed and selection of these terms are done by different feature selection algorithms and then 
precedence list of mining algorithms are determined to find out which machine learning algorithm gives higher 
performance than other.

The rest of the paper is organized as follows: Section II discusses related research work. The proposed 
algorithm of severity classification is provided in Section III. Section IV presents experimental set up and results 
of the proposed solution is discussed in Section V. Section VI discusses the conclusion of the followed approach 
and the future scope.

Literature Survey2.	
Bug triaging is task that is performed when a new bug is reported. But as past studies shows that large number 
of bugs are reported, so it becomes time consuming.

In 2004, Davor Cubanic, Gail C. Murphy5 made their first attempt to use ML algorithms to help triaging 
task. Their work was extended by John Anvik et. al.6, they used some different supervised ML algorithms such 
as C 4.5 Support Vector Machine (SVM), Naïve Bayes(NB) and achieve precision level around 60%. John 
Anvik7 further extended his previous work and creates recommender for recommending developers to whom 
bug reports should be assigned.

Tim Menzies et. al.8 proposed a method called SEVERity ISsue assessment (SEVERIS) to automatically 
assign severity level to bug reports using text mining and machine learning techniques. An automatic routing 
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method was proposed by Giuliano Antoniol et. al.9 that was used to route the real bugs for maintenance and 
enhancement requests to project leader automatically. Ahmed Lamkanfi and co authors 10-11 proposed a new 
approach for classification of bug reports of open source software on severity basis. Yuan Tian et. al. 12 proposed 
to use BM25 similarity function to find severity level of bug reports. Akinori Ihara et. al.13 proposed a model 
called bug fix time prediction model. This model predicts the bug fix time i.e. time by which bug will be fixed 
by developer after it has been reported.

Jin-woo Park et. al. 14 discussed the problem of sparseness associated with recommendation systems 
proposed in literature for bug triaging system. Further authors proposed an algorithm called COSTRIAGE. This 
algorithm can help to overcome the problem of sparseness in recommender system. Meera Sharma et. al. 15 

proposed a prediction model to predict cc list. This list contains the man power participated in fixing bugs. Marcelo 
Serrano Zanetti et. al. 16 proposed a method that identifies which bug reports are valid. Pamela Bhattacharya et. 
al.17 presented an empirical study to analyze the bug fix process in android application. Mamdouh Alenezi et. 
al. 18 presented an approach to automate the process of assigning bug reports to appropriate developer. Term 
selection method was used to choose discriminating terms to classify bugs. Naïve bayes classifier was used to 
create predictive model.

Cheng-Zen Yang et. al. 19 made an investigation to find the influence of four quality indicators of reported bug 
in predicting severity of bug rather than using textual description alone.Kanwal et. al. 20-21 proposed an approach 
to prioritize the bug reports. Further performance comparison of Naïve bayes (NB) and Support vector machine 
(SVM) was done. Meera Sharma et. al. 22 proposed an approach to predict priority of bug reports. The approach 
was applied on intra and cross projects. The experiment was conducted over Eclipse project and OpenOffice 
datasets. Different machine learning algorithm was applied such as Naïve bayes, KNN, SVM, Neural network 
to predict priority. Shruti Gujral et. al.23 proposed a solution of severity classification by creating dictionary of 
terms. The same work was extended by Gitika Sharma et. al. 24 to classify bug reports based on severity using 
feature selection method and supervised approach.

The proposed algorithm to solution of the automation of severity classification task is provided in next 
section. Different feature selection approach and ML algorithms are applied and comparison of these algorithms 
is performed.

Proposed Algorithm to Severity Classification3.	
The automated system developed for severity classification has mainly five steps. These steps of algorithm are 
explained as follows:

Algorithm for Automated Severity Classification of Reported Bugs
Argument list: Bug report instances, no of cross fold validation

Returns: Prediction of severity of bug report instances

1.	 Data Acquisition:

(a)	 The required fields of bug reports i.e. bug id, summary, severity field is extracted from bug 
database and other bug fields are ignored.

2.	 Pre-processing of bug reports:

(a)	 Tokenization- The summary of bug reports are tokenized by removing punctuation marks, 
symbols, brackets and hyphens etc.
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(b)	 Stop word algorithm- In this part all the unnecessary words like articles, prepositions, conjunctions 
and adjectives are removed.

(c)	 Stemming - Stemming is to reduce the word to its root.

(d)	 Feature vector model- The word that is obtained in previous step is used as feature with its 
associated weight. The weight of these features is calculated using Term frequency and Inverse 
document frequency (TF-IDF).

