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Abstract. A theorem of the Kolmogorov–Chentsov type is proved for ran-
dom fields on a Riemannian manifold.

1. Introduction

One of the key theorems in the theory of stochastic processes is the Kolmogorov–
Chentsov theorem (the classical references are [8] and [2]), which states the exis-
tence of a continuous modification of a given stochastic process based on tail or
moment estimates of its increments.

In the present paper we prove a theorem of the Kolmogorov–Chentsov type
for random fields indexed by a finite–dimensional Riemannian manifold. A result
of similar kind has been proved in a recent paper, in which also results about
differentiablity are shown [1]. Concerning the Kolmogorov–Chentsov theorem the
differences between the present and the cited paper are twofold: For one, the conti-
nuity statement in [1] is formulated in terms of coordinate mappings, while here we
give an intrinsic formulation, i.e., a direct formulation in terms of the Riemannian
(topological) metric. Secondly, the methods of proof are quite different: While the
Sobolev embedding theorem is employed in [1], we basically use here the classical
method via dyadic approximations and the Borel–Cantelli lemma. In fact, our
proof of the Kolmogorov–Chentsov theorem for random fields on a Riemannian
manifold is based on a localized variant of a theorem in [7], which is combined
with a local coordinatization of the underlying Riemannian manifold in terms of
the exponential map.

The organization of the paper is as follows. In Section 2 we recall the setup of
the general Kolmogorov–Chentsov theorem in [7], and prove the above mentioned
localized version of Theorem 2.8 in [7]. In Theorem 3.1 below we state and prove
our main assertion, namely our theorem of Kolmogorov–Chentsov type for Rie-
mannian manifolds. Finally, in Section 4 we discuss the existence of locally Hölder
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continuous modifications, provide sufficient conditions in terms of moments of the
increments, and consider the special case of Gaussian random fields as examples.

2. A Kolmogorov–Chentsov Theorem for Metric Spaces

In this section we give a variant of the Kolmogorov–Chentsov type theorem
in [7], which follows rather directly from it, and in some sense sharpens that
result.

Suppose that (M,d) is a separable metric space, that (Ω,A, P ) is a probability
space, and that ϕ =

(
ϕ(x), x ∈M

)
is a real-valued random field on this probability

space indexed by M .
Assume furthermore that r and q are two strictly increasing functions on an

interval [0, ρ), ρ > 0, such that r(0) = q(0) = 0. Throughout this paper we suppose
that for all x, y ∈M with d(x, y) < ρ, we have the bound

P
(∣∣ϕ(x)− ϕ(y)

∣∣ > r
(
d(x, y)

))
≤ q

(
d(x, y)

)
. (2.1)

Remark 2.1. We take the occasion to correct a minor error in [7]: There, this
bound has been formulated and used with a “≥” sign for the event under the
probability, which for x = y is obviously absurd. However, an inspection shows
that all arguments and results in [7] remain correct, when replacing the condition
there with the inequality (2.1). Alternatively, the condition in [7] could be supplied
with the additional restriction x ̸= y.

We make the following assumptions on the metric space (M,d):

Assumptions 2.2.

(a) There exists an at most countable open cover (Un, n ∈ N) of M , and for
every n ∈ N, there exists a metric dn on Un so that αn dn(x, y) ≤ d(x, y) ≤
dn(x, y) for all x, y ∈ Un and some αn ∈ (0, 1];

(b) for every n ∈ N, (Un, dn) is well separable in the sense of [7], i.e.:
i) there exists an increasing sequence (Dn,k, k ∈ N) of finite subsets of
Un such that Dn =

∪
kDn,k is dense in (Un, dn), and for x ∈ Dn,k,

let Cn,k(x) = {y ∈ Dn,k, dn(x, y) ≤ δn,k}, where δn,k denotes the
minimal distance of distinct points in Dn,k with respect to dn;

ii) every z ∈ Un has a neighborhood V ⊂ Un so that for almost all
k ∈ N and all x, y ∈ Dn,k+1 ∩ V , there exist x′, y′ ∈ Dn,k ∩ V with
x′ ∈ Cn,k+1(x), y

′ ∈ Cn,k+1(y), and dn(x
′, y′) ≤ dn(x, y);

(c) for n, k ∈ N, let πn,k be the set of all unordered pairs ⟨x, y⟩, x, y ∈ Dn,k

with dn(x, y) ≤ δn,k, and let |πn,k| denote the number of elements in this
set, then ∑

k

|πn,k| q(δn,k) < +∞, (2.2)∑
k

r(δn,k) < +∞ (2.3)

hold true.
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We remark that due to the assumption on the metrics d and dn, n ∈ N, in (a)
above, the relative topology on Un generated by d coincides with the topology
generated by dn.

