ON MARTINGALE REPRESENTATION AND LOGARITHMIC-SOBOLEV INEQUALITY FOR FRACTIONAL BROWNIAN BRIDGE MEASURES

XIAOXIA SUN AND FENG GUO*

Abstract

In this paper, we consider the stochastic analysis for fractional Brownian bridge measures. We first give an integration by parts formula for such measures by Bismut's method and a pull back formula. Using this integration by parts formula, we then obtain a generalized Clark-Ocone martingale representation theorem for fractional Brownian bridge measures. Consequently, a Logarithmic-Sobolev inequality is derived by the martingale representation theorem for such measures.

1. Introduction

Fractional Brownian bridges are Gaussian bridges (see [7]). Measures determined by fractional Brownian bridges are called fractional Brownian bridge measures. In this paper, we consider the integration by parts formula, the martingale representation and the Logarithmic-Sobolev inequality for such measures.

Much work has been done on the integration by parts formula for bridge measures. Driver [5] gave an integration by parts formula for Brownian bridge measures on loop group with the vector field being C^{1}. For Cameron-Martin vector field, Enchev and Stroock [6] established an integration by parts formula for Brownian bridge measures on the loop space over Riemannian manifold with Levi-Civita connection. Similar results were also obtained in [10] by considering the path space and the estimates of derivatives of the heat kernel.

Through integration by parts formulas for bridge measures, the martingale representation and Logarithmic-Sobolev inequalities for bridge measures can be derived. A Logarithmic-Sobolev inequality for Brownian bridge measures on the loop group was obtained in [9]. For Brownian bridge measures on the loop space over Riemannian manifold, Gong and Ma [8] obtained a Logarithmic-Sobolev inequality by establishing a martingale representation theorem. For such measures, Aida [1] also gave a Logarithmic -Sobolev inequality with unbounded diffusion coefficients. A Logarithmic-Sobolev inequality for Gaussian measures was established in [3].

[^0]The paper is organized as follows. In Section 2, we give some preliminaries about fractional Brownian bridge. We present in Section 3 a pull back formula and an integration by parts formula. In Section 4, we obtain a martingale representation theorem and a Logarithmic-Sobolev inequality for fractional Brownian bridge measures.

2. Preliminaries

It is known from [7] that the anticipative representation of fractional Brownian bridge $\left(X_{t}\right)_{0 \leq t \leq 1}$ satisfies the following integral equation

$$
\begin{equation*}
X_{t}=B_{t}^{H}-\int_{0}^{t}\left(X_{s}+\int_{0}^{s} \Psi(s, u) d X_{u}\right) \frac{k(1, s) k(t, s)}{\int_{s}^{1} k(1, u)^{2} d u} d s \tag{2.1}
\end{equation*}
$$

where B^{H} is a fractional Brownian motion,

$$
\begin{align*}
& k(t, s)=c_{H} s^{\frac{1}{2}-H} \int_{s}^{t} u^{H-\frac{1}{2}}(u-s)^{H-\frac{3}{2}} d u \\
& \Psi(t, s)=\frac{\sin \left(\pi\left(H+\frac{1}{2}\right)\right)}{\pi} s^{\frac{1}{2}-H}(t-s)^{\frac{1}{2}-H} \int_{t}^{1} \frac{u^{H+\frac{1}{2}}(u-t)^{H+\frac{1}{2}}}{u-s} d u \tag{2.2}
\end{align*}
$$

in which $c_{H}=\sqrt{\frac{H(2 H-1)}{B\left(2-2 H, H-\frac{1}{2}\right)}}$. By [7, Proposition 18], $\left(X_{t}\right)_{0 \leq t \leq 1}$ admits the non-anticipative representation

$$
\begin{equation*}
X_{t}=B_{t}^{H}-\int_{0}^{t} \varphi(t, s) d B_{s}^{H} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(t, s)=\int_{s}^{t}\left\{\int_{s}^{u} \frac{(1+\Psi(v, s)) k(1, v)^{2}}{\left(\int_{v}^{1} k(1, w) d w\right)^{2}} d v-\frac{1+\Psi(u, s)}{\int_{u}^{1} k(1, v)^{2} d v}\right\} k(1, u) k(t, u) d u \tag{2.4}
\end{equation*}
$$

We set $\Omega=\left\{\omega \in C\left([0,1] ; \mathbb{R}^{n}\right) \mid \omega_{0}=\omega_{1}=0\right\}$ with the topology of local uniform convergence. Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \nu\right)$ be a filtered probability space, where ν is the fractional Brownian bridge measure such that coordinate process $\left(X_{t}(\omega)\right)_{0 \leq t \leq 1}=$ $\left(\omega_{t}\right)_{0 \leq t \leq 1}$ satisfies integral equation (2.1), \mathcal{F} is the ν - completion of the Borel σ-algebra of Ω and \mathcal{F}_{t} is the ν-completed natural filtration of ω.

