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Abstract. In this paper, we consider the stochastic analysis for fractional
Brownian bridge measures. We first give an integration by parts formula
for such measures by Bismut’s method and a pull back formula. Using
this integration by parts formula, we then obtain a generalized Clark-Ocone
martingale representation theorem for fractional Brownian bridge measures.
Consequently, a Logarithmic-Sobolev inequality is derived by the martingale
representation theorem for such measures.

1. Introduction

Fractional Brownian bridges are Gaussian bridges (see [7]). Measures deter-
mined by fractional Brownian bridges are called fractional Brownian bridge mea-
sures. In this paper, we consider the integration by parts formula, the martingale
representation and the Logarithmic-Sobolev inequality for such measures.

Much work has been done on the integration by parts formula for bridge mea-
sures. Driver [5] gave an integration by parts formula for Brownian bridge measures
on loop group with the vector field being C1. For Cameron-Martin vector field,
Enchev and Stroock [6] established an integration by parts formula for Brownian
bridge measures on the loop space over Riemannian manifold with Levi-Civita
connection. Similar results were also obtained in [10] by considering the path
space and the estimates of derivatives of the heat kernel.

Through integration by parts formulas for bridge measures, the martingale rep-
resentation and Logarithmic-Sobolev inequalities for bridge measures can be de-
rived. A Logarithmic-Sobolev inequality for Brownian bridge measures on the loop
group was obtained in [9]. For Brownian bridge measures on the loop space over
Riemannian manifold, Gong and Ma [8] obtained a Logarithmic-Sobolev inequality
by establishing a martingale representation theorem. For such measures, Aida [1]
also gave a Logarithmic -Sobolev inequality with unbounded diffusion coefficients.
A Logarithmic-Sobolev inequality for Gaussian measures was established in [3].

Received 2016-12-21; Communicated by the editors.
2010 Mathematics Subject Classification. Primary 60G18; Secondary 60H30.
Key words and phrases. Fractional Brownian bridge measures, integration by parts formula,

martingale representation theorem, Logarithmic-Sobolev inequality.
* Xiaoxia Sun is supported by the National Natural Science Foundation of China under grants

71471030. Feng Guo is supported by the National Natural Science Foundation of China under
grants 11401074.

87

           Serials Publications 
                 www.serialspublications.com 

Communications on Stochastic Analysis 
Vol. 11, No. 1 (2017) 87-98



88 XIAOXIA SUN AND FENG GUO

The paper is organized as follows. In Section 2, we give some preliminaries
about fractional Brownian bridge. We present in Section 3 a pull back formula
and an integration by parts formula. In Section 4, we obtain a martingale repre-
sentation theorem and a Logarithmic-Sobolev inequality for fractional Brownian
bridge measures.

2. Preliminaries

It is known from [7] that the anticipative representation of fractional Brownian
bridge (Xt)0≤t≤1 satisfies the following integral equation

Xt = BH
t −

∫ t

0

(

Xs +

∫ s

0

Ψ(s, u)dXu

)

k(1, s)k(t, s)
∫ 1

s
k(1, u)2du

ds, (2.1)

where BH is a fractional Brownian motion,

k(t, s) = cHs
1
2
−H

∫ t

s

uH− 1
2 (u− s)H− 3

2 du,

Ψ(t, s) =
sin(π(H + 1

2 ))

π
s

1
2
−H(t− s)

1
2
−H

∫ 1

t

uH+ 1
2 (u− t)H+ 1

2

u− s
du,

(2.2)

in which cH =
√

H(2H−1)

B(2−2H,H− 1
2
)
. By [7, Proposition 18], (Xt)0≤t≤1 admits the

non-anticipative representation

Xt = BH
t −

∫ t

0

ϕ(t, s)dBH
s , (2.3)

where

ϕ(t, s) =

∫ t

s

{

∫ u

s

(1 + Ψ(v, s))k(1, v)2

(
∫ 1

v
k(1, w)dw)2

dv − 1 + Ψ(u, s)
∫ 1

u
k(1, v)2dv

}

k(1, u)k(t, u)du.