For x, y ∈ Un with d(x, y) < αnρ, we can estimate as follows

P
(∣∣ϕ(x)− ϕ(y)

∣∣ > r
(
dn(x, y)

))
≤ P

(∣∣ϕ(x)− ϕ(y)
∣∣ > r

(
d(x, y)

))
≤ q

(
d(x, y)

)
≤ q

(
dn(x, y)

)
,

because r and q are both increasing. Theorem 2.8 in [7] shows that from this
estimate, together with the Assumptions (a), (b), and (c) above, it follows that
for every n ∈ N, the restriction ϕn of ϕ to Un has a locally uniformly continuous
modification ψn which is such that ϕn, ψn, and ϕ coincide on Dn. In more detail
we have that for every n ∈ N, there exists a random field ψn indexed by Un such
that

(i) for every ω ∈ Ω, the mapping ψn(·, ω) : Un → R is locally uniformly
continuous;

(ii) for every x ∈ Un, there exists a P–null set Nx,n so that ψn(x, ω) = ϕ(x, ω)
for all ω in the complement of Nx,n, and if x ∈ Dn, Nx,n can be chosen as
the empty set.

In order to get for x ∈M a universal P -null set Nx, we set Nx =
∪

n′ Nx,n′ , where
the union is over all n′ ∈ N such that x ∈ Un′ . Since this is a countable union, Nx

is indeed a P–null set.
From the modifications ψn of ϕn, n ∈ N, we construct a locally uniformly

continuous modification ψ of ϕ. We show

Lemma 2.3. There exists a P–null set N ∈ A so that for all n, n′ ∈ N, n ̸= n′,
with Un ∩ Un′ ̸= ∅ and every x ∈ Un ∩ Un′ the equality ψn(x, ω) = ψn′(x, ω) holds
true for all ω in the complement of N .

Proof. Assume that x ∈ Un ∩ Un′ . Since ψn and ψn′ are modifications of ϕ when
all these random fields are restricted to Un ∩ Un′ , we get ψn(x) = ψn′(x) on the
complement of the P–null set Nx. Since (M,d) is separable so is (Un ∩ Un′ , d),
and letting x range over a countable dense subset En,n′ and taking the union of
all associated P–null sets, we get the existence of a P–null set Nn,n′ such that for
all x ∈ En,n′ , we have ψn(x) = ψn′(x) on the complement of Nn,n′ . ψn and ψn′

are continuous on Un ∩Un′ , and hence we obtain for all x ∈ Un ∩Un′ the equality
ψn(x) = ψn′(x) on the complement of Nn,n′ . Finally, we set N =

∪
n,n′ Nn,n′ so

that we find for all n, n′, and all x ∈ Un ∩Un′ the equality ψn(x) = ψn′(x) on the
complement of the P–null set N . □

On the exceptional setN of the last lemma we define ψ(x) = 0 for all x ∈M . On
its complement we set ψ(x) = ψn(x) whenever x ∈ Un, and the last lemma shows
that this makes ψ well-defined. For x ∈ M , define the P–null set N ′

x = Nx ∪ N
where Nx and N are the P–null sets defined above. We have x ∈ Un for some
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n ∈ N, and for all ω in the complement of N ′
x, we find that ψ(x, ω) = ψn(x, ω) =

ϕ(x, ω). Thus ψ is a modification of ϕ. We have proved the following

Theorem 2.4. Under Condition (2.1) on the random field ϕ and under the above
Assumptions 2.2 on (M,d), r and q, ϕ has a locally uniformly continuous modifi-
cation.

3. A Kolmogorov–Chentsov Theorem for Riemannian Manifolds

We begin this section by recalling the necessary terminology of Riemannian
geometry, setting up our notation at the same time. For further background the
interested reader is referred to the standard literature, e.g. [3, 4, 6].