For any $p \in[1, \infty)$, let $L^{p}(\Omega ; \nu)=\left\{F \mid F: \Omega \rightarrow \mathbb{R},\|F\|_{p}:=\left(\mathbb{E}_{\nu}|F|^{p}\right)^{\frac{1}{p}}<\infty\right\}$. We denote $\left(H+\frac{1}{2}\right)$-Hölder left fractional Riemann-Liouville integral operator by $I_{0+}^{H+\frac{1}{2}}\left(L^{2}(\Omega ; \nu)\right)$. In [4], the isomorphism operator $K: L^{2}(\Omega ; \nu) \rightarrow I_{0+}^{H+\frac{1}{2}}\left(L^{2}(\Omega ; \nu)\right)$ is defined as $(K h)_{t}=\int_{0}^{t} k(t, s) h_{s} d s$, where $h \in L^{2}(\Omega ; \nu)$ and k satisfies (2.2). We denote K^{-1} as the inverse operator of K. The Cameron-Martin vector field on Ω is defined as

$$
\mathcal{H}_{0}=\left\{K h \mid h \text { is adapted process, } h \in L^{2}(\Omega ; \nu) \text { and }(K h)_{1}=0\right\}
$$

with scalar product $\langle K h, K g\rangle_{\mathcal{H}_{0}}=\langle h, g\rangle_{L^{2}(\Omega ; \nu)}=\mathbb{E}_{\nu}\left[\int_{0}^{1}\left\langle h_{t}, g_{t}\right\rangle d t\right]$. For $K h \in \mathcal{H}_{0}$, the directional derivative of F along $K h$ is

$$
D_{h} F(\omega)=\lim _{\delta \rightarrow 0} \frac{1}{\delta}(F(\omega+\delta(K h))-F(\omega))
$$

The set of all the smooth cylindrical functions on Ω is denoted by

$$
\mathcal{F} C^{\infty}(\Omega)=\left\{F \mid F(\omega)=f\left(\omega_{t_{1}}, \ldots, \omega_{t_{n}}\right), 0<t_{1} \leq \cdots \leq t_{n} \leq 1, f \in C^{\infty}\left(\mathbb{R}^{n}\right)\right\}
$$

For $F \in \mathcal{F} C^{\infty}(\Omega)$, the directional derivative of F is

$$
D_{h} F(\omega)=\sum_{i=1}^{n}\left\langle\nabla^{i} F,(K h)_{t_{i}}\right\rangle_{\mathbb{R}^{n}}
$$

where $\nabla^{i} F=\nabla^{i} f\left(\omega_{t_{1}}, \cdots, \omega_{t_{n}}\right)$ is the gradient with respect to the i-th variable of f. The gradient $D F: \Omega \rightarrow \mathcal{H}_{0}$ is determined by $\langle D F, K h\rangle_{\mathcal{H}_{0}}=D_{h} F$. We denote the domain of D by $\operatorname{Dom}(D)$.

3. Integration by Parts Formula for ν

To obtain an integration by parts formula for fractional Brownian bridge measures, as in [2], we first give a pull back formula for such measures. We need construct the stochastic integral equation for the flow of $\left(X_{t}\right)_{0 \leq t \leq 1}$ as follows. For any $r \in(-\epsilon, \epsilon)$,

$$
\begin{equation*}
X_{t}(r)=B_{t}^{H}(r)-\int_{0}^{t}\left(X_{s}(r)+\int_{0}^{s} \Psi(s, u) d X_{u}(r)\right) \frac{k(1, s) k(t, s)}{\int_{s}^{1} k(1, u)^{2} d u} d s \tag{3.1}
\end{equation*}
$$

where $B_{t}^{H}(r)$ is defined as $B_{t}^{H}(r)=B_{t}^{H}+r \beta_{t}$, in which β is a \mathbb{R}^{n}-valued adapted process. We give the form of β in the following pull back formula.

Proposition 3.1. If the solution of (3.1) satisfies
(1) $\left(X_{t}(r)\right)_{0 \leq t \leq 1} \in \Omega$ for any r,
(2) $\left.\frac{d}{d r} X_{t}(r)\right|_{r=0}$ exists and $(K h)_{t}=\left.\frac{d}{d r} X_{t}(r)\right|_{r=0}$ for $\left(h_{t}\right)_{0 \leq t \leq 1} \in L^{2}(\Omega ; \nu)$,
then

$$
\begin{equation*}
\beta_{t}=(K h)_{t}+\int_{0}^{t}\left((K h)_{s}+\int_{0}^{s} \Psi(s, u) d(K h)_{u}\right) \frac{k(1, s) k(t, s)}{\int_{s}^{1} k(1, u)^{2} d u} d s \tag{3.2}
\end{equation*}
$$

Proof. Differentiating (3.1) with respect to r at $r=0$, we obtain

$$
\begin{aligned}
\left.\frac{d}{d r} X_{t}(r)\right|_{r=0}= & \left.\frac{d}{d r} B_{t}^{H}(r)\right|_{r=0} \\
& -\int_{0}^{t}\left(\left.\frac{d}{d r} X_{s}(r)\right|_{r=0}+\left.\int_{0}^{s} \Psi(s, u) d \frac{d}{d r} X_{u}(r)\right|_{r=0}\right) \frac{k(1, s) k(t, s)}{\int_{s}^{1} k(1, u)^{2} d u} d s
\end{aligned}
$$

By Condition 2, we have $\left.\frac{d}{d r} X_{t}(r)\right|_{r=0}=(K h)_{t}$. Then,

$$
(K h)_{t}=\beta_{t}-\int_{0}^{t}\left((K h)_{s}+\int_{0}^{s} \Psi(s, u) d(K h)_{u}\right) \frac{k(1, s) k(t, s)}{\int_{s}^{1} k(1, u)^{2} d u} d s
$$

which yields (3.2).

Now we can obtain an integration by parts formula for the fractional Brownian bridge measure ν.