3.	 Feature Selection:

(a)	 In this work different feature selection methods are used to select the feature that could serve 
as best indicator of bug severity.

4.	 Dictionary of Terms:

(a)	 Top k terms after apply feature selection are used to create dictionary of severity indicator 
terms

5.	 Classification:

(a)	 Classification of bug reports are performed using supervised machine learning algorithms such 
Naive bayes, naive bayes multinomial, k-nearest neighbo (K-NN) and Support vector machine 
(SVM).

6.	 Performance Evaluation:

(a)	 K-fold cross validation is used to validate the process. Performance parameter such as accuracy 
and precision is computed to compare performance.

Experimental Setup4.	
In this section, experimental setup is provided in detail. First dataset used for the experiment is explained and then 
all the pre-processing steps, feature selection algorithms and classification algorithms are explained. Afterwards, 
performance measures used to evaluate the experiment is explained.

4.1.	D ataset Acquisition
This experiment considers instances of bug reports of four components of Eclipse. These components are core, 
UI, debug and SWT. Bug report instances of Eclipse are downloaded from bug repository. These instances 
were reported in Bugzilla (Bug Tracking System)25. The instances have severity of type blocker, critical, 
Enhancement, major, minor, normal, trivial. The report instances that have normal and enhancement severity 
type are not considered in experiment. The reason for the exclusion of normal severity is because it require 
manual inspection to assess the severity level of these bug report as it represents grey zone26. Enhancement 
is request to team lead to add new feature and do not represent a real bug. Severity level is classified into 
binary levels. Bug reports of critical, blocker and major severity levels are taken as severe bug report 
while minor and trivial are taken as non severe bug reports. The dataset used in the experiment is given in 
Table 2.

Eclipse is an integrated development environment (IDE) that is used worldwide for the development of 
software. Thus, the users of Eclipse are developer themselves and bug reports should be of high quality 27. It 
could help in our approach to create dictionary of severity indicator terms.
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Table 2 
Bug report instances of Eclipse

Component of Eclipse Severe Bug report Non Severe Bug report
Core 1514 1487

Debug 1514 1400
SWT 1618 1393

UI 1764 1432

4.2.	 Preprocessing Steps
It is used to distill unstructured data to structured format. There are different preprocessing steps performed in 
Text mining such as tokenization, stop word removal and stemming. These algorithms are discussed below.

4.2.1.	 Tokenization
The purpose of tokenization is to remove all the punctuation marks like commas, full stop, hyphen and brackets. 
It divides the whole text into separate tokens to explore the words in document.

4.2.2.	 Stop Word Removal
The purpose of this process is used to eliminate conjunction, prepositions, articles and other frequent words 
such as adverbs, verbs and adjectives from textual data. Thus it reduces textual data and system performance 
is improved.

4.2.3.	 Stemming
Stemming is used to reduce the words to their root words e.g. words like ”computing”, ”computed” and 
“computerize” has it root word “compute”. The purpose of stemming is to represent the words to only terms in 
their document. There are different algorithms to perform stemming such as Lovins Stemmer 28, Porters Stemmer 
29, Paice/Husk Stemmer 30, Dawson Stemmer31, N-Gram Stemmer32, YASS Stemmer33 and HMM Stemmer34.

4.2.4.	 Weighting Factor
Features are extracted from overloaded large datasets.TF-IDF (Term frequency- Inverse document frequency)35 
score is generally is used to give weight to each term. TF-IDF is multiplication of term frequency and inverse 
document frequency.

4.2.5.	 Term-Document Matrix
After initial steps of preprocessing text in documents is used to formulate term- document matrix. Rows in 
matrix represents document in which word appears and columns represent the words that are extracted from 
documents.

The above mentioned preprocessing steps are performed on bug report dataset and Term document matrix is 
obtained where rows represent bug id and columns represent term. The cell of matrix is filled with TF-IDF score.

4.3.	 Feature Selection
It is the process in which subsets of terms are selected from the training datasets. The selected subset of feature set 
is only used for classification task. The first goal of feature set is to increase efficiency of classifier by decreasing 
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the size of training datasets as it could be more expensive in terms of time required to train classifier on large 
datasets. The second goal of feature selection is to eliminate noise feature. A noise feature in training datasets 
is the one that increases the classification error. Thus, feature selection can be viewed as a method that replaces 
complex classifier (classifier that uses all features) with a simpler classifier (reduced feature set). There are 
different feature selection methods used in this approach such as info-gain, Chi square, Gini Index, correlation 
and principle component Analysis (PCA).