Assume that m ∈ N and that (M, g) is an m–dimensional Riemannian manifold
as defined in [3]. That is,M is a connected, m–dimensional C∞–manifold together
with a symmetric, strictly positive definite tensor field g of type (0, 2). For each
x ∈ M , the Riemannian metric g determines an inner product gx(·, ·) on the
tangent space TxM at x:

gx : TxM × TxM → R
(X,Y ) 7→ gx(X,Y ).

The corresponding norm on TxM is given by

∥X∥ = gx(X,X)1/2, X ∈ TxM.

Let c : [a, b] →M be a smooth curve inM . Then its derivative c′(t) at t ∈ (a, b)
belongs to Tc(t)M , and the length of c is given by

L(c) =

∫ b

a

∥c′(t)∥ dt.

The Riemannian distance d(x, y) of two points x, y ∈M is defined as the infimum
of the lengths of curve segments joining x and y. Indeed, d is a metric on M and
it can be shown that under the given assumptions on M the metric space (M,d)
is separable, locally compact and connected [3, Proposition I.9.6]. Furthermore,
the original topology and the topology defined by d coincide [3, Corollary I.9.5].

We denote the open ball of radius R > 0 centered at x ∈ M relative to the
metric d by Bd

R(x), while the ball of radius R in TxM with center at X ∈ TxM
with respect to the norm ∥ · ∥ is denoted by BR(X).

With the Riemannian metric g there is canonically associated — via the notions
of parallel transport and geodesics — the exponential map (Expx, x ∈M), which
for each x ∈M is a mapping from TxM into a neighborhood of x in M . It can be
shown that for each x ∈ M , there exists a radius R(x) > 0 such that Expx maps
BR(x)(0) diffeomorphically onto Bd

R(x)(x) [3, Theorem I.9.9, Proposition I.9.4].

Moreover, for all Y , Z ∈ BR(x)(0) such that Expx(Y ) = y, Expx(Z) = z, the
quotient ∥Y − Z∥/d(y, z) converges to 1 as (y, z) → (x, x) [3, Proposition I.9.10].

In view of Theorem 2.4 in Section 2, we construct a countable cover (Un, n ∈ N)
of M as follows. The separability of M (see above) allows us to fix a countable
dense subset {xn, n ∈ N} of M . For every n ∈ N, choose Rn ∈

(
0, 1/(2

√
m)

]
in

such a way that:
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1. the exponential map Expxn
is a diffeomorphism from BRn(0) ⊂ TxnM

onto Bd
Rn

(xn) ⊂M ,
2. for all X, Y ∈ BRn(0) such that Expxn

(X) = x, Expxn
(Y ) = y, x,

y ∈ Bd
Rn

(xn),

2−1∥X − Y ∥ ≤ d(x, y) ≤ 2∥X − Y ∥. (3.1)

The existence of a strictly positive Rn for each n ∈ N with these properties follows
from the facts mentioned before.

The idea is now to use the exponential map in order to define a convenient
coordinatization of Un and to use inequality (3.1) for the definition of a suitable
metric dn on Un. To this end, we fix an orthonormal basis (Xn,1, . . . , Xn,m) of
(TxnM, gxn) so that every X ∈ TxnM can be written in a unique way as

X =

m∑
i=1

aiXn,i

with a = (a1, . . . , am) ∈ Rm. Let us denote the so defined linear mapping from
Rm onto TxnM by Lxn . The orthonormality of (Xn,1, . . . , Xn,m) entails that Lxn

is an isometric isomorphism if Rm is equipped with the standard euclidean metric.
In particular, the ball BRn(0) is under Lxn in one-to-one correspondence with the
euclidean ball Bm

Rn
(0) in Rm. Define

φn(x) = L−1
xn

◦ Exp−1
xn

(x), x ∈ Bd
Rn

(xn),

then φn is a C∞–coordinatization of Bd
Rn

(xn) which maps this ball onto Bm
Rn

(0) ⊂
Rm.

For x, y ∈ Bd
Rn

(xn), define

dn(x, y) = 2
√
m max

i=1,...,m

∣∣φi
n(x)− φi

n(y)
∣∣, (3.2)

where φi
n(x) denotes the i–th Cartesian coordinate of φn(x). Set αn = 1/(4

√
m).

