
I J C T A, 9(20), 2016, pp. 123-136
© International Science Press

* Department of Electronics and Communication Engineering Jaypee Institute of Information Technology, Noida-(U.P.), INDIA,
Email: atul.srivastava@jiit.ac.in

** Department of Electronics and Communication Engineering Jaypee Institute of Information Technology, Noida-(U.P.), INDIA,
Email: himanshushishodia@gmail.com

*** Department of Electronics and Communication Engineering Jaypee Institute of Information Technology, Noida-(U.P.), INDIA,
Email: himanshu243243@gmail.com

Analysis of Different Selection Scheme
for Scheduling in High-Level Synthesis
Atul Kumar Srivastava*, Himanshu Shishodia** and Himanshu***

ABSTRACT

Very Large Scale Integrated Circuit (VLSI) technology caters to densities of several million gates of random logic
per chip. Chips of such complexity are very tedious, if not impossible, to design using the normal capture and
simulate design methods. The industry has begun looking at the product development cycle comprehensively to
reduce the design time and to have a competitive edge in the time-to-market race. Automation of the entire design
process from conceptualization to silicon or describe & synthesize design methodology has become necessary.
Finally, if synthesis algorithms are fine construed, design automation tools may out-perform average human designers
in meeting most of the design constraints and requisites.

Keyword: High level synthesis, Scheduling, SAST, Genetic Algorithm

1. INTRODUCTION

Synthesis, is the process of interconnecting primitive components at a certain level of abstraction (target
level) to perform a specification at high level of abstraction (source level). Synthesis, sometimes defined as
design refinement, adds an additional piece of detail that provides information required for the next level of
synthesis or for manufacturing the design. The high level synthesis (HLS) step takes an algorithmic or high
level behaviour as input and give as output the register transfer level (RTL) behavior consisting of functional
units, storage and interconnection units. The logic synthesis step inputs Boolean equations and generates a
gate level design after doing logic optimizations of the input. The layout synthesis step takes the gate level
specification and outputs the physical layout performing the gate level specifications.

1.1. High Level Synthesis

High-level synthesis (HLS), sometimes also called as C synthesis, is an automated design process that
interprets an algorithmic detail of a desired behavior and forms digital hardware that realizes that behavior.
A behavioral description is used as the initializing point for HLS. It specifies the behavior in terms of
operations, assignment statements & controls the construct in a hardware description language (HDL)
(e.g., VHDL [2] or Verilog [3]). The output from a high-level synthesizer comprises of two parts: a data
path structure at the register-transfer level (RTL) and a specifics of the finite state machine to control the
data path. At the RTL level, a data path is composed of three kind of components viz functional units (e.g,
ALUs, multipliers, and shifters), storage units (e.g., registers and memory) & interconnection units for e.g.,
buses and multiplexors. The finite state machine specifies every set of micro-operations for the data path to
be performed during every control step. In the first step of HLS, the behavioral description is designed into
an internal representation.

124 Atul Kumar Srivastava, Himanshu Shishodia and Himanshu

1.2. Scheduling in High-Level Synthesis

The goal of high-level synthesis is to produce a structure of the digital system that satisfies the constraints.
In order to have an efficient design, a system should perform operation scheduling and hardware allocation
simultaneously [4]. However, due to complexity in terms of time, many systems perform them separately
in chunks [5].

According to Gajski[1], that says “perhaps the most important step during the structure synthesis.”

Two basic scheduling problems [1] are:

(PI) Time-Constrained Scheduling: Given that there is a constraint on the maximum number of time
steps, find the cheapest schedule which best meets constraints.

(P2) Resource-Constrained Scheduling: Given the constraints on the resources provided, find the fastest
scheduling which satisfies the constraints. Some basic scheduling techniques are ASAP (As Soon As
Possible), ALAP (As Late As Possible), Force-Directed Scheduling, List-based Scheduling, etc. The technique
used for scheduling is known as Structured Architectural Synthesis Technique (SAST)[7]. This tool uses
the genetic algorithm as an application to solve the scheduling problem.