4.4.	D ictionary of Terms
The terms are sorted in descending order according to weight assigned to them by feature selection method. Then 
top m-terms are used for creating dictionary of terms that could serve as severity indicator of bug reports.

Figure 3: Proposed Architecture of Severity classification of bug reports

4.5.	 Supervised Machine Learning Algorithm
In supervised learning, the instances are labelled with known classes labels. In this scenario, the dataset knows 
the target class before classification. Thus, it is very helpful for the problems which have known inputs. Different 
supervised machine learning algorithms such as Naive Bayes, Naive bayes multinomial, Support vector Machine 
and K-nearest neighbors are used in the experiment. Rapid miner 36 is used to train the classifier in the experiment. 
5- Fold cross validation approach is used to validate the results.

4.6.	 Performance Measurement
The performance of experiment is evaluated using performance measure such as Accuracy.

Results5.	
The results of the proposed approach are presented in this section. The numbers of terms are varied from 25 to 
200 to know the optimal number of terms that are required to feed the classifier for better results. The selection 
of these terms are done by using different feature selection algorithms such as Chi square, info gain, PCA, Gini 
Index and correlation. Different machine learning algorithms such as Naïve bayes, Naïve bayes multinomial, SVM 
and K-NN are evaluated on the basis of accuracy to find their precedence list for the bug report classification. 
The results obtained with different algorithms are explained below.

5.1.	N aïve Bayes Algorithm
The performance of naïve bayes algorithm for different component of Eclipse is shown in Table 3:
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Table 3 
Accuracy of Naïve Bayes algorithm

Component Feature Selection Algorithm
Core Chi square Info-gain PCA Gini Index Correlation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 62.23 64.5 59.93 64.33% 65.23%
50 65.17 67.47 62.77 67.23% 67.17%
75 66.9 68.03 63.7 68.30% 67.43%
100 68.77 68.9 67.14 68.90% 66.87%
125 68.37 67.33 67.67 67.90% 66.30%
150 68.27 66.43 69.33 66.83% 66.60%
175 66.2 66.13 66.73 66.17% 66.43%
200 66.27 66.27 66.27 66.27% 66.27%
SWT Chi square Info-gain PCA Gini Index Correlation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 64.82% 63.22% 61.78% 67.64% 68.04%
50 68.45% 65.38% 65.51% 66.26% 67.20%
75 70.52% 65.13% 66.32% 69.86% 67.89%
100 71.08% 65.98% 68.08% 68.54% 64.91%
125 71.83% 65.26% 69.61% 66.98% 65.01%
150 70.39% 64.32% 68.70% 66.13% 65.85%
175 69.83% 64.48% 69.14% 66.13% 64.41%
200 69.55% 64.63% 69.11% 64.88% 61.10%
UI Chi square Info-gain PCA Gini Index Corelation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 60.00% 64.58% 50.59% 63.81% 69.75%
50 69.41% 63.22% 55.34% 71.02% 65.68%
75 68.14% 66.86% 58.81% 70.93% 67.29%
100 67.71% 65.51% 59.15% 69.92% 67.29%
125 68.31% 66.61% 62.63% 68.05% 67.03%
150 66.44% 64.32% 60.25% 66.02% 67.29%
175 65.00% 63.90% 59.92% 65.08% 64.75%
200 64.24% 63.31% 57.54% 62.88% 63.22%

Debug Chi square Info-gain PCA Gini Index Correlation
Terms Accuracy Accuracy Accuracy Accuracy Accuracy

25 65.78% 67.21% 56.69% 67.77% 67.41%
50 67.87% 70.73% 64.29% 69.10% 72.02%
75 69.76% 71.69% 67.24% 73.18% 71.06%
100 70.83% 69.56% 66.05% 70.46% 69.40%
125 69.36% 68.63% 66.68% 68.63% 67.21%
150 70.13% 68.63% 64.98% 68.63% 63.86%
175 69.50% 68.60% 65.12% 68.47% 63.86%
200 63.82% 63.82% 63.82% 63.82% 63.82%
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The best accuracy is achieved using Chi square feature selection method and it is observed that approximately 
100 terms give maximum results in terms of accuracy.