Theorem 3.2. For $T \in(0,1), F \in \operatorname{Dom}(D) \cap \mathcal{F}_{T}$ and $K h \in \mathcal{H}_{0}$, an integration by parts formula for fractional Brownian bridge measure ν is

$$
\begin{equation*}
\mathbb{E}_{\nu}\left[F \int_{0}^{T}\left\langle\left(K^{-1} \beta .\right)_{t}, d B_{t}\right\rangle\right]=\mathbb{E}_{\nu}\left[D_{h} F\right] \tag{3.3}
\end{equation*}
$$

where

$$
\left(K^{-1} \beta .\right)_{t}=h_{t}+\left((K h)_{t}+\int_{0}^{t} \Psi(t, u) d(K h)_{u}\right) \frac{k(1, t)}{\int_{t}^{1} k(1, u)^{2} d u}
$$

Proof. It is proved in [4] that there is a Brownian motion $\left(B_{t}\right)_{0 \leq t \leq 1}$ such that $B_{t}^{H}=\int_{0}^{t} K(t, s) d B_{s}$. Thus, by Proposition 3.1, we obtain

$$
B_{t}^{H}(r)=\int_{0}^{t} k(t, s) d\left(B_{s}+r \int_{0}^{s}\left(K^{-1} \beta .\right)_{u} d u\right)
$$

We set

$$
\rho_{t}=\exp \left\{-r \int_{0}^{t}\left\langle\left(K^{-1} \beta \cdot\right)_{s}, d B_{s}\right\rangle-\frac{r^{2}}{2} \int_{0}^{t}\left(K^{-1} \beta \cdot\right)_{s}^{2} d s\right\}
$$

For $H>\frac{1}{2}$, by Proposition 3.1, we have

$$
\begin{equation*}
\left(K^{-1} \beta .\right)_{t}=h_{t}+\left((K h)_{t}+\int_{0}^{t} \Psi(t, u) d(K h)_{u}\right) \frac{k(1, t)}{\int_{t}^{1} k(1, u)^{2} d u} \tag{3.4}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\int_{0}^{1}\left(K^{-1} \beta .\right)_{t}^{2} d t \leq & 2 \int_{0}^{1} h_{t}^{2} d t+4 \int_{0}^{1}(K h)_{t}^{2} d \frac{1}{\int_{t}^{1} k(1, u)^{2} d u} \\
& +4 \int_{0}^{1} \frac{\left(\int_{0}^{t} \Psi(t, u) d(K h)_{u}\right)^{2} k^{2}(1, t)}{\left(\int_{t}^{1} k(1, u)^{2} d u\right)^{2}} d t \tag{3.5}
\end{align*}
$$

By the definition of k in (2.2), we have

$$
\begin{equation*}
\frac{c_{H}}{H-\frac{1}{2}}(1-t)^{H-\frac{1}{2}} \leq k(1, t) \leq \frac{c_{H}}{H-\frac{1}{2}} t^{\frac{1}{2}-H}(1-t)^{H-\frac{1}{2}} . \tag{3.6}
\end{equation*}
$$

Since $K h$ is H-Hölder continuous and $(K h)_{1}=0$, there is a constant C_{K} such that

$$
\begin{equation*}
\left|(K h)_{t}\right| \leq C_{K}(1-t)^{H}\left(\int_{0}^{1} h_{t}^{2} d t\right)^{\frac{1}{2}} \tag{3.7}
\end{equation*}
$$

By the expression of K,

$$
\begin{aligned}
(K h)_{t} & =c_{H} \int_{0}^{t} s^{\frac{1}{2}-H} \int_{s}^{t} u^{H-\frac{1}{2}}(u-s)^{H-\frac{1}{2}} d u h_{s} d s \\
& =c_{H} \int_{0}^{t} \int_{0}^{u} s^{\frac{1}{2}-H} u^{H-\frac{1}{2}}(u-s)^{H-\frac{3}{2}} h_{s} d s d u
\end{aligned}
$$

which implies that

$$
\begin{equation*}
(K h)_{t}^{\prime}=c_{H} \int_{0}^{t} s^{\frac{1}{2}-H} t^{H-\frac{1}{2}}(t-s)^{H-\frac{3}{2}} h_{s} d s \tag{3.8}
\end{equation*}
$$

Suppose that there is a constant C_{h} such that $|h| \leq C_{h}$. By (3.6), (3.7) and (3.8), we get

$$
\begin{align*}
& \int_{0}^{1}(K h)_{t}^{2} d \frac{1}{\int_{t}^{1} k(1, u)^{2} d u} \\
& \leq\left|\lim _{t \rightarrow 1} \frac{(K h)_{t}^{2}}{\int_{t}^{1} k(1, u)^{2} d u}\right|+\left|\int_{0}^{1} \frac{2(K h)_{t}(K h)_{t}^{\prime}}{\int_{t}^{1} k(1, u)^{2} d u} d t\right| \\
& \leq \frac{2 H\left(H-\frac{1}{2}\right)^{2} C_{K}^{2} C_{h}^{2}}{c_{H}^{2}}+\frac{4 H\left(H-\frac{1}{2}\right)^{2} C_{K} C_{h}^{2}}{c_{H}} \int_{0}^{1} t^{H-\frac{1}{2}} \frac{\int_{0}^{t} s^{\frac{1}{2}-H}(t-s)^{H-\frac{3}{2}} d s}{(1-t)^{H}} d t \\
& =\frac{2 H\left(H-\frac{1}{2}\right)^{2} C_{K}^{2} C_{h}^{2}}{c_{H}^{2}}+\frac{4 H\left(H-\frac{1}{2}\right)^{2} C_{K} C_{h}^{2} B\left(H-\frac{1}{2}, \frac{3}{2}-H\right)}{(1-H) c_{H}} . \tag{3.9}
\end{align*}
$$

By (2.2), there exists a constant C_{Ψ} such that

$$
\begin{equation*}
\Psi(t, s) \leq C_{\Psi} s^{\frac{1}{2}-H}(t-s)^{\frac{1}{2}-H}(1-t)^{H+\frac{1}{2}} \tag{3.10}
\end{equation*}
$$