(2.4)

We set Ω = {ω ∈ C([0, 1];Rn) | ω0 = ω1 = 0} with the topology of local uni-
form convergence. Let (Ω,F ,Ft, ν) be a filtered probability space, where ν is the
fractional Brownian bridge measure such that coordinate process (Xt(ω))0≤t≤1 =
(ωt)0≤t≤1 satisfies integral equation (2.1), F is the ν- completion of the Borel
σ-algebra of Ω and Ft is the ν-completed natural filtration of ω.

For any p ∈ [1,∞), let Lp(Ω; ν) = {F | F : Ω → R, ‖F‖p := (Eν |F |p) 1
p < ∞}.

We denote (H + 1
2 )-Hölder left fractional Riemann-Liouville integral operator by

I
H+ 1

2

0+ (L2(Ω; ν)). In [4], the isomorphism operatorK : L2(Ω; ν) → I
H+ 1

2

0+ (L2(Ω; ν))

is defined as (Kh)t =
∫ t

0
k(t, s)hsds, where h ∈ L2(Ω; ν) and k satisfies (2.2). We

denote K−1 as the inverse operator of K. The Cameron-Martin vector field on Ω
is defined as

H0 = {Kh | h is adapted process, h ∈ L2(Ω; ν) and (Kh)1 = 0},
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with scalar product 〈Kh,Kg〉H0
= 〈h, g〉L2(Ω;ν) = Eν

[

∫ 1

0 〈ht, gt〉dt
]

. ForKh ∈ H0,

the directional derivative of F along Kh is

DhF (ω) = lim
δ→0

1

δ
(F (ω + δ(Kh))− F (ω)) .

The set of all the smooth cylindrical functions on Ω is denoted by

FC∞(Ω) = {F | F (ω) = f(ωt1 , ..., ωtn), 0 < t1 ≤ · · · ≤ tn ≤ 1, f ∈ C∞(Rn)}.
For F ∈ FC∞(Ω), the directional derivative of F is

DhF (ω) =

n
∑

i=1

〈∇iF, (Kh)ti〉Rn ,

where ∇iF = ∇if(ωt1 , · · · , ωtn) is the gradient with respect to the i-th variable of
f . The gradient DF : Ω → H0 is determined by 〈DF,Kh〉H0

= DhF . We denote
the domain of D by Dom(D).

3. Integration by Parts Formula for ν

To obtain an integration by parts formula for fractional Brownian bridge mea-
sures, as in [2], we first give a pull back formula for such measures. We need
construct the stochastic integral equation for the flow of (Xt)0≤t≤1 as follows. For
any r ∈ (−ǫ, ǫ),

Xt(r) = BH
t (r) −

∫ t

0

(

Xs(r) +

∫ s

0

Ψ(s, u)dXu(r)

)

k(1, s)k(t, s)
∫ 1

s
k(1, u)2du

ds, (3.1)

where BH
t (r) is defined as BH

t (r) = BH
t + rβt, in which β is a R

n-valued adapted
process.We give the form of β in the following pull back formula.

Proposition 3.1. If the solution of (3.1) satisfies

(1) (Xt(r))0≤t≤1 ∈ Ω for any r,

(2) d
dr
Xt(r)

∣

∣

r=0
exists and (Kh)t =

d
dr
Xt(r)

∣

∣

r=0
for (ht)0≤t≤1 ∈ L2(Ω; ν),

then

βt = (Kh)t +

∫ t

0

(

(Kh)s +

∫ s

0

Ψ(s, u)d(Kh)u

)

k(1, s)k(t, s)
∫ 1

s
k(1, u)2du

ds. (3.2)

Proof. Differentiating (3.1) with respect to r at r = 0, we obtain

d

dr
Xt(r)

∣

∣

∣

r=0
=

d

dr
BH

t (r)
∣

∣

∣

r=0

−
∫ t

0

(

d

dr
Xs(r)

∣

∣

∣

r=0
+

∫ s

0

Ψ(s, u)d
d

dr
Xu(r)

∣

∣

∣

r=0

)

k(1, s)k(t, s)
∫ 1

s
k(1, u)2du

ds.