1.3. Structured Architecture Synthesis Tool (SAST)

A number of systems such as HAL[8], STAR[9], SAM[10] and GABIND[11] support the high-level synthesis
of digital systems. Most of the current synthesis generate data paths with random interconnections between
data path elements, which may lead to use of greater routing area during physical design. SAST on the
other side supports the synthesis of structured data paths, specifically avoiding the random interconnections.
This conserves the on-chip wiring resources.

SAST essentially accept as input, precedence constraints between the operations represented as a partial
order, and outputs a schedule of operations & transfers, and a data path to perform the schedule. The
generated data path is organized as architectural blocks (A-block)[7], and optional global memory blocks
as shown in figure 1.

1.4. The Application of Genetic Algorithms to High-Level Synthesis

Genetic algorithms [6] [7] are probabilistic search algorithms which are inspired on the principle of “survival of
the fittest” attributed to theory of evolution by Charles Darwin in The Origin of Species. Genetic algorithms
maintain a collection of potential solutions, which evolve according to a measure reflecting the quality of solutions.

1.5. Selection Schemes used in Genetic Algorithms

Genetic Algorithms is a basic probabilistic optimization method based on the model of natural evolution.
One important operator in these algorithms is the selection method. There are many selection methods [12-
14] out of which following have been added to the tool and results are analyzed and compared:-

Figure 1: Schematic of Structured Architecture

Analysis of Different Selection Scheme for Scheduling in High-Level Synthesis 125

• Roulette Wheel Selection

• Stochastic Remainder Roulette Wheel

• Tournament Selection

• Truncation Selection

1.6. Literature Survey

As per our work, the survey is divided into two parts that are explained below.

1.6.1. Scheduling in High-Level Synthesis

A recent survey of the synthesis task is by Paulin [8], where the concentration is on scheduling techniques.
In Balakrishnan et al. [15], the basic scheme to schedule an operation and then bind it, along with its
associate’s source and destination operands is given. Estimation of design cost, at this stage, is costly.
SAST is the tool or technique which has adopted this approach. It permits better control over the structure
of synthesized data path, by means of architectural parameters.

1.6.2. Genetic Algorithm and Selection Methods

SAST tool uses genetic algorithm for solving the scheduling problem [7]. This tool uses Roulette Wheel
selection method for selecting the parents on the basis of their cost. This method suffers from the disadvantage
of being a high-variance process with the outcomes that there are seldom large differences between the
actual and expected numbers of copies made - there is no surety that the best solution will be copied. De
Jong [16] tested a scheme, which gave just such a guarantee by snowballing the population to include a
copy of the best solution if it hadn’t been retained. He found that on problems with just single maximum (or
minimum) the algorithm performance was much improved, but on multimodal problems it was degraded.
In roulette wheel selection method, since the computation of the average fitness requires the fitness of all
population members, this selection operator is slow compared to tournament selection [13]. This is also
noisy in the sense of introducing a large variance in its realizations. Stochastic remainder roulette wheel
selection [14] and tournament selection are better when compared to it.

1.7. Motivation and Objective of the Present Work

Roulette Wheel Selection method used by SAST tool has few drawbacks due to randomness in its behavior
when compared with other selection methods like tournament selection method [13]. They are:-

• Takes more time to schedule operations as compared to tournament selection. i.e. execution time is
more.

• Noisy, in the sense of large variance in its realizations.

• When a population contains only individuals with scores of large, nearly equal, absolute value, the
selection probability of all individuals approaches to be identical to each other, which works against
the basic idea of genetic algorithms.