If ∥ · ∥2 denotes the usual euclidean norm on Rm, we obtain from (3.1)

αn dn(x, y) = 2−1 max
i

∣∣φi
n(x)− φi

n(y)
∣∣

≤ 2−1∥φn(x)− φn(y)∥2
= 2−1∥Exp−1

xn
(x)− Exp−1

xn
(y)∥

≤ d(x, y)

≤ 2∥Exp−1
xn

(x)− Exp−1
xn

(y)∥

= 2∥φn(x)− φn(y)∥2

≤ dn(x, y).

Consider the open hypercube Hm
Rn

(0)

Hm
Rn

(0) =
{
x ∈ Rm, max

i=1,...,m
|xi| < m−1/2Rn

}
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in Rm of sidelength 2m−1/2Rn centered at the origin. Clearly we have Hm
Rn

(0) ⊂
Bm

Rn
(0). Set

Un = φ−1
n

(
Hm

Rn
(0)

)
so that (Un, n ∈ N) is an open cover of M .

For each k ∈ N, define the following subset Gn,k of the hypercube Hm
Rn

(0)

Gn,k =
{
a ∈ Rm, a = − Rn√

m
+

lRn

2k
√
m
, l ∈

{
1, . . . , 2k+1 − 1

}m
}
.

By construction, for each n ∈ N, (Gn,k, k ∈ N) is an increasing sequence of finite
subsets of Hm

Rn
(0), and the union of these sets is dense in Hm

Rn
(0). Next set

Dn,k = φ−1
n (Gn,k). Then for each n ∈ N, (Dn,k, k ∈ N) is an increasing sequence

of subsets of Un, its limit being dense in Un. Moreover, it is easy to see that
Condition (b.ii) of Assumption 2.2 holds true for the sequence (Dn,k, k ∈ N),
where for every z ∈ Un, we may choose the neighborhood V in this condition as
Un itself. (For an explicit argument, see also [7].)

By construction we have (in terms of the notation of Section 2)

δn,k = min
{
dn(x, y), x, y ∈ Dn,k, x ̸= y

}
= 2−k+1Rn.

The number |πn,k| of unordered pairs in πn,k (cf. Assumption 2.2.(c)) can be
bounded from above by Km2mk for some constant Km.

Now let ρ ∈ (0, 1], and make the usual choices of the functions r, and q:

r(h) = log2(h
−1)−β , (3.3)

q(h) = K log2(h
−1)−α hm, (3.4)

for h ∈ (0, ρ), and r(0) = q(0) = 0. Here K > 0 is an arbitrary constant, and α,
β > 1. Then it is straightforward to check that the inequalities (2.2), (2.3) hold
true.

Thus we can apply Theorem 2.4 and obtain

Theorem 3.1. Suppose that ϕ is a random field defined on an m–dimensional
Riemannian manifold (M, g) with topological metric d such that for all x, y ∈ M
with d(x, y) < ρ,

P
(∣∣ϕ(x)− ϕ(y)

∣∣ > r
(
d(x, y)

))
≤ q

(
d(x, y)

)
holds true, where the functions r, q are defined as in (3.3), (3.4) for some constants
K > 0, α, β > 1. Then ϕ has a locally uniformly continuous modification.

4. Hölder Continuity and Moment Conditions

While a locally uniformly continuous modification was constructed in the previ-
ous section, the goal here is to show higher regularity in terms of orders of Hölder
continuity under additional assumptions.

Therefore, let (M,d) be a metric space and ϕ be as in Section 2, Assumption 2.2.
For the sequences of minimal distances (δn,k, k ∈ N) of distinct points in the grids
(Dn,k, k ∈ N) and the function r, we make the stronger assumptions



CONTINUITY OF RANDOM FIELDS ON RIEMANNIAN MANIFOLDS 191

Assumptions 4.1.

(a) For every n ∈ N, there exist constants ηn ∈ (0, 1), Cn > 0 such that for
almost all k ∈ N,

1

Cn
ηkn ≤ δn,k ≤ Cn η

k
n (4.1)

holds true;
(b) there exist constants γ ∈ (0, 1), Kγ > 0 so that for all h ∈ [0, ρ), the

inequality
r(h) ≤ Kγh

γ (4.2)

is valid.