By (3.8) and (3.10), we obtain

$$
\begin{aligned}
& \left(\int_{0}^{t} \Psi(t, u)(K h)_{u}^{\prime} d u\right)^{2} \\
& \leq\left(\int_{0}^{t} C_{\Psi} u^{\frac{1}{2}-H}(t-u)^{\frac{1}{2}-H}(1-t)^{H+\frac{1}{2}} c_{H} \int_{0}^{u} s^{\frac{1}{2}-H} u^{H-\frac{1}{2}}(u-s)^{H-\frac{3}{2}}\left|h_{s}\right| d s d u\right)^{2} \\
& =\left(\int_{0}^{t}\left(\int_{s}^{t} C_{\Psi} u^{\frac{1}{2}-H}(t-u)^{\frac{1}{2}-H}(1-t)^{H+\frac{1}{2}} c_{H} s^{\frac{1}{2}-H} u^{H-\frac{1}{2}}(u-s)^{H-\frac{3}{2}} d u\right)\left|h_{s}\right| d s\right)^{2} \\
& \leq c_{H}^{2} C_{\Psi}^{2}(1-t)^{2 H+1} \int_{0}^{t} s^{1-2 H}\left(\int_{s}^{t}(t-u)^{\frac{1}{2}-H}(u-s)^{H-\frac{3}{2}} d u\right)^{2} d s \int_{0}^{t} h_{s}^{2} d s \\
& \leq \frac{c_{H}^{2} C_{\Psi}^{2} B\left(\frac{3}{2}-H, H-\frac{1}{2}\right)}{2-2 H}(1-t)^{2 H+1} \int_{0}^{1} h_{s}^{2} d s .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\int_{0}^{1} \frac{\left(\int_{0}^{t} \Psi(t, u) d(K h)_{u}\right)^{2} k^{2}(1, t)}{\left(\int_{t}^{1} k(1, u)^{2} d u\right)^{2}} d t \leq \frac{4 H^{2}\left(H-\frac{1}{2}\right)^{2} C_{\Psi}^{2} B\left(\frac{3}{2}-H, H-\frac{1}{2}\right) C_{h}^{2}}{(2-2 H)^{2}} \tag{3.11}
\end{equation*}
$$

By (3.5), (3.9) and (3.11), we have that $\mathbb{E}_{\nu}\left[\rho_{1}\right]=1$. It is easy to check that $\beta \in I_{0^{+}}^{H+\frac{1}{2}}\left(L^{2}(\Omega ; \nu)\right)$. Hence, by [12, Theorem 2],

$$
B_{t}^{H}(r)=\left(\int_{0}^{t} K(t, s) d\left(B_{s}+r \int_{0}^{s}\left(K^{-1} \beta\right)_{u} d u\right)\right)_{0 \leq t \leq 1}
$$

is a fractional Brownian motion under $\rho_{1} \nu$. Then $\left(X_{t}(r)\right)_{0 \leq t \leq 1}$ and $\left(X_{t}\right)_{0 \leq t \leq 1}$ have the same distribution under $\rho_{1} \nu$ and ν respectively. Therefore, for $F=$

$$
\begin{aligned}
f\left(X_{t_{1}}, \ldots, X_{t_{n}}\right) & \in \mathcal{F} \mathcal{C}^{\infty}(\Omega), \\
& \mathbb{E}_{\rho_{1} \nu}\left[f\left(X_{t_{1}}(r), \cdots, X_{t_{n}}(r)\right)\right]=\mathbb{E}_{\nu}\left[f\left(X_{t_{1}}, \cdots, X_{t_{n}}\right)\right] .
\end{aligned}
$$

Differentiating above equation with respect to r we have

$$
\begin{aligned}
& \left.\frac{d}{d r} \mathbb{E}_{\nu}\left[\rho_{1} f\left(X_{t_{1}}(r), \cdots, X_{t_{n}}(r)\right)\right]\right|_{r=0} \\
& \quad=\mathbb{E}_{\nu}\left[\left.\frac{d}{d r} \rho_{1}\right|_{r=0} f\left(X_{t_{1}}, \cdots, X_{t_{n}}\right)\right]+\mathbb{E}_{\nu}\left[\left.\frac{d}{d r} f\left(X_{t_{1}}(r), \cdots, X_{t_{n}}(r)\right)\right|_{r=0}\right] \\
& \quad=-\mathbb{E}_{\nu}\left[F \int_{0}^{1}\left\langle\left(K^{-1} \beta \cdot\right)_{t}, d B_{t}\right\rangle\right]+\mathbb{E}_{\nu}\left[D_{h} F\right]=0
\end{aligned}
$$

Thus for adapted bounded process h, we get

$$
\mathbb{E}_{\nu}\left[F \int_{0}^{1}\left\langle\left(K^{-1} \beta .\right)_{t}, d B_{t}\right\rangle\right]=\mathbb{E}_{\nu}\left[D_{h} F\right]
$$

Hence, for $F \in \mathcal{F}_{T}$,

$$
\begin{equation*}
\mathbb{E}_{\nu}\left[F \int_{0}^{T}\left\langle\left(K^{-1} \beta .\right)_{t}, d B_{t}\right\rangle\right]=\mathbb{E}_{\nu}\left[D_{h} F\right] \tag{3.12}
\end{equation*}
$$

By (3.5), (3.9) and (3.11), we can easily obtain that $\left(K^{-1} \beta.\right) \in L^{2}(\Omega ; \nu)$ for any adapted process $h \in L^{2}(\Omega ; \nu)$. Therefore, (3.12) holds for any adapted process $h \in L^{2}(\Omega ; \nu)$. Moreover, since D is a closable operator, the integration by parts formula (3.12) holds for any $F \in \operatorname{Dom}(D) \cap \mathcal{F}_{T}$.

