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Abstract: This paper deals with some maximal element theorems in finite continuous
space. A well known result of Mehta is extended and we have applied it to achieving some
maximal element theorems for condensing multimaps defined on a noncompact subset of
a finite continuous space.
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1. INTRODUCTION

The existence of maximal elements for multimaps in topological vector spaces and its
important applications in abstract economies, nonlinear analysis and other branches of
mathematics have been studied by many authors in both mathematics and economies, for
example see [4, 5, 6, 7, 21, 25, 31, 32, 35] and [36]. In the last two decades, the theory of
fixed points and maximal elements for a family of multimaps defined on a product space
have been investigated by many authors, see [1, 2, 4, 5, 6, 24, 25, 26] and [27].

The concept of generalized convex space introduced by Park and Kim in 1993 [33],
which it generalizes topological vector space and several types of abstract convexity.
Recently, as an extended version of generalized convex space, Ding introduced the notion
of finite continuous space in [13, 17] and then many attempts have been applied this new
space to various directions [9, 11, 12, 15, 19, 20, 22, 37] and especially to some fixed point
and maximal element theorems by Ding in [13] and [14].

Kuratowski [23] introduced the set-measure of noncompactness, and later Gokhberg,
Goldenstein and Markus (see Lloyd [29], Ch. 6) introduced the ball-measure of