By Condition 2, we have d
dr
Xt(r)

∣

∣

∣

r=0
= (Kh)t. Then,

(Kh)t = βt −
∫ t

0

(

(Kh)s +

∫ s

0

Ψ(s, u)d(Kh)u

)

k(1, s)k(t, s)
∫ 1

s
k(1, u)2du

ds,

which yields (3.2). �
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Now we can obtain an integration by parts formula for the fractional Brownian
bridge measure ν.

Theorem 3.2. For T ∈ (0, 1), F ∈ Dom(D) ∩ FT and Kh ∈ H0, an integration
by parts formula for fractional Brownian bridge measure ν is

Eν

[

F

∫ T

0

〈(

K−1β·

)

t
, dBt

〉

]

= Eν [DhF ], (3.3)

where

(K−1β·)t = ht +

(

(Kh)t +

∫ t

0

Ψ(t, u)d(Kh)u

)

k(1, t)
∫ 1

t
k(1, u)2du

.

Proof. It is proved in [4] that there is a Brownian motion (Bt)0≤t≤1 such that

BH
t =

∫ t

0
K(t, s)dBs. Thus, by Proposition 3.1, we obtain

BH
t (r) =

∫ t

0

k(t, s)d

(

Bs + r

∫ s

0

(

K−1β·

)

u
du

)

.

We set

ρt = exp

{

−r

∫ t

0

〈(

K−1β·

)

s
, dBs

〉

− r2

2

∫ t

0

(

K−1β·

)2

s
ds

}

.

For H > 1
2 , by Proposition 3.1, we have

(

K−1β·

)

t
= ht +

(

(Kh)t +

∫ t

0

Ψ(t, u)d(Kh)u

)

k(1, t)
∫ 1

t
k(1, u)2du

. (3.4)

It follows that
∫ 1

0

(

K−1β·

)2

t
dt ≤2

∫ 1

0

h2
tdt+ 4

∫ 1

0

(Kh)2td
1

∫ 1

t
k(1, u)2du

+ 4

∫ 1

0

(

∫ t

0 Ψ(t, u)d(Kh)u

)2

k2(1, t)

(
∫ 1

t
k(1, u)2du)2

dt.

(3.5)

By the definition of k in (2.2), we have
cH

H − 1
2

(1 − t)H− 1
2 ≤ k(1, t) ≤ cH

H − 1
2

t
1
2
−H(1− t)H− 1

2 . (3.6)

Since Kh is H-Hölder continuous and (Kh)1 = 0, there is a constant CK such
that

|(Kh)t| ≤ CK(1− t)H
(
∫ 1

0

h2
tdt

)

1
2

. (3.7)

By the expression of K,

(Kh)t =cH

∫ t

0

s
1
2
−H

∫ t

s

uH− 1
2 (u− s)H− 1

2 duhsds

=cH

∫ t

0

∫ u

0

s
1
2
−HuH− 1

2 (u − s)H− 3
2 hsdsdu,



ON MR AND LSI FOR FRACTIONAL BROWNIAN BRIDGE MEASURES 91

which implies that

(Kh)′t =cH

∫ t

0

s
1
2
−HtH− 1

2 (t− s)H− 3
2hsds. (3.8)

Suppose that there is a constant Ch such that |h| ≤ Ch. By (3.6), (3.7) and (3.8),
we get
∫ 1

0

(Kh)2td
1

∫ 1

t
k(1, u)2du

≤
∣

∣

∣

∣

∣

lim
t→1

(Kh)2t
∫ 1

t
k(1, u)2du

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ 1

0

2(Kh)t(Kh)′t
∫ 1

t
k(1, u)2du

dt

∣

∣

∣

∣

∣

≤2H(H − 1
2 )

2C2
KC2

h

c2H
+

4H(H − 1
2 )

2CKC2
h

cH

∫ 1

0

tH− 1
2

∫ t

0 s
1
2
−H(t− s)H− 3

2 ds

(1− t)H
dt

=
2H(H − 1

2 )
2C2

KC2
h

c2H
+

4H(H − 1
2 )

2CKC2
hB(H − 1

2 ,
3
2 −H)

(1−H)cH
.