4. Martingale Representation Theorem and Logarithmic-Sobolev Inequality for ν

Inspired by [8] and [11], we first established a martingale representation theorem for ν through its integration by parts formula, then we prove a LogarithmicSobolev inequality for ν by the martingale representation theorem.

Theorem 4.1. Suppose that $F \in \operatorname{Dom}(D) \cap \mathcal{F}_{T}$, there exists a \mathcal{F}_{t}-predictable process $\left(\eta_{t}\right)_{0 \leq t \leq 1}$ such that

$$
F=\mathbb{E}_{\nu}[F]+\int_{0}^{T}\left\langle\eta_{t}, d B_{t}\right\rangle
$$

where

$$
\begin{align*}
& \eta_{t}=\mathbb{E}_{\nu}\left[\left(K^{-1} D F\right)_{t}\right. \\
& \left.\left.-\int_{t}^{T}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} \int_{s}^{T} \delta(u, s)\left(K^{-1} D F\right)_{u} d u\right) d s \right\rvert\, \mathcal{F}_{t}\right] \tag{4.1}
\end{align*}
$$

in which

$$
\delta(u, s)=\left(\int_{s}^{u} \frac{(1+\Psi(v, s)) k(1, v)^{2}}{\left(\int_{v}^{1} k(1, w) d w\right)^{2}} d v-\frac{1+\Psi(u, s)}{\int_{u}^{1} k(1, v)^{2} d v}\right) k(1, u)
$$

Proof. By the definition of $D_{h} F$, we have

$$
\begin{equation*}
\mathbb{E}_{\nu}\left[D_{h} F\right]=\mathbb{E}_{\nu}\left[\langle D F, K h\rangle_{\mathcal{H}^{H}}\right]=\mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\left(K^{-1} D F\right)_{t}, h_{t}\right\rangle d t\right] \tag{4.2}
\end{equation*}
$$

By (3.3), we obtain

$$
\begin{align*}
\mathbb{E}_{\nu}\left[D_{h} F\right] & =\mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\eta_{t}, d B_{t}\right\rangle \int_{0}^{T}\left\langle\left(K^{-1} \beta .\right)_{t}, d B_{t}\right\rangle\right] \tag{4.3}\\
& =\mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\eta_{t},\left(K^{-1} \beta .\right)_{t}\right\rangle d t\right]
\end{align*}
$$

For any $j \in L^{2}(\Omega ; \nu)$, let $j_{t}=\left(K^{-1} \beta .\right)_{t}$. Then

$$
(K h)_{t}+\int_{0}^{t}\left((K h)_{s}+\int_{0}^{s} \Psi(s, u) d(K h)_{u}\right) \frac{k(1, s) k(t, s)}{\int_{s}^{1} k(1, u)^{2} d u} d s=(K j)_{t}
$$

by (2.3) and (2.4), we have

$$
(K h)_{t}=(K j)_{t}-\int_{0}^{t} \varphi(t, s) d(K j)_{s}
$$

and $K h \in \mathcal{H}_{0}$. Thus

$$
\begin{equation*}
h_{t}=j_{t}-\left(K^{-1}\left(\int_{0}^{\cdot} \varphi(\cdot, s) d(K j)_{s}\right)\right)_{t} \tag{4.4}
\end{equation*}
$$

By (4.2), (4.3) and (4.4), we get

$$
\begin{align*}
& \mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\left(K^{-1} D F\right)_{t}, j_{t}-\left(K^{-1}\left(\int_{0}^{\cdot} \varphi(\cdot, s) d(K j)_{s}\right)\right)_{t}\right\rangle d t\right] \tag{4.5}\\
& =\mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\eta_{t}, j_{t}\right\rangle d t\right]
\end{align*}
$$

It is obvious that

$$
\begin{aligned}
& \int_{0}^{t} \varphi(t, s)(K j)_{s}^{\prime} d s \\
& =\int_{0}^{t}\left\{\int_{s}^{t}\left(\int_{s}^{u} \frac{(1+\Psi(v, s)) k(1, v)^{2}}{\left(\int_{v}^{1} k(1, w)^{2} d w\right)^{2}} d v-\frac{1+\Psi(u, s)}{\int_{u}^{1} k(1, v)^{2} d v}\right) k(1, u) k(t, u) d u\right\}(K j)_{s}^{\prime} d s \\
& =\int_{0}^{t} k(t, u)\left\{\int_{0}^{u}\left(\int_{s}^{u} \frac{(1+\Psi(v, s)) k(1, v)^{2}}{\left(\int_{v}^{1} k(1, w)^{2} d w\right)^{2}} d v-\frac{1+\Psi(u, s)}{\int_{u}^{1} k(1, v)^{2} d v}\right) k(1, u)(K j)_{s}^{\prime} d s\right\} d u \\
& =\left(K \int_{0} \delta(\cdot, s)(K j)_{s}^{\prime} d s\right)_{t}
\end{aligned}
$$

where

$$
\begin{equation*}
\delta(u, s)=\left(\int_{s}^{u} \frac{(1+\Psi(v, s)) k(1, v)^{2}}{\left(\int_{v}^{1} k(1, w)^{2} d w\right)^{2}} d v-\frac{1+\Psi(u, s)}{\int_{u}^{1} k(1, v)^{2} d v}\right) k(1, u) . \tag{4.6}
\end{equation*}
$$

Hence, the left side of (4.5) can be written as

$$
\begin{align*}
& \mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\left(K^{-1} D F\right)_{t}, j_{t}\right\rangle d t\right]-\mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\left(K^{-1} D F\right)_{t}, \int_{0}^{t} \delta(t, s)(K j)_{s}^{\prime} d s\right\rangle d t\right] \\
& =\mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\left(K^{-1} D F\right)_{t}, j_{t}\right\rangle d t\right]-\mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\int_{s}^{T} \delta(t, s)\left(K^{-1} D F\right)_{t} d t,(K j)_{s}^{\prime}\right\rangle d s\right] . \tag{4.7}
\end{align*}
$$