In this work, three more selection methods have been added in the SAST tool. The main objective of
adding these methods primarily is to do the Performance analysis of SAST tool by applying different selection
schemes in the genetic programming for improved schedule. The selection schemes added in the tool are:

• Stochastic Remainder Roulette Wheel Selection

• Tournament Selection

• Truncation Selection

126 Atul Kumar Srivastava, Himanshu Shishodia and Himanshu

These selection methods have been applied on different high-level synthesis benchmarks as
follows:-

· Differential Equation Solver

· Elliptical Wave Filter

· Discrete Cosine Transform

Finally, the results of different benchmark are analyzed and compared.

2. SCHEDULING IN HIGH LEVEL SYNTHESIS

2.1. Classification of Scheduling Algorithms

Scheduling algorithms can be divided into time constrained and resource constrained scheduling, based on
the objective of the scheduling problem. Further, scheduling algorithms are distributed in the following
categories:

i. Unconstrained Scheduling

a. ASAP

b. ALAP

ii. Time Constrained Scheduling

a. Force Directed Scheduling

b. ILP

iii. Resource Constrained Scheduling

a. List-based Scheduling

2.1.1. ASAP (As Soon As Possible)

As-Soon-As-Possible (ASAP)[1] scheduling is one of the simplest scheduling algorithms used in HLS. In
ASAP scheduling, first the highest number of control steps that are allowed is determined. Following that,
the algorithm schedules each operation one by one into the earliest possible control step. An example of
ASAP is shown in figure 2(b) of the data flow graph shown in figure 2(a).

Figure 2: (a) Data Flow Graph (b) ASAP Scheduling (c) ALAP Scheduling

Analysis of Different Selection Scheme for Scheduling in High-Level Synthesis 127

2.1.2. ALAP (As Late As Possible)

As-Late-As-Possible (ALAP) scheduling is almost similar to ASAP, but instead of scheduling operations
to early control steps, in ALAP, first the maximum number of control steps that are allowed is determined.
Following that, the algorithm schedules each operation, one at a time, into the latest possible control step.
An example of ALAP is shown in figure 2(c) of the data flow graph shown in figure 2(a).

2.1.3. Force-directed Scheduling

The Force-directed scheduling (FDS) is a heuristic method[8] that is a very popular scheduling technique
for time constrained scheduling. The main goal of the algorithm is to reduce the total number of FUs used.
This algorithm achieves its goal by uniformly distributing the operations of same type over the available
control steps. This algorithm is briefly explained in figure 3.

2.1.4. List-based Scheduling

Unlike ASAP, ALAP or FDS scheduling, which process operations individually in a fixed order, list
scheduling handles each control step individually (in increasing order). List scheduling works by trying to
schedule “maximum” number of operations in the control step, subject to resource constraints and data
dependency. During the scheduling process, list scheduling uses a ready list (hence the name) to keep a
note of data-ready operations subject to data dependency.

2.1.5. Integer Linear Programming based Scheduling

Integer Linear Programming (ILP), have been used to solve a wide range of constraint based optimization
problems. In this section, we will discuss an ILP formulation for optimally solving the synthesis problem.
The biggest advantage of using ILP is the quality of the solution; unlike the heuristics based scheduling
algorithms, described earlier, an ILP solver is guaranteed to find an optimal schedule from these formulations.
However, this guarantee of quality comes at a price — ILPs cannot, in general, be solved in polynomial
time. Thus, the trade-off is between the guarantee of solution quality and a guarantee of quickly finding a
solution.

3. BASICS OF GENETIC ALGORITHMS

Definition 3.1 (Chromosome).

Let A be an alphabet (in other words a set of symbols). A chromosome is a string of symbols from
alphabet A. The number of symbols of is called the length of | |, denoted by | |. The set AA�, with I

Figure 3: (a) FDS Outline (b) Distribution Graph (c) Sub-opt schedule example

128 Atul Kumar Srivastava, Himanshu Shishodia and Himanshu

� N, consists of all possible chromosomes ð with | | = l. (i) denotes the ith symbol, with 0 � i < l of
chromosome .