(3.9)
By (2.2), there exists a constant CΨ such that

Ψ(t, s) ≤ CΨs
1
2
−H(t− s)

1
2
−H(1− t)H+ 1

2 . (3.10)

By (3.8) and (3.10), we obtain
(
∫

t

0

Ψ(t, u)(Kh)′udu

)2

≤

(∫

t

0

CΨu
1
2
−H(t− u)

1
2
−H(1− t)H+ 1

2 cH

∫

u

0

s
1
2
−H

u
H−

1
2 (u− s)H−

3
2 |hs|dsdu

)2

=

(
∫

t

0

(
∫

t

s

CΨu
1
2
−H(t− u)

1
2
−H(1− t)H+ 1

2 cHs
1
2
−H

u
H−

1
2 (u− s)H−

3
2 du

)

|hs|ds

)2

≤c
2
HC

2
Ψ(1− t)2H+1

∫

t

0

s
1−2H

(∫

t

s

(t− u)
1
2
−H(u− s)H−

3
2 du

)2

ds

∫

t

0

h
2
sds

≤
c2HC2

ΨB( 3
2
−H,H − 1

2
)

2− 2H
(1− t)2H+1

∫

1

0

h
2
sds.

It follows that

∫ 1

0

(

∫ t

0 Ψ(t, u)d(Kh)u

)2

k2(1, t)

(
∫ 1

t
k(1, u)2du)2

dt ≤ 4H2(H − 1
2 )

2C2
ΨB(32 −H,H − 1

2 )C
2
h

(2− 2H)2
.

(3.11)
By (3.5), (3.9) and (3.11), we have that Eν [ρ1] = 1. It is easy to check that

β ∈ I
H+ 1

2

0+ (L2(Ω; ν)). Hence, by [12, Theorem 2],

BH
t (r) =

(
∫ t

0

K(t, s)d

(

Bs + r

∫ s

0

(

K−1β
)

u
du

))

0≤t≤1

is a fractional Brownian motion under ρ1ν. Then (Xt(r))0≤t≤1 and (Xt)0≤t≤1

have the same distribution under ρ1ν and ν respectively. Therefore, for F =
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f(Xt1 , ..., Xtn) ∈ FC∞(Ω),

Eρ1ν [f(Xt1(r), · · · , Xtn(r))] = Eν [f(Xt1 , · · · , Xtn)].

Differentiating above equation with respect to r we have

d

dr
Eν [ρ1f(Xt1(r), · · · , Xtn(r))]

∣

∣

∣

∣

r=0

=Eν

[

d

dr
ρ1

∣

∣

∣

∣

∣

r=0

f(Xt1 , · · · , Xtn)

]

+ Eν

[

d

dr
f(Xt1(r), · · · , Xtn(r))

∣

∣

∣

∣

∣

r=0

]

=− Eν

[

F

∫ 1

0

〈(

K−1β·

)

t
, dBt

〉

]

+ Eν [DhF ] = 0.

Thus for adapted bounded process h, we get

Eν

[

F

∫ 1

0

〈(

K−1β·

)

t
, dBt

〉

]

= Eν [DhF ].

Hence, for F ∈ FT ,

Eν

[

F

∫ T

0

〈(

K−1β·

)

t
, dBt

〉

]

= Eν [DhF ]. (3.12)

By (3.5), (3.9) and (3.11), we can easily obtain that (K−1β·) ∈ L2(Ω; ν) for any
adapted process h ∈ L2(Ω; ν). Therefore, (3.12) holds for any adapted process
h ∈ L2(Ω; ν). Moreover, since D is a closable operator, the integration by parts
formula (3.12) holds for any F ∈ Dom(D) ∩ FT . �

4. Martingale Representation Theorem and

Logarithmic-Sobolev Inequality for ν

Inspired by [8] and [11], we first established a martingale representation theo-
rem for ν through its integration by parts formula, then we prove a Logarithmic-
Sobolev inequality for ν by the martingale representation theorem.