By (3.8), the second term for above equation is

$$
\begin{aligned}
& \mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\int_{s}^{T} \delta(t, s)\left(K^{-1} D F\right)_{t} d t,(K j)_{s}^{\prime}\right\rangle d s\right] \\
& =\mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\int_{s}^{T} \delta(u, s)\left(K^{-1} D F\right)_{u} d u, c_{H} \int_{0}^{s} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} j_{t} d t\right\rangle d s\right] \\
& =\mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\int_{t}^{T}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} \int_{s}^{T} \delta(u, s)\left(K^{-1} D F\right)_{u} d u\right) d s, j_{t}\right\rangle d t\right]
\end{aligned}
$$

Then by (4.5) and (4.7), we have

$$
\begin{aligned}
& \mathbb{E}_{\nu} {\left[\int _ { 0 } ^ { T } \left\langle\left(K^{-1} D F\right)_{t}\right.\right.} \\
&\left.\left.-\int_{t}^{T}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} \int_{s}^{T} \delta(u, s)\left(K^{-1} D F\right)_{u} d u\right) d s, j_{t}\right\rangle d t\right] \\
&=\mathbb{E}_{\nu}\left[\int_{0}^{T}\left\langle\eta_{t}, j_{t}\right\rangle d t\right]
\end{aligned}
$$

which yields

$$
\begin{aligned}
\eta_{t}= & \mathbb{E}_{\nu}\left[\left(K^{-1} D F\right)_{t}\right. \\
& \left.\left.-\int_{t}^{T}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} \int_{s}^{T} \delta(u, s)\left(K^{-1} D F\right)_{u} d u\right) d s \right\rvert\, \mathcal{F}_{t}\right]
\end{aligned}
$$

Now we can prove a Logarithmic-Sobolev inequality for ν by Theorem 4.1.
Theorem 4.2. For $F \in \operatorname{Dom}(D) \cap \mathcal{F}_{T}$, we have

$$
\mathbb{E}_{\nu}\left[F^{2} \ln F^{2}\right] \leq 4\left(1+\frac{4 C}{2-2 H}\right) \mathbb{E}_{\nu}\left[\int_{0}^{T}\left|\left(K^{-1} D F\right)_{s}\right|^{2} d s\right]+\mathbb{E}_{\nu}\left[F^{2}\right] \ln \mathbb{E}_{\nu}\left[F^{2}\right]
$$

where

$$
\begin{aligned}
C= & \frac{c_{H}^{2} C_{1}^{2}}{(2-2 H)^{2}\left(H-\frac{1}{2}\right)^{2}}+\left(\frac{c_{H} C_{1} C_{\Psi} B\left(H-\frac{1}{2}, \frac{3}{2}-H\right)}{(2-2 H) \sqrt{2-2 H}}\right)^{2}+\frac{c_{H}^{2} C_{2}^{2}}{\left(H-\frac{1}{2}\right)^{2}} \\
& +\left(\frac{c_{H} C_{2} C_{\Psi} B\left(H-\frac{1}{2}, \frac{3}{2}-H\right)}{\sqrt{2-2 H}}\right)^{2}
\end{aligned}
$$

in which $C_{1}=\frac{\left(H-\frac{1}{2}\right)(2 H)^{2}}{c_{H}(1-T)^{2 H+1}}, C_{2}=\frac{2 H\left(H-\frac{1}{2}\right)}{c_{H}(1-T)^{H+\frac{1}{2}}}$ and C_{Ψ} satisfies (3.10).
Proof. Let $G=F^{2}$. We let G_{t} be a right continuous version of $\mathbb{E}_{\nu}\left[G \mid \mathcal{F}_{t}\right]$, then by Theorem 4.1, we have $d G_{t}=\left\langle\eta_{t}, d B_{t}\right\rangle$. By Itô formula, we obtain

$$
d\left(G_{t} \ln \left(G_{t}\right)\right)=\left(1+\ln \left(G_{t}\right)\right) d G_{t}+\frac{1}{2} \frac{\left|\eta_{t}\right|^{2}}{G_{t}} d t=\left\langle\left(1+\ln \left(G_{t}\right)\right) \eta_{t}, d B_{t}\right\rangle+\frac{1}{2} \frac{\left|\eta_{t}\right|^{2}}{G_{t}} d t
$$

which implies

$$
\begin{equation*}
\mathbb{E}_{\nu}[G \ln G]-\mathbb{E}_{\nu}[G] \ln \mathbb{E}_{\nu}[G]=\frac{1}{2} \mathbb{E}_{\nu}\left[\int_{0}^{T} \frac{\left|\eta_{t}\right|^{2}}{G_{t}} d t\right] \tag{4.8}
\end{equation*}
$$

