
I J C T A, 9(18) 2016, pp. 8935-8943
© International Science Press

* Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal, Karnataka, India, E-mail:
rohan.pinto@yahoo.co.in; shama.kumar@manipal.edu

Low-Area Low-Power Parallel Prefix Adder
Based on Modified Ling Equations
Rohan Pinto* and Kumara Shama*

ABSTRACT

For the design and implementation of general purpose processors, addition plays an important role. Speed of an
adder is one of the key factor that influences the performance of the system. Parallel prefix adders are one of the
best solution for this, they are also suitable for VLSI implementation. Here in this paper parallel prefix adders
based on modified ling equation have been proposed for 8-bit, 16-bit and 32-bit. Logic gates can be reduced using
the proposed method that leads to reduction of area and power. The proposed adder is implemented using 90 nm
and 180nm CMOS technology and compared with, other adopted adders. Synthesis results reveal that the proposed
adder can achieve minimum area saving of 10% and power saving of 6%.

Keywords: Parallel prefix adder; Ling adder; VLSI implementation; Area-Power efficient.

I. INTRODUCTION

Data Path is the core element of every microprocessor and DSP. It is often the most critical circuit component
when it comes to die area, power dissipation and delay. At the heart of the data path is the arithmetic unit
which comprises of adders, multipliers and comparators. The fundamental operation found in the arithmetic
unit is addition [1]. Besides two number addition, adders are also used in more complicated operations like
division and multiplication. Therefore binary adder is the most important building block in Arithmetic and
Logic Unit (ALU) and Address Generation Unit (AGU). It is likewise particularly imperative if implemented
in hardware since it includes a costly carry propagation unit. Avital problem in VLSI design is efficiently
implementing the binary adder in an integrated circuit.

Several adder structures have been presented in literature, with each one of them having its own
advantages and disadvantages. They also have their own distinctive characteristics in terms of area, power
and delay. For high speed addition parallel prefix adders are mostly preferred because they use parallel
prefix trees to determing group generate and group propagate which inturn is used to compute carry and
sum. Parallel prefix trees are very well suited for VLSI implementation since they depend on basic cells
and keep up a regular connection between them.

Several parallel prefix trees have been proposed in the past.One of the earliest parallel prefix tree
algorithm for adders was proposed by Sklansky [2]. Here a tree structure with minimum depth was developed
for parallel, high speed addition. Kogge and Stone [3] parallel prefix tree had regular structure, minimal
logic depth and uniform fan-out.This structure had shortcoming of larger gate count and complex
interconnectionwhich led tohigh power dissipation. Ladner and Fischer [4]introduced a prefix graph with
minimum depth. Brent and Kung [5] designed an area optimum prefix computation graph. It also had a
regular structure, but slightly increased in latency as compared to other structures. Han and Carlson [6]
proposed a hybrid adder by combining the structures proposed by Brent-Kung and Kogge-Stone. The design
achieved a better trade-off between logic depths and interconnect complexity. Knowles [7] presented a

8936 Rohan Pinto and Kumara Shama

family of different adders with minimum logic depth. They had regular fan-out and were bounded at the
extreme ends by Ladner-Fischer [4] graph and Kogge-Stone [5] graph. But, each structure had a different
trade-offs between speed and area/power.

One of the most popular design for integer adders are carry look ahead adders (CLA). A variation to
CLA is Ling adder [8] that simplifies carry computation and leads to faster structure. Parallel prefix structures
for Ling carry computation exploit the straightforwardness of Ling equations. D Nikolos et al. [9] presented
a method for computing Ling carries using parallel prefix tree network.As compared to conventional carry
look ahead adder the parallel prefix tree structure required an extra OR gate. Dimitrakopoulos and Nikolos
[10] spared one-logic level of execution which led to speedier implementation of the parallel-prefix addition.
Juang [11] proposed a parallel prefix structure, which computed the real carries and saved one logic gate.
Poornima and Kanchana [12] implemented a hybrid prefix adder based on modified Ling equations by
combining the two tree networks. Ladner-Fischer structure was used for even-numbered bits and for odd-
numbered bitsKogge-Stone structure was used.

In this paper an area-power efficient adder block based on the parallel-prefix computation technique
has been proposed. Modified Ling equations have been used to compute intermediate generate and
intermediate propagate signals. This structure computes the real carries based on Ling carries created by
the lower order bits position thus saving a significant area. The proposed parallel prefix adder is implemented
using 90nm and 180nm CMOS technology and compared with widely adopted prefix structures. To prove
the efficiency of the proposed adder, area, power and delay parameters are computed for the proposed
adder and few other adders and compared for 8-bit, 16-bit and 32-bit word sizes.