Theorem 4.1. Suppose that F ∈ Dom(D) ∩ FT , there exists a Ft-predictable
process (ηt)0≤t≤1 such that

F = Eν [F ] +

∫ T

0

〈ηt, dBt〉,

where

ηt = Eν

[

(K−1DF )t

−
∫ T

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2

∫ T

s

δ(u, s)(K−1DF )udu

)

ds

∣

∣

∣

∣

∣

Ft

]

, (4.1)

in which

δ(u, s) =

(

∫ u

s

(1 + Ψ(v, s))k(1, v)2

(
∫ 1

v
k(1, w)dw)2

dv − 1 + Ψ(u, s)
∫ 1

u
k(1, v)2dv

)

k(1, u).
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Proof. By the definition of DhF , we have

Eν [DhF ] = Eν [〈DF,Kh〉HH ] = Eν

[

∫ T

0

〈(K−1DF )t, ht〉dt
]

. (4.2)

By (3.3), we obtain

Eν [DhF ] =Eν

[

∫ T

0

〈ηt, dBt〉
∫ T

0

〈(

K−1β·

)

t
, dBt

〉

]

=Eν

[

∫ T

0

〈

ηt,
(

K−1β·

)

t

〉

dt

]

.

(4.3)

For any j ∈ L2(Ω; ν), let jt =
(

K−1β·

)

t
. Then

(Kh)t +

∫ t

0

(

(Kh)s +

∫ s

0

Ψ(s, u)d(Kh)u

)

k(1, s)k(t, s)
∫ 1

s
k(1, u)2du

ds = (Kj)t,

by (2.3) and (2.4), we have

(Kh)t = (Kj)t −
∫ t

0

ϕ(t, s)d(Kj)s,

and Kh ∈ H0. Thus

ht = jt −
(

K−1

(
∫ ·

0

ϕ(·, s)d(Kj)s

))

t

. (4.4)

By (4.2), (4.3) and (4.4), we get

Eν

[

∫ T

0

〈

(K−1DF )t, jt −
(

K−1

(
∫ ·

0

ϕ(·, s)d(Kj)s

))

t

〉

dt

]

= Eν

[

∫ T

0

〈ηt, jt〉 dt
]

.

(4.5)

It is obvious that
∫

t

0

ϕ(t, s)(Kj)′sds

=

∫

t

0

{

∫

t

s

(

∫

u

s

(1 + Ψ(v, s))k(1, v)2

(
∫ 1

v
k(1, w)2dw)2

dv −
1 + Ψ(u, s)
∫ 1

u
k(1, v)2dv

)

k(1, u)k(t, u)du

}

(Kj)′sds

=

∫

t

0

k(t, u)

{

∫

u

0

(

∫

u

s

(1 + Ψ(v, s))k(1, v)2

(
∫

1

v
k(1, w)2dw)2

dv −
1 + Ψ(u, s)
∫

1

u
k(1, v)2dv

)

k(1, u)(Kj)′sds

}

du

=

(

K

∫

·

0

δ(·, s)(Kj)′sds

)

t

,

where

δ(u, s) =

(

∫ u

s

(1 + Ψ(v, s))k(1, v)2

(
∫ 1

v
k(1, w)2dw)2

dv − 1 + Ψ(u, s)
∫ 1

u
k(1, v)2dv

)

k(1, u). (4.6)
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Hence, the left side of (4.5) can be written as

Eν

[

∫ T

0

〈

(K−1DF )t, jt
〉

dt

]

− Eν

[

∫ T

0

〈

(K−1DF )t,

∫ t

0

δ(t, s)(Kj)′sds

〉

dt

]

=Eν

[

∫ T

0

〈

(K−1DF )t, jt
〉

dt

]

− Eν

[

∫ T

0

〈

∫ T

s

δ(t, s)(K−1DF )tdt, (Kj)′s

〉

ds

]

.