(Note that Assumption (b) on r above is stronger than the requirement of inequal-
ity (2.3).) Then, on every (Un, dn), we are in the situation of Theorem 2.9 in [7]
and get the existence of a modification ψn which is locally Hölder continuous of
order γ, i.e., for every ω ∈ Ω and every z ∈ Un, there exists a neighborhood V (ω)
of z in (Un, dn) and a constant αγ,n such that

sup
x,y∈V (ω), x ̸=y

∣∣∣∣ψn(x, ω)− ψn(y, ω)

dn(x, y)γ

∣∣∣∣ ≤ αγ,n.

Actually, the constant αγ,n was explicitly calculated in [7] and is given by

αγ,n = 2Kγ
C2γ

n

ηγn(1− ηγn)
.

Again we can glue these modifications together to get a modification ψ of ϕ on
(M,d) which is locally Hölder continuous of order γ.

Corollary 4.2. Assume that Condition (2.1) on the random field ϕ holds true.
Suppose furthermore that the Assumptions 2.2 are valid, together with the addi-
tional stronger properties given in Assumptions 4.1. Then ϕ has a modification
which is locally Hölder continuous of order γ.

We return to the case where M is an m–dimensional Riemannian manifold
with topological metric d. Let the open cover ((Un, dn), n ∈ N), and the sequences
of grids ((Dn,k, δn,k), k ∈ N), n ∈ N, be defined as in Section 3. Recall that
δn,k = 2−k+1Rn and Rn ∈ (0, 1/2

√
m)], n, k ∈ N. Set ηn = 1/2, and choose

Cn ≥ 1/(2Rn). Then Condition (4.1) is fulfilled. As before let ρ be in (0, 1].
Define q as in (3.4), and

r(h) = hγ (4.3)

for some γ ∈ (0, 1). Then Condition (4.2) is valid as well, and so we arrive at

Corollary 4.3. Let ϕ be a random field defined on an m–dimensional Riemannian
manifold (M, g), m ∈ N, with topological metric d, such that for all x, y ∈M with
d(x, y) < ρ,

P
(∣∣ϕ(x)− ϕ(y)

∣∣ > r
(
d(x, y)

))
≤ q

(
d(x, y)

)
holds true, where the functions r, q are defined as in (4.3), (3.4) for some constants
K > 0, α > 1, γ ∈ (0, 1). Then ϕ has a locally Hölder continuous modification of
order γ.
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The standard application of Chebychev’s inequality yields sufficient conditions
in terms of moments:

Corollary 4.4. Suppose that ϕ is a random field defined on an m–dimensional
Riemannian manifold M , m ∈ N, with topological metric d.

(a) If there exist ρ ∈ (0, 1] , l ≥ 1, κ ≥ m, ν > l + 1, and K > 0 such that

E
(
|ϕ(x)− ϕ(y)|l

)
≤ K log2

(
d(x, y)−1

)−ν
d(x, y)κ

for all x, y ∈ M with d(x, y) < ρ, then ϕ has a modification which is
locally uniformly continuous.

(b) If there are ρ ∈ (0, 1] , l ≥ 1, γ ∈ (0, 1), and α > 1 such that

E
(
|ϕ(x)− ϕ(y)|l

)
≤ K log2

(
d(x, y)−1

)−α
d(x, y)m+lγ

for all x, y ∈ M with d(x, y) < ρ, the modification can be chosen to have
locally Hölder continuous sample paths of order γ.

In case of a Gaussian random field, Corollary 4.4 leads to a condition which can
be formulated in terms of the variogram of the random field:

Corollary 4.5. Assume that ϕ is a Gaussian random field defined on an m–
dimensional Riemannian manifold M , m ∈ N, with topological metric d and vari-
ogram σ(x, y)2 = E

(
(ϕ(x)−ϕ(y))2

)
. If there exist ρ ∈ (0, 1] , η ∈ (0, 1), and C > 0

such that

σ(x, y)2 ≤ C d(x, y)η (4.4)

for all x, y ∈M with d(x, y) < ρ, then ϕ has a modification which is locally Hölder
continuous of order γ for all γ < η/2.

Applied to the specific case of the m–dimensional unit sphere embedded in
Rm+1, this corollary recovers the results from [5], where isotropic Gaussian random
fields on spheres are considered.
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