Definition 3.2 (Encoding Enc, decoding Dec).

Let (F, c) be a search problem. Let A be a set of chromosomes. The function Dec: A� � F is called a
decoding. The function Enc: F � A� is called an encoding. The encoding Enc(f) of an element f � F is
defined as an element of { AA�| Dec() = f}. Hence, for each element f�F, one or more encodings
A� exist. If for all f � F.

The set of possible encodings consists of exactly one element, the encoding is called one-to-one.

Classical genetic algorithms as described in [6] use bit-strings as encodings, in other words alphabet A
= {0 , 1}.

Definition 3.3 (Fitness s, scaling function S).

Let (F , c) be an instance of a combinatorial optimization problem. Let Al be a set of chromosomes, and let
Dec: A� � F be an onto function. The fitness s: A� � R is a function, with s() the fitness (or score) of
chromosome ð � A�. Fitness s is related to cost function c by use of a scaling function S: R � R, given by
s() = S((Dec(ð))).

During the run of a genetic algorithm, it keeps track of a collection of chromosomes, called a
population.

Figure 5: Example of Uniform Crossover

Figure 4: Flowchart of Genetic Algorithm

Analysis of Different Selection Scheme for Scheduling in High-Level Synthesis 129

Definition 3.4 (Population P, population size |P|, individuals).

A population P is a bag (also called collection), the elements of which are taken from the set of chromosomes
A�. The elements of P are called individuals. The size of the population P, denoted by |P| is called the
population size of P.

In a genetic algorithm the initial population Po is created by randomly selecting |Po| individuals from
the set of chromosomes Al. A genetic algorithm iteratively tries to improve the average fitness of a population
by the construction of new populations, using selection and recombination mechanisms. Recombination of
individuals is performed by so-called operators. An operator accepts a set of chromosomes (sometimes
called parents), and constructs new chromosomes (called offsprings or children) by copying information
from the parents.

Definition 3.5 (Operator O).

An operator O is a mapping O: (A�)^m � (A�)^n, with n, m � N. It accepts m chromosomes (also called
parents), and, using a particular mechanism, generates n chromosomes (called children or offsprings).

The most popular operators are called crossover and mutation. Mutation takes one chromosome, changes
its contents, and returns the modified chromosome as a result. Crossover takes two chromosomes ð1,
ð2�A�, exchanges information between these chromosomes to create new chromosomes, and returns one
or two chromosomes as a result.

Definition 3.6 (Selection probability sel).

Let P be a population, and let c � P. The selection probability is a function sel: P � [0 , 1] � R, with
sel() the probability that individual c is chosen from the population as a parent for a particular operator
that is calculated by (i). A well-known way of performing selection is by using so-called roulette wheel
selection (also called proportionate selection), in which for a chromosome ð the selection probability sel is
defined as follows:

(i)

4. GA BASED SCHEDULING ALGORITHM

4.1. Solution Representation

Each solution contains several decisions which are required for the proper implementation of the design.
For each operation the moment at which it is to be scheduled and where it has to be scheduled are stored.
Similarly, a multiplication could be implemented by a combinatorial multiplier or by a pipelined multiplier.
However, the information of module requires to be stored explicitly. Thus there are three types of information
to be represented which elaborated below:

1) Information immediately related to the scheduling of operations.

2) Information that indicates the scheduling of variable transfers, and

3) Information relating the composition of FUs.

4.2. Parent Selection

In SAST tool, the parents are selected on the basis of their costs using the Roulette Wheel technique. This
being a minimization problem, the selection probability of a parent is computed taking into account the
maximum cost of solutions in the population.

130 Atul Kumar Srivastava, Himanshu Shishodia and Himanshu

4.3. Crossover

First and foremost two parent solutions are chosen. These go through process of mutation and then the
actual crossover takes place that results in a raw offspring. Inheritance of the features from either of the two
parents proceeds in the (inverse) ratio of their solution costs. The solution at this stage is in general not
feasible. The completion algorithm explained next is applied to this raw solution to generate a feasible
solution.