The remaining part of the paper is arranged as follows: Section 2 gives the fundamentals of parallel-
prefix addition. Section 3 explains about Ling adders. Section 4 introduces the proposed area-power efficient
parallel prefix adder. In section 5, simulation and synthesis results are discussed. Finally, conclusion is
drawn in section 6.

II. BACKGROUND

Parallel prefix addition is done in three stages: pre-processing, prefix calculation and post-processing.
Consider two numbers each of width to be added and

 be the sum [10].

2.1. Pre-Processing stage

In the first stage generate bits g
b
, propagate bits p

b
 and half sum bits d

b
 are computed for all the bits 0 � b �

m–1 using the following equations,

2.2. Prefix calculation stage

Carry signal c
b
 is computed in this stage using generate bits g

b
 and propagate bits p

b
. Any one type of prefix

tree structure is used to calculate the carry. Parallel prefix structure with m inputs computes
m outputs in parallel using an associative operator as follows:The operator associates
generate and propagate bits as follows: The first output term g + p.g� is
group generate term and second term. p� is group propagate term. In a series of consecutive association of
generate and propagate pairs (g, p), group generate and group propagate are computed for the bits spanning

from i to j, that is, The prefix operator

is associative and idempotent, that is,

Low-Area Low-Power Parallel Prefix Adder based on Modified Ling Equations 8937

2.3. Post-Processing stage

This is the final stage where sum is computed using XOR operation which is given as

III. LING ADDER

Ling [8] proposed a modification to carry look ahead equation to achieve a significant hardware saving.
The technique is to remove one series transistor from the path of critical group generate at the cost of XOR
gate in the sum computation [13]. The technique depends on calculating pseudo carry H

b
 instead of

conventional carry c
b
. The pseudo carry H

b
 can be computed quicker than the conventional carry c

b
 because

it uses simpler boolean function [14]. H
b
 isexpressed as

Consider for example the carry for the 4th bit

The last term in c
04

 has 5 logic levels, whereas, H
04

 has only 4 logic level compared to c
04

. Although the
computation of pseudo carry is simpler compared to conventional carry, but the sum calculation is
complicated. The sum bit for each bit position is given as S

b
 = d

b
 XOR c

b–1
. Since, then

. The computation of S
b
 bits can be transformed [15] into

 Based on the value of H
b–1

 either can be computed
using a 2:1 multiplexer. The calculation time of the sum bits is decreased because of lessened complexity
of the Ling carries.

IV. MODIFIED LING EQUATION BASED PARALLEL PREFIX ADDER

Consider the pseudo carry equation for 3rd, 4th, 5th and 6th bit positions.

(1)

(2)

(3)

(4)

Since, Eq. 1, 2, 3 and 4 can be rewritten as

Let, and be the intermediate generate and intermediate propagate bits respectively [10] given as:

(5)

(6)

8938 Rohan Pinto and Kumara Shama

(7)

(8)

As seen from Eq. 5, 6, 7 and 8 the pseudo carries of odd indexed bit position and even indexed bit
position are completely different, independent tree topologies can also be used for odd bits and even bits to
optimize the delay [12]. By making use of intermediate generate and propagate pair of the even-
indexed and the odd-indexed bit positions, the final pseudo carries of remaining bits can be obtained. The
pseudo carries of even indexed bit position and oddindexed bit position H

b+1
 are given as

The proposed parallel prefix adder built on modified ling equation for 8-bit is shown in Figure 1. The
computation of real carries is done is four stages, which eliminates the use of multiplexer for calculating
sum if ling carries were generated. This saves considerable amount of area. The sum is calculated in the 5th

stage by XORing d
b
 and c

b–1
. The white circle is a buffer. The white square is a node which computes

generate (g
b
), propagate (p

b
) and half sum (d

b
). Black square computes intermediate generate and propagate

bits. White square and black square in Figure 1 are elaborated in Figure 2(a) and 2(b) respectively.Black
circle that compute group generate and propagate bits are given in Figure 3. The cells which compute the
real carries are shown in Figure 4. The black hexagon in Figure 1 is the proposed prefix cell which computes
the real carry is presented in Figure 4(a). Since, only intermediate generate term forms the pseudo carry, it
eliminates the computation of intermediate propagate term thereby saving two gates.

Figure 1: Proposed 8-bit parallel prefix adder based on modified ling equation.

Low-Area Low-Power Parallel Prefix Adder based on Modified Ling Equations 8939

Figure 4: (a) Proposed prefix cell for computing real carries. (b) Prefix cell for computing real carry [11].