Naïve bayes multinomial: The performance of naïve bayes multinomial algorithm for different component of 
Eclipse is given in Table 4:

Table 4 
Accuracy of Naïve Bayes multinomial algorithm

Component Feature Selection Algorithm
Core Chi square Info-gain PCA Gini Index Correlation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 65.17% 65.17% 62.03% 65.43% 66.00%
50 68.37% 69.47% 63.77% 69.23% 69.13%
75 69.33% 71.17% 66.63% 70.77% 71.83%
100 70.57% 72.63% 67.63% 72.57% 71.97%
125 70.03% 72.33% 69.33% 72.40% 73.37%
150 71.60% 71.57% 70.73% 72.10% 72.40%
175 71.73% 71.87% 71.70% 71.87% 72.03%
200 71.77% 71.77% 71.77% 71.87% 71.87%
SWT Chi square Info-gain PCA Gini Index Correlation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 64.44% 66.17% 59.87% 65.88% 65.48%
50 65.54% 67.29% 63.85% 67.29% 68.33%
75 66.38% 68.86% 64.82% 68.33% 69.11%
100 67.07% 69.67% 65.82% 69.30% 69.67%
125 68.04% 69.67% 67.57% 69.51% 69.77%
150 68.58% 70.05% 67.01% 69.92% 70.83%
175 68.45% 69.98% 67.07% 70.30% 70.74%
UI Chi square Info-gain PCA Gini Index Corelation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 61.44% 62.12% 60.51% 62.20% 62.37%
50 62.71% 63.56% 60.59% 63.22% 63.98%
75 62.97% 64.32% 61.19% 64.07% 64.15%
100 63.39% 64.07% 61.78% 63.73% 63.98%
125 63.14% 63.39% 62.03% 63.39% 64.41%
150 63.31% 63.64% 62.46% 63.64% 63.90%
175 62.88% 63.90% 62.63% 64.24% 64.07%
200 63.64% 63.90% 62.71% 64.07% 64.07%

Debug Chi square Info-gain PCA Gini Index Correlation
Terms Accuracy Accuracy Accuracy Accuracy Accuracy

25 64.16% 66.51% 60.44% 66.05% 67.14%
50 67.91% 69.50% 62.66% 70.53% 70.99%
75 69.60% 71.79% 66.31% 72.09% 71.22%
100 70.33% 71.13% 68.37% 71.06% 72.19%
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Component Feature Selection Algorithm
125 70.59% 71.66% 70.06% 71.72% 72.05%
150 70.26% 71.59% 70.89% 71.22% 71.89%
175 71.26% 71.29% 71.09% 71.19% 71.29%
200 71.29% 71.29% 71.29% 71.29% 71.29%

In NBM classifier the best accuracy in all components is achieved using approximately 200 terms with 
all the feature selection methods.

Support vector Machine: The performance of support vector machine algorithm for different component of 
Eclipse is provided in Table 5:

Table 5 
Accuracy of Support Vector Machine

Component Feature Selection Algorithm
Core Chi square Info-gain PCA Gini Index Correlation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 62.97% 64.10% 64.03% 64.03% 64.47%
50 64.67% 65.90% 66.43% 66.43% 66.27%
75 67.93% 67.63% 67.90% 67.90% 67.47%
100 69.40% 70.00% 70.13% 70.13% 67.57%
125 70.33% 70.73% 70.80% 70.80% 69.03%
150 71.73% 70.17% 70.73% 70.73% 71.13%
175 71.77% 71.80% 71.80% 71.80% 71.07%
200 71.67% 71.67% 71.67% 71.67% 71.67%
SWT Chi square Info-gain PCA Gini Index Correlation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 64.57% 65.95% 62.88% 63.44% 66.67%
50 67.82% 68.04% 65.01% 67.17% 67.92%
75 68.08% 68.79% 66.67% 69.11% 68.92%
100 69.64% 70.89% 67.76% 70.20% 69.64%
125 70.14% 71.42% 69.61% 70.67% 70.39%
150 70.36% 71.61% 69.77% 71.36% 71.46%
175 70.64% 71.39% 70.30% 71.71% 71.17%
200 71.42% 71.64% 70.30% 71.52% 71.46%
UI Chi square Info-gain PCA Gini Index Correlation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 66.27% 66.69% 63.14% 66.69% 64.24%
50 65.59% 66.69% 65.00% 66.53% 67.03%
75 65.76% 69.15% 65.85% 67.71% 68.98%
100 65.76% 70.93% 65.25% 71.10% 70.76%
125 67.80% 69.92% 65.42% 69.41% 70.76%
150 68.22% 70.34% 66.02% 70.42% 70.68%
175 68.22% 70.93% 65.93% 70.25% 70.17%
200 68.90% 70.08% 66.53% 69.83% 69.41%
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Component Feature Selection Algorithm
Debug Chi square Info-gain PCA Gini Index Correlation
Terms Accuracy Accuracy Accuracy Accuracy Accuracy