4.4. Solution Completion

A methodology for solution completion is applied to the raw solution resulting from features inheritance
during crossover. Solution completion is also applied at the time of generating new solutions because the
randomly generated features used to make the initial solutions may not correspond to feasible solutions
either. The programming complexity to support the various features.

4.5. Replacement

The replacement policy is design to ascertain that all solutions arrived at stay in the population for at least
one iteration. This is done by virtue of introducing all the new solutions generated by crossover during one
generation of the GA into the population and replacing the equal number of existing solutions. To overcome
this, a scheme has been used simultaneously to maintain the solutions with more efficient costs and also
retain a diversity of FU configurations within the population.

5. SELECTION SCHEMES IN GENETIC ALGORITHM

5.1. Introduction

Genetic Algorithms (GA) are nothing but probabilistic search algorithms characterized by the fact that a
number N of potential solutions (called individuals Ji�J, where J represents the space of all possible
individuals) of the optimization problem at the same time sample the search space. This population
P = {J1, J2,....,JN} is modified according to the natural evolutionary process: after initialization, selection
w : JN � JN and recombination R : JN � JN are executed in a loop until some criteria for termination is
reached. Each iteration of loop is called a generation and P(�) denotes the population of generation.

5.2. Roulette Wheel Selection Scheme

Parents are selected in accordance with their fitness. The better the chromosomes are, the more chances to
be selected they have. It is also known as proportionate selection method. In this solutions are assigned
copies, the number of which increase or decrease in proportion to their fitness values. If the average fitness
of all the population members is favg, a solution with a fitness fi gets an expected fi/favg number of copies.

In SAST tool, for fitness, probability of each solution is calculated with the help of (ii)

� �
max

max

i
si

sols i i

C C
p

N C C

� � �
�

� � �� (ii)

Thereafter, the cumulative probability of each solution is calculated by adding the probabilities from the
top of the list. Thus, the most bottom string in the population possesses a cumulative probability equal to 1.

5.3. Stochastic Remainder Roulette Wheel Selection Scheme

In this selection scheme, the probabilities pi are multiplied by the population size and the expected number
of copies is calculated for all the solutions. Thereafter, each solution is first assigned a number of copies

Analysis of Different Selection Scheme for Scheduling in High-Level Synthesis 131

which is equivalent to integer part of the expected number. Thereafter, the usual roulette-wheel selection
(RWS) operator is applied along with the fractional part of the expected number of all solutions to other
copies also.

In this, the expected number of copies of each solution is calculated as

Ei = Pi + NSi

Where, N is the number of solutions,Pi is the probability of the ith solution.

Each solution is then copied Ii times, Ii being the integer part of Ei. The fractional remainder

Ri = Ei-Ii

is treated as the probability of further duplication.

5.4. Tournament Selection Scheme

Tournament selection can be construed as the natural process of individuals competing with each other to
mate. When moose rut, the competition in between the bucks decides which will mate. So too, the
chromosomes in the population are chosen for competition, usually in a random manner, with the victor
maximizing its expected incidence in the mating pool. Note that selection is the one step of the process
where we select individuals among the population that acts as parents of new offspring. To do same with
tournament selection, you have to choose certain number of possible parents, after that select the best one
as the winner. How many possible parents should be allowed to compete taken as value of k. The algorithm
for the tournament selection is as given under:

Let k = 1. Looking at the pseudocode, this gives sheer random selection. You pick one individual
randomly and return it.

Let k = 10*N. Now we have much higher probability of choosing every member of the population at
least for once, so almost for every time, we are terminating process of returning the best individual among
the population.

None of these options would work efficiently. Instead, you want something that give back good
individuals more than bad ones, but not so dominantly that it keeps choosing the same few individuals time
and again. Binary tournament selection (k=2) is most often used.