Figure 2: (a) Generate, propagate and half sum computing node. (b) Intermediate generate and propagate
computing node [10].

Figure 3: Group generate and propagate computing node [5].

8940 Rohan Pinto and Kumara Shama

The real carries are now obtained by directly ANDing the pseudo carries with respective propagate bit.
This is expressed by:

c
0
 = H

0
. p

0

c
1
 = H

1
.p

1

c
2
 = H

2
.p

2

c
3
 = H

3
.p

3

c
4
 = (G

4:3
 + P

3:2
.G

2:1
)p

4

c
5
 = (G

5:4
 + P

4:3
.G

3:0
)p

5

c
6
 = (G

6:3
 + P

5:2
.G

2:1
)p

6

c
7
 = (G

7:4
 + P

6:3
.G

3:0
)p

7

Parallel prefix 16-bit adder based on modified ling equation is depicted in Figure 5. White circle with
letter ‘A’ at the center, in level 4 of Figure 5 is an AND operation which is shown in Figure 4(b). This
compute the real carries for the bit positioned from 0 to 3 and 6 to 7. This method of designing the adder
can be extended to develop a 32-bit parallel prefix adder based on modified ling equation, which is depicted
in Figure 6. The grey circle in Figure 6 computes only the group generate requiring two gates. Group
propagate is not required in calculating the sum for the respective bits hence group propagate element can
be neglected. This is shown in Figure 7. The proposed adder has an advantage of having a regular structure
and reduced gate count.

Figure 5: Proposed 16-bit parallel prefix adder based on modified ling equation.

Figure 6: Proposed 32-bit parallel prefix adder based on modified ling equation.

Low-Area Low-Power Parallel Prefix Adder based on Modified Ling Equations 8941

V. SYNTHESIS RESULTS

The proposed adder was compared with structures proposed by Giorgos et al. [10], Juang et al. [11], Poornima
et al. [12], Kogge-Stone parallel prefix ling adder structure presented by Giorgos et al. [10] and Juang’s
structure based on Kogge-Stone [11]. Each adder was coded using VHDL structural description and mapped
on TSMC 90nm and TSMC 180nm CMOS technology using Cadence RTL Compiler. The derived netlist
and design constraints were uploaded into Cadence Encounter tool to generate the layout. RC parasitic
information was later extracted from the layout. Table 1, Table 2 and Table 3 shows the area, power and
delay estimation of 8-bit, 16-bit and 32-bit adders respectively for 90nm technology. Table 4, Table 5 and
Table 6 shows the area, power and delay estimation of 8-bit, 16-bit and 32-bit adders respectively for
180nm technology.Proposed adder clearly outperforms other adders in terms of area, due to one less logic
level implementation. Power of proposed adder is also efficient than other traditional adders. Results show
that proposed adder has reasonably good speed. In addition to this, the proposed adder contributes to
reduced gate count leading to improvement in area cost factor as shown in Table 7.

Table 1
Comparison of 8-bit proposed adder with other adders for 90nm technology

Structure Area (µm2) Power (µW) Delay (ns)

Proposed 279 6.47 0.87

Giorgos [10] 269 6.49 0.97

Poornima [12] 303 6.98 0.85

Juang [11] 314 7.27 0.80

Kogge Ling [10] 364 8.81 0.94

Table 2
Comparison of 16-bit proposed adder with other adders for 90nm technology

Structure Area (µm2) Power (µW) Delay (ns)

Proposed 651 15.46 1.14

Giorgos [10] 860 22.30 1.36

Poornima [12] 732 16.82 1.03

Juang [11] 785 18.23 1.04

Kogge Ling [10] 895 21.64 1.20

Figure 7: Group generate computing node.

8942 Rohan Pinto and Kumara Shama

Table 3
Comparison of 32-bit proposed adder with other adders for 90nm technology

Structure Area (µm2) Power (µW) Delay (ns)

Proposed 1661 39.74 1.48

Giorgos [10] 2205 62.80 1.44

Poornima [12] 1717 40.79 1.43

Table 4
Comparison of 8-bit proposed adder with other adders for 180nm technology

Structure Area (µm2) Power (µW) Delay (ns)

Proposed 1131 52.28 1.82

Giorgos [10] 1071 51.82 1.76

Poornima [12] 1224 55.60 1.79

Juang [11] 1264 57.61 1.65

Kogge Ling [10] 1444 70.43 1.75

Table 5
Comparison of 16-bit proposed adder with other adders for 180nm technology