Since $D F^{2}=2 F D F$,

$$
\begin{aligned}
\eta_{t}= & \mathbb{E}_{\nu}\left[2 F \left(\left(K^{-1} D F\right)_{t}\right.\right. \\
& \left.\left.-\int_{t}^{T} \int_{t}^{u}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} \delta(u, s)\left(K^{-1} D F\right)_{u}\right) d s d u\right) \mid \mathcal{F}_{t}\right] .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left|\eta_{t}\right|^{2} \leq & 8 \mathbb{E}_{\nu}\left[F^{2} \mid \mathcal{F}_{t}\right] \mathbb{E}_{\nu}\left[\left|\left(K^{-1} D F\right)_{t}\right|^{2}\right. \\
& \left.\left.+\left|\int_{t}^{T} \int_{t}^{u}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} \delta(u, s)\left(K^{-1} D F\right)_{u}\right) d s d u\right|^{2} \right\rvert\, \mathcal{F}_{t}\right] \\
\leq & 8 \mathbb{E}_{\nu}\left[F^{2} \mid \mathcal{F}_{t}\right] \mathbb{E}_{\nu}\left[\left|\left(K^{-1} D F\right)_{t}\right|^{2}\right. \\
& +\int_{t}^{T}\left(\int_{t}^{u}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} \delta(u, s)\right) d s\right)^{2} d u \\
& \left.\times \int_{t}^{T}\left|\left(K^{-1} D F\right)_{u}\right|^{2} d u \mid \mathcal{F}_{t}\right] \tag{4.9}
\end{align*}
$$

By (3.6), (3.10) and (4.6), for the constants

$$
C_{1}=\frac{\left(H-\frac{1}{2}\right)(2 H)^{2}}{c_{H}(1-T)^{2 H+1}} \quad \text { and } \quad C_{2}=\frac{2 H\left(H-\frac{1}{2}\right)}{c_{H}(1-T)^{H+\frac{1}{2}}}
$$

we have

$$
\begin{align*}
|\delta(u, s)| & =\left|\left(\int_{s}^{u} \frac{(1+\Psi(v, s)) k(1, v)^{2}}{\left(\int_{v}^{1} k(1, w)^{2} d w\right)^{2}} d v-\frac{1+\Psi(u, s)}{\int_{u}^{1} k(1, v)^{2} d v}\right) k(1, u)\right| \tag{4.10}\\
& =A_{1}+A_{2}+A_{3}+A_{4}
\end{align*}
$$

where

$$
\begin{array}{ll}
A_{1}=\frac{C_{1} u^{\frac{1}{2}-H}}{2-2 H}, & A_{2}=C_{1} C_{\Psi} \int_{s}^{u} s^{\frac{1}{2}-H}(v-s)^{\frac{1}{2}-H} v^{1-2 H} d v u^{\frac{1}{2}-H} \\
A_{3}=C_{2} u^{\frac{1}{2}-H}, & A_{4}=C_{2} C_{\Psi} s^{\frac{1}{2}-H}(u-s)^{\frac{1}{2}-H} u^{\frac{1}{2}-H}
\end{array}
$$

Therefore, by (4.9),

$$
\begin{align*}
\left|\eta_{t}\right|^{2} \leq & 8 \mathbb{E}_{\nu}\left[F^{2} \mid \mathcal{F}_{t}\right] \mathbb{E}_{\nu}\left[\left|\left(K^{-1} D F\right)_{t}\right|^{2}\right. \\
& +4 \int_{t}^{T}\left(\int_{t}^{u}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} A_{1}\right) d s\right)^{2} \\
& +\left(\int_{t}^{u}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} A_{2}\right) d s\right)^{2} \\
& +\left(\int_{t}^{u}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} A_{3}\right) d s\right)^{2} \\
& \left.+\left.\left(\int_{t}^{u}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} A_{4}\right) d s\right)^{2} d u \int_{t}^{T}\left|\left(K^{-1} D F\right)_{u}\right|^{2} d u\right|_{\mathcal{F}_{t}}\right] \tag{4.11}
\end{align*}
$$

It is obvious that

$$
\begin{equation*}
\left(\int_{t}^{u}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} A_{1}\right) d s\right)^{2} \leq \frac{c_{H}^{2} C_{1}^{2} t^{1-2 H}}{(2-2 H)^{2}\left(H-\frac{1}{2}\right)^{2}} \tag{4.12}
\end{equation*}
$$

It holds that

$$
\begin{align*}
& \left(\int_{t}^{u}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} A_{2}\right) d s\right)^{2} \\
& =\left(c_{H} C_{1} C_{\Psi}\right)^{2} \\
& \quad\left(\int_{t}^{u} \int_{s}^{u}\left(t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} s^{\frac{1}{2}-H}(v-s)^{\frac{1}{2}-H} v^{1-2 H} u^{\frac{1}{2}-H}\right) d v d s\right)^{2} \\
& =\left(c_{H} C_{1} C_{\Psi}\right)^{2}\left(\int_{t}^{u} t^{\frac{1}{2}-H} v^{1-2 H} u^{\frac{1}{2}-H} \int_{t}^{v}\left((s-t)^{H-\frac{3}{2}}(v-s)^{\frac{1}{2}-H}\right) d s d v\right)^{2} \\
& =\left(c_{H} C_{1} C_{\Psi} B\left(H-\frac{1}{2}, \frac{3}{2}-H\right)\right)^{2} t^{1-2 H} u^{1-2 H}\left(\int_{t}^{u} v^{1-2 H} d v\right)^{2} \\
& \leq\left(\frac{c_{H} C_{1} C_{\Psi} B\left(H-\frac{1}{2}, \frac{3}{2}-H\right)}{2-2 H}\right)^{2} t^{1-2 H} u^{1-2 H} \tag{4.13}
\end{align*}
$$

We can easily obtain that

$$
\begin{equation*}
\left(\int_{t}^{u}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} A_{3}\right) d s\right)^{2} \leq \frac{c_{H}^{2} C_{2}^{2}}{\left(H-\frac{1}{2}\right)^{2}} t^{1-2 H} \tag{4.14}
\end{equation*}
$$