(4.7)
By (3.8), the second term for above equation is

Eν

[

∫ T

0

〈

∫ T

s

δ(t, s)(K−1DF )tdt, (Kj)′s

〉

ds

]

=Eν

[

∫ T

0

〈

∫ T

s

δ(u, s)(K−1DF )udu, cH

∫ s

0

t
1
2
−HsH− 1

2 (s− t)H− 3
2 jtdt

〉

ds

]

=Eν

[

∫ T

0

〈

∫ T

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2

∫ T

s

δ(u, s)(K−1DF )udu

)

ds, jt

〉

dt

]

.

Then by (4.5) and (4.7), we have

Eν

[

∫ T

0

〈

(K−1DF )t

−
∫ T

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2

∫ T

s

δ(u, s)(K−1DF )udu

)

ds, jt

〉

dt

]

=Eν

[

∫ T

0

〈ηt, jt〉 dt
]

,

which yields

ηt =Eν

[

(K−1DF )t

−
∫ T

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2

∫ T

s

δ(u, s)(K−1DF )udu

)

ds

∣

∣

∣

∣

∣

Ft

]

.

�

Now we can prove a Logarithmic-Sobolev inequality for ν by Theorem 4.1.

Theorem 4.2. For F ∈ Dom(D) ∩ FT , we have

Eν [F
2 lnF 2] ≤ 4

(

1 +
4C

2− 2H

)

Eν

[

∫ T

0

|(K−1DF )s|2ds
]

+ Eν [F
2] lnEν [F

2],

where

C =
c2HC2

1

(2− 2H)2(H − 1
2 )

2
+

(

cHC1CΨB(H − 1
2 ,

3
2 −H)

(2− 2H)
√
2− 2H

)2

+
c2HC2

2

(H − 1
2 )

2

+

(

cHC2CΨB(H − 1
2 ,

3
2 −H)√

2− 2H

)2

,
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in which C1 =
(H− 1

2
)(2H)2

cH(1−T )2H+1 , C2 =
2H(H− 1

2
)

cH(1−T )H+1
2

and CΨ satisfies (3.10).

Proof. Let G = F 2. We let Gt be a right continuous version of Eν [G|Ft], then by
Theorem 4.1, we have dGt = 〈ηt, dBt〉. By Itô formula, we obtain

d(Gt ln(Gt)) =(1 + ln(Gt))dGt +
1

2

|ηt|2
Gt

dt = 〈(1 + ln(Gt))ηt, dBt〉+
1

2

|ηt|2
Gt

dt,

which implies

Eν [G lnG]− Eν [G] lnEν [G] =
1

2
Eν

[

∫ T

0

|ηt|2
Gt

dt

]

. (4.8)

Since DF 2 = 2FDF ,

ηt =Eν

[

2F
(

(K−1DF )t

−
∫ T

t

∫ u

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2 δ(u, s)(K−1DF )u

)

dsdu

)∣

∣

∣

∣

∣

Ft

]

.

It follows that

|ηt|2 ≤8Eν

[

F 2|Ft

]

Eν

[

|(K−1DF )t|2

+

∣

∣

∣

∣

∣

∫ T

t

∫ u

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2 δ(u, s)(K−1DF )u

)

dsdu

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

Ft





≤8Eν

[

F 2|Ft

]

Eν

[

|(K−1DF )t|2

+

∫ T

t

(
∫ u

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2 δ(u, s)

)

ds

)2

du

×
∫ T

t

∣

∣(K−1DF )u
∣

∣

2
du

∣

∣

∣

∣

∣

Ft

]

.