Figure 6 : Tournament Competition between Solutions

132 Atul Kumar Srivastava, Himanshu Shishodia and Himanshu

6. EXPERIMENTAL RESULT

The plot shown below compares the execution time of EWF by applying different selection schemes

As per the plot, truncation and tournament takes the least time as compared to others. Hence, the
execution time has been optimized. For mathematical values, please refer to the Table no. 1.

6.1. Comparison of Number of Control Steps

The plot shown below compares the number of Control Steps of EWF by applying different selection schemes.

As per the plot, roulette-wheel reduces the control steps from 31 to 28 and on the other hand, tournament
selection is reducing it to 27. Hence, control steps are reduced along with the execution time in case of
tournament selection scheme.

6.2. Comparison of Cost Estimation Steps

Number of cost estimation steps should be as low as possible. In case of roulette wheel, selection is
noisy in the sense of introducing a large variance in its realizations. To compare the number of steps,

Figure 8: Plot of No. of Control Steps vs Generation

Figure 7: Plot of Execution Time(in seconds) vs No. of Generations (EWF)

Analysis of Different Selection Scheme for Scheduling in High-Level Synthesis 133

roulette wheel is compared with tournament selection scheme and have been applied on three benchmarks
with varying number of solutions given as input. For experimental, please refer to table no. 2(a), 2(b)
and 2(c).

6.3. Experimental Data

The selection schemes are applied to three different circuits. In this section, the results of each are shown
individually.

Table 1(a), 1(b) and 1(c) shows the Execution time, Number of Control Steps and Number of registers
after 3000 generations for all the three benchmark circuits.

Table 2(a), 2(b) and 2(c) shows the evaluation of steps for cost estimation for roulette wheel and
tournament selection. This has been applied on DCT, DIFFEQ and EWF with varying number of solutions.
(i.e. 150, 250 and 350).

134 Atul Kumar Srivastava, Himanshu Shishodia and Himanshu

7. CONCLUSION AND FUTURE SCOPE OF WORK

7.1. Conclusion

Due to the enormous growth of the design complexity, the gap between the electronic system level and the
register transfer level must be filled. A complete design methodology is described in this thesis, which
allows automation of the high level synthesis design flow. The main objective of this thesis was to do the
Performance analysis of SAST tool by applying different selection schemes in the genetic programming for
improved schedule. Selection is a stage in Genetic Algorithm in which individual solutions are chosen
from the population on the basis of its fitness for crossover. Three selection schemes have been added
successfully in the SAST tool. They are:-

• Tournament Selection

• Stochastic Remainder Selection

• Truncation Selection

Effects on different parameters are as follows:-

7.1.1. Execution Time

In figure 7, execution time for the Elliptical Wave Filter (EWF) is compared for all the four selection
schemes. As the number of generations increases, execution time of the genetic algorithm increases. From
the plot, it is clear that execution time is maximum in case of roulette-wheel (from table 1(b), execution
time for roulette-wheel selection scheme is 32.277 seconds) and minimum in case of truncation selection
(from table 1(b), execution time for truncation selection scheme is 24.4 seconds). Hence, there is an
optimization of 24.4% in execution time

In case of tournament selection, execution time is 28.48 seconds which is second best but is still preferred
over truncation selection scheme. This is because, truncation selection is less sophisticated.

Even, stochastic remainder roulette wheel-selection which is more deterministic as compared to basic
roulette-wheel selection takes lesser time to execute.

7.1.2. Number of Control steps

In figure 8, number of control steps for the Elliptical Wave Filter (EWF) is compared for all the four
selection schemes. As the generation proceeds, control steps are optimized. From the plot, it can be seen
that in 1st generation, maximum control steps was 31 and they reduced to 27 in case of tournament

Analysis of Different Selection Scheme for Scheduling in High-Level Synthesis 135

selection (which is minimum) as maximum generation was reached. Hence, tournament selection is
again better than roulette wheel. One more thing was observed in this case, as the number of control
steps is reduced, number of registers increases and then SAST tool tries to optimize them as far as
possible.