It is easy to check that

$$
\begin{align*}
& \left(\int_{t}^{u}\left(c_{H} t^{\frac{1}{2}-H} s^{H-\frac{1}{2}}(s-t)^{H-\frac{3}{2}} A_{4}\right) d s\right)^{2} \\
& =\left(c_{H} C_{2} C_{\Psi}\right)^{2} t^{1-2 H} u^{1-2 H}\left(\int_{t}^{u}(s-t)^{H-\frac{3}{2}}(u-s)^{\frac{1}{2}-H} d s\right)^{2} \tag{4.15}\\
& =\left(c_{H} C_{2} C_{\Psi} B\left(H-\frac{1}{2}, \frac{3}{2}-H\right)\right)^{2} t^{1-2 H} u^{1-2 H}
\end{align*}
$$

By (4.11), (4.12), (4.13), (4.14) and (4.15), we have

$$
\begin{equation*}
\left|\eta_{t}\right|^{2} \leq 8 \mathbb{E}_{\nu}\left[F^{2} \mid \mathcal{F}_{t}\right] \mathbb{E}_{\nu}\left[\left|\left(K^{-1} D F\right)_{t}\right|^{2}+4 C t^{1-2 H} \int_{t}^{T}\left|\left(K^{-1} D F\right)_{u}\right|^{2} d u \mid \mathcal{F}_{t}\right] \tag{4.16}
\end{equation*}
$$

where

$$
\begin{aligned}
C= & \frac{c_{H}^{2} C_{1}^{2}}{(2-2 H)^{2}\left(H-\frac{1}{2}\right)^{2}}+\left(\frac{c_{H} C_{1} C_{\Psi} B\left(H-\frac{1}{2}, \frac{3}{2}-H\right)}{(2-2 H) \sqrt{2-2 H}}\right)^{2} \\
& +\frac{c_{H}^{2} C_{2}^{2}}{\left(H-\frac{1}{2}\right)^{2}}+\left(\frac{c_{H} C_{2} C_{\Psi} B\left(H-\frac{1}{2}, \frac{3}{2}-H\right)}{\sqrt{2-2 H}}\right)^{2} .
\end{aligned}
$$

Then it holds that

$$
\begin{aligned}
\mathbb{E}_{\nu}\left[\int_{0}^{T} \frac{\left|\eta_{t}\right|^{2}}{G_{t}} d t\right] & \leq 8\left(1+4 C \int_{0}^{T} t^{1-2 H} d t\right) \mathbb{E}_{\nu}\left[\int_{0}^{T}\left|\left(K^{-1} D F\right)_{s}\right|^{2} d s\right] \\
& \leq 8\left(1+\frac{4 C}{2-2 H}\right) \mathbb{E}_{\nu}\left[\int_{0}^{T}\left|\left(K^{-1} D F\right)_{s}\right|^{2} d s\right]
\end{aligned}
$$

Hence, by (4.8), we obtain a Logarithmic-Sobolev inequality for ν as follows

$$
\mathbb{E}_{\nu}\left[F^{2} \ln F^{2}\right] \leq 4\left(1+\frac{4 C}{2-2 H}\right) \mathbb{E}_{\nu}\left[\int_{0}^{T}\left|\left(K^{-1} D F\right)_{s}\right|^{2} d s\right]+\mathbb{E}_{\nu}\left[F^{2}\right] \ln \mathbb{E}_{\nu}\left[F^{2}\right]
$$

Acknowledgment.We would like to acknowledge many helpful comments and suggestions from the referees.

References

1. Aida, S.: Logarithmic derivatives of heat kernels and Logarithmic Sobolev inequalities with unbounded diffusion coefficients on loop spaces. Journal of Functional Analysis, 174:430-477, 2000.
2. Bismut, J. M.: Large Deviations and the Malliavin Calculus. Birkhäuser, 1984.
3. Bogachev, V. I.: Gaussian Measures. American Mathematical Society, 1998.
4. Decreusefond, L. and Üstünel, A. S. Stochastic analysis of the fractional Brownian motion. Potential Analysis, 10(2):177-214, 1999.
5. Driver, B. K.: A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold. Transactions of the American Mathematical Society, 342(1):375-395, 1994.
6. Enchev, O. and Stroock, D. W.: Pinned Brownian motion and its perturbations. Advances in Mathematics, 119(2):127-154, 1996.
7. Gasbarra, D., Sottinen, T., and Valkeila, E.: Gaussian bridges. In Stochastic Analysis and Applications, volume 2 of Abel Symp., pages 361-382. Springer Berlin, 2007.
8. Gong, F. Z. and Ma, Z. M.: The Log-Sobolev inequality on loop space over a compact Riemannian manifold. Journal of Functional Analysis, 157:599-623, 1998.
9. Gross, L.: Logarithmic Sobolev inequalities on loop groups. Journal of Functional Analysis, 102:268-313, 1991.
10. Hsu, E. P.: Integration by parts in loop spaces. Mathematische Annalen, 309(2):331-339, 1997.
11. Hsu, E. P.: Stochastic Analysis on Manifolds. American Mathematical Society, 2002.
12. Nualart, D. and Ouknine, Y.: Regularization of differential equations by fractional noise. Stochastic Processes and their Applications, 102(1):103-116, 2002.

Xiaoxia Sun: School of Mathematics, Dongbei University of Finance and Economics, Dalian, 116025, China

E-mail address: xiaoxiasun@dufe.edu.cn
Feng Guo: School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China

E-mail address: fguo@dlut.edu.cn

[^0]: Received 2016-12-21; Communicated by the editors.
 2010 Mathematics Subject Classification. Primary 60G18; Secondary 60H30.
 Key words and phrases. Fractional Brownian bridge measures, integration by parts formula, martingale representation theorem, Logarithmic-Sobolev inequality.

 * Xiaoxia Sun is supported by the National Natural Science Foundation of China under grants 71471030. Feng Guo is supported by the National Natural Science Foundation of China under grants 11401074.