25 64.55% 64.39% 60.67% 64.92% 65.08%
50 64.92% 66.31% 62.33% 67.01% 67.34%
75 66.61% 69.07% 65.25% 67.74% 67.31%
100 67.71% 69.80% 68.60% 69.63% 69.13%
125 69.30% 69.40% 69.47% 70.16% 70.86%
150 69.86% 70.56% 70.20% 71.32% 72.19%
175 71.66% 71.82% 72.65% 71.72% 71.49%
200 72.95% 72.95% 72.95% 72.95% 72.95%

Here, the best results are obtained using approximately 175 terms with all the feature selection methods.

K-nearest neighbor: The accuracy obtained using 5-NN classifier with different feature selection method is 
shown below:

Table 6 
Accuracy of KNN algorithm

Component Feature Selection Algorithm
Core Chi square Info-gain PCA Gini Index Correlation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 67.37% 63.97% 64.93% 64.00% 64.00%
50 71.63% 72.00% 69.13% 72.13% 71.27%
75 73.17% 73.83% 72.07% 73.60% 73.90%
100 73.10% 74.83% 71.33% 74.60% 75.07%
125 72.40% 73.37% 72.63% 73.83% 73.97%
150 74.47% 73.07% 73.67% 73.50% 74.73%
175 74.27% 74.53% 74.33% 74.53% 74.40%
200 74.37% 74.37% 74.37% 74.37% 74.37%
SWT Chi square Info-gain PCA Gini Index Correlation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 63.41% 65.88% 63.26% 63.63% 63.82%
50 70.36% 69.86% 66.73% 69.20% 69.77%
75 72.49% 69.08% 69.70% 70.89% 71.17%
100 73.80% 71.55% 72.58% 69.55% 71.14%
125 72.33% 71.21% 73.05% 71.61% 70.27%
150 71.83% 72.49% 72.55% 71.74% 71.36%
175 72.43% 71.77% 71.27% 72.49% 70.80%
200 72.68% 71.24% 71.30% 72.14% 71.27%
UI Chi square Info-gain PCA Gini Index Correlation

Terms Accuracy Accuracy Accuracy Accuracy Accuracy
25 62.12% 60.68% 62.12% 55.17% 55.17%
50 61.53% 62.97% 61.53% 64.32% 64.32%
75 61.78% 65.00% 61.78% 62.63% 62.63%
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Component Feature Selection Algorithm
100 59.41% 63.64% 59.41% 62.29% 62.29%
125 60.93% 64.41% 60.93% 62.12% 62.12%
150 60.34% 63.39% 60.34% 65.34% 65.34%
175 60.51% 65.25% 60.51% 63.81% 63.81%
200 62.03% 65.25% 62.03% 62.97% 62.97%

Debug Chi square Info-gain PCA Gini Index Correlation
Terms Accuracy Accuracy Accuracy Accuracy Accuracy

25 70.30% 69.93% 69.37% 71.12% 65.85%
50 71.52% 75.01% 73.61% 74.88% 73.61%
75 74.71% 76.57% 74.08% 76.34% 75.97%
100 76.14% 75.08% 74.78% 75.54% 75.47%
125 76.00% 75.31% 74.21% 74.84% 76.10%
150 75.97% 75.41% 74.84% 75.47% 74.58%
175 75.54% 75.77% 75.64% 75.37% 75.94%
200 74.94% 74.94% 74.94% 74.94% 74.94%

The maximum result is achieved using approximately 100 numbers of terms in all the components and 
maximum result is 76% using 5-NN classifier.

Conclusion6.	
There are large numbers of bugs that are reported in bug tracking system. Automation of predicting severity of 
bug reports can provide a great help. Different feature selection algorithms for selection of severity indicator 
terms are used. Machine learning algorithms are used for the prediction purpose. From the result following 
observations are made:

1.	 The result stabilizes after 100 severity indicator terms by using approximately all feature selection 
methods used in this experiment.

2.	 Chi square and correlation methods has comparatively yielded best indicator of severity than other 
feature selection methods.

3.	 Different mining algorithms are used for finding the list of precedence. From the observations, it is 
found that 5-NN outperform other classifier, then SVM, Naïve bayes multinomial and Naïve bayes. 
Thus their precedence list obtained is.

	 5-NN>SVM> NBM>NB.

	 In future, the proposed approach can be validated using database of bug reports of other open source 
software.
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