Structure Area (µm2) Power (µW) Delay (ns)

Proposed 2621 124.0 2.29

Giorgos [10] 3360 177.3 2.46

Poornima [12] 2927 132.2 2.09

Juang [11] 3127 142.0 2.07

Kogge Ling [10] 3519 169.7 2.21

Table 6
Comparison of 32-bit proposed adder with other adders for 180nm technology

Structure Area (µm2) Power (µW) Delay (ns)

Proposed 6600 310.95 2.92

Giorgos [10] 8556 494.93 2.52

Poornima [12] 6812 318.17 2.77

Juang [11] 9826 - 1.67

Juang – KS [11] 8262 - 1.87

Table 7
Comparison of gate count of proposed adder with other adders

Structure 8-bits 16-bits 32-bits

Proposed 83 202 467

Giorgos [10] 162 344 681

Poornima [12] 115 288 496

Juang [11] 89 221 -

Kogge Ling [10] 90 226 -

Low-Area Low-Power Parallel Prefix Adder based on Modified Ling Equations 8943

VI. CONCLUSION

An organized approach for designing a parallel prefix adder using modified ling equation has been presented
in this paper. Efficient structures of 8-bit, 16-bit and 32-bit addershave been proposed. These structures
have regular interconnection pattern with reduced gate count. They compute the real carry instead of pseudo
carry,thus making the sum calculation fast and area efficient. Comparative results demonstrate that the
proposed adder is area proficient and performs better than other adders in terms of power, particularly 16-
bit and 32-bit adders. This technique can be further extended to design 64-bit adder at the cost of larger fan-
out and complex interconnects.Drawing the inference, the proposed adder offers a reduced area and power
with a comparative speed. Modern DSP and microprocessors would be very much benefited by adopting
the proposed adder.

REFERENCES
[1] Ahmet Sertba and R.Selami Özbey, “A performance analysis of classified binary adder architectures and the VHDL

simulations”, J. Electrical & Electronics Engineering, vol. 4, no. 1, pp. 1025-1030, 2004.

[2] J. Sklansky, “Conditional-sum addition logic”, IRE Tras. Electronic Computers, vol. 9, pp. 226-231, June 1960.

[3] P.M. Kogge and H.S. Stone, “A parallel algorithm for the efficient solution of a general class of recurrence equations”,
IEEE Trans. Computers, vol. 22, no. 8, pp. 786-793, August 1973.

[4] R.E. Ladner and M.J. Fisher, “Parallel prefix Computation”, J. ACM, vol. 27, no. 4, pp. 831-838, October 1980.

[5] R.P. Brent and H.T. Kung, “A regular layout for parallel adders”, IEEE Trans. Computers, vol. 31, no. 3, pp. 260-264,
March 1982.

[6] T. Han and D. Carlson, “Fast area-efficient VLSI adders”, Proc. Symp. Computer Arithmetic, pp 49-56, 1987.

[7] Simon Knowles, “A family of adders”, Proc. 15th IEEE Symp. Computer Arithmetic, pp. 277-281, 2001.

[8] Huey Ling, “High-speed binary adder”, IBM J. R&D, vol. 25, no. 3, pp. 156-166, May1981.

[9] C. Efstathiou, H.T. Vergos and D. Nikolos, “Ling Adders in Standard CMOS Technologies”, Proc. IEEE Int. Conf.
Electronics, Circuits and Systems (ICECS), vol. 2, pp. 485-48, 2002.

[10] Giorgos Dimitrakopoulos and Dimitris Nikolos, “High-Speed parallel-prefix VLSI ling adders” IEEE Trans. Computers,
vol. 54, no. 2, pp. 225-231, February 2005.

[11] Tso-Bing Juang, Pramod Kumar Meher and Chung-Chun Kuan, “Area-efficient parallel-prefix ling adders” Proc. IEEE
Asia Pacific Conf. Circuits and Systems (APCCAS), Kuala Lumpur, pp. 736-739, 2010.

[12] Poornima N and V S Kanchana Bhaaskaran, “Area efficient hybrid parallel prefix adders”, Procedia Materials Science,
vol. 10, pp. 371-380, 2015.

[13] I. Koren, Computer Arithmetic Algorithms, 2nd Edition, Natrick, Massachusetts, 2002.

[14] B. Parhami, Computer Arithmetic-Algorithms and Hardware Designs, New York: Oxford Univ. Press; pp. 75-140, 2000.

[15] S. Vassiliadis, “Recursive Equations for Hardwired Binary Adders”, J. Electronics, vol. 67, pp. 201-213, 1989.