(4.9)
By (3.6), (3.10) and (4.6), for the constants

C1 =
(H − 1

2 )(2H)2

cH(1− T )2H+1
and C2 =

2H(H − 1
2 )

cH(1 − T )H+ 1
2

,

we have

|δ(u, s)| =
∣

∣

∣

∣

∣

(

∫ u

s

(1 + Ψ(v, s))k(1, v)2

(
∫ 1

v
k(1, w)2dw)2

dv − 1 + Ψ(u, s)
∫ 1

u
k(1, v)2dv

)

k(1, u)

∣

∣

∣

∣

∣

=A1 +A2 +A3 +A4,

(4.10)

where

A1 =
C1u

1
2
−H

2− 2H
, A2 = C1CΨ

∫ u

s

s
1
2
−H(v − s)

1
2
−Hv1−2Hdvu

1
2
−H

A3 = C2u
1
2
−H , A4 = C2CΨs

1
2
−H(u− s)

1
2
−Hu

1
2
−H .
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Therefore, by (4.9),

|ηt|2 ≤8Eν

[

F 2|Ft

]

Eν

[

|(K−1DF )t|2

+ 4

∫ T

t

(
∫ u

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2A1

)

ds

)2

+

(
∫ u

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2A2

)

ds

)2

+

(
∫ u

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2A3

)

ds

)2

+

(
∫ u

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2A4

)

ds

)2

du

∫ T

t

∣

∣(K−1DF )u
∣

∣

2
du

∣

∣

∣

∣

∣

Ft

]

.

(4.11)
It is obvious that

(
∫ u

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2A1

)

ds

)2

≤ c2HC2
1 t

1−2H

(2− 2H)2(H − 1
2 )

2
. (4.12)

It holds that
(
∫ u

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2A2

)

ds

)2

=(cHC1CΨ)
2

(
∫ u

t

∫ u

s

(

t
1
2
−HsH− 1

2 (s− t)H− 3
2 s

1
2
−H(v − s)

1
2
−Hv1−2Hu

1
2
−H
)

dvds

)2

=(cHC1CΨ)
2

(
∫ u

t

t
1
2
−Hv1−2Hu

1
2
−H

∫ v

t

(

(s− t)H− 3
2 (v − s)

1
2
−H
)

dsdv

)2

=

(

cHC1CΨB(H − 1

2
,
3

2
−H)

)2

t1−2Hu1−2H

(
∫ u

t

v1−2Hdv

)2

≤
(

cHC1CΨB(H − 1
2 ,

3
2 −H)

2− 2H

)2

t1−2Hu1−2H .

(4.13)
We can easily obtain that

(
∫ u

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2A3

)

ds

)2

≤ c2HC2
2

(H − 1
2 )

2
t1−2H . (4.14)

It is easy to check that
(
∫ u

t

(

cHt
1
2
−HsH− 1

2 (s− t)H− 3
2A4

)

ds

)2

= (cHC2CΨ)
2
t1−2Hu1−2H

(
∫ u

t

(s− t)H− 3
2 (u − s)

1
2
−Hds

)2

=

(

cHC2CΨB(H − 1

2
,
3

2
−H)

)2

t1−2Hu1−2H .

(4.15)
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By (4.11), (4.12), (4.13), (4.14) and (4.15), we have

|ηt|2 ≤8Eν

[

F 2|Ft

]

Eν

[

|(K−1DF )t|2 + 4Ct1−2H

∫ T

t

∣

∣(K−1DF )u
∣

∣

2
du

∣

∣

∣

∣

∣

Ft

]

.

(4.16)
where

C =
c2HC2

1

(2 − 2H)2(H − 1
2 )

2
+

(

cHC1CΨB(H − 1
2 ,

3
2 −H)

(2 − 2H)
√
2− 2H

)2

+
c2HC2

2

(H − 1
2 )

2
+

(

cHC2CΨB(H − 1
2 ,

3
2 −H)√

2− 2H

)2

.

Then it holds that

Eν

[

∫ T

0

|ηt|2
Gt

dt

]

≤8

(

1 + 4C

∫ T

0

t1−2Hdt

)

Eν

[

∫ T

0

|(K−1DF )s|2ds
]

≤8

(

1 +
4C

2− 2H

)

Eν

[

∫ T

0

|(K−1DF )s|2ds
]

.

Hence, by (4.8), we obtain a Logarithmic-Sobolev inequality for ν as follows

Eν [F
2 lnF 2] ≤ 4

(

1 +
4C

2− 2H

)

Eν

[

∫ T

0

|(K−1DF )s|2ds
]

+ Eν [F
2] lnEν [F

2].
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