Not much difference was observed for other selection schemes

7.1.3. Evaluation of steps required for Cost Estimation

It was compared between roulette wheel and tournament selection as shown in table 2(a), 2(b) and 2(c).
These selection schemes were applied on DCT,DIFFEQ and EWF by keeping generations equal to 3000
and varying the number of solutions (i.e. 150,250 and 350).

From the tables 2(a), 2(b) and 2(c) it is clear that number of steps is high in case of roulette wheel
selection when compared with tournament. This makes it very noisy and randomness is high.

7.2. Future Scope of Work

There is much potential in the area of high level synthesis to improve the search time for finding the
optimal design architecture, and thereby accelerate the speedup of the exploration process.

The developed exploration approach for high level synthesis can be improved further by including
other selection schemes and other properties of selection scheme.

Another aspect of high level synthesis, which also has significant potential for improvement, is the
optimization of many other parameters such as reliability, temperature etc., which stills lies in the nascent
stage of development.

REFERENCES
[1] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin, High-Level Synthesis: Introduction to Chip and System Design. Kluwer

Academic Publishers, 1992.

[2] M. Shadad, .An overview of VHDL language and technology,. Procs. of the 23rd Design Automation Conference, 1986.

[3] D. E. Thomas and P. Moorby, The Verilog Hardware Description Language. Kluwer Academic Publishers, 1991.

[4] M. C. McFarland, A. C. Parker, and R. Camposano, “Tutorial on high-level synthesis,’’ in Proc. 25th Design Automation
Conf, June 1988, pp. 330-336.

[5] Hwang, Cheng-Tsung, J-H. Lee, and Yu-Chin Hsu. “A formal approach to the scheduling problem in high level synthesis.”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 10.4 (1991): 464-475.

[6] Heijligers, Marcus Josephus Maria. “The application of genetic algorithms to high-level synthesis.” (1996).

[7] Mandal, C., and R. M. Zimmer. “A genetic algorithm for the synthesis of structured data paths.” VLSI Design, 2000.
Thirteenth International Conference on. IEEE, 2000.

[8] Paulin, Pierre G., and John P. Knight. “Force directed scheduling for the behavioral synthesis of ASIC’s.” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 8.6 (1989): 661-679.

[9] Tsai, Fur-Shing, and Yu-Chin Hsu. “STAR: An automatic data path allocator.”Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on 11.9 (1992): 1053-1064.

[10] Cloutier, Richard J., and Donald E. Thomas. “The combination of scheduling, allocation, and mapping in a single algorithm.”
Proceedings of the 27th ACM/IEEE Design Automation Conference. ACM, 1991.

[11] Mandal, Chittaranjan A., P. P. Chakrabarti, and Sujoy Ghose. “Allocation and binding in data path synthesis using a
genetic algorithm approach.” VLSI Design, 1996. Proceedings., Ninth International Conference on. IEEE, 1996.

[12] Blickle, Tobias, and Lothar Thiele. “A comparison of selection schemes used in genetic algorithms.” (1995).

[13] Goldberg, David E., and Kalyanmoy Deb. “A comparative analysis of selection schemes used in genetic algorithms.”
Urbana 51 (1991): 61801-2996.

[14] Deb, Kalyanmoy. Multi-objective optimization using evolutionary algorithms. Vol. 2012. Chichester: John Wiley &
Sons, 2001.

136 Atul Kumar Srivastava, Himanshu Shishodia and Himanshu

[15] Balakrishnan, M., and Peter Marwedel. “Integrated scheduling and binding: a synthesis approach for design space
exploration.” Design Automation, 1989. 26th Conference on. IEEE, 1989.

[16] De Jong, K. A., An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. Thesis, University of Michigan,
Ann Arbor, MI., 1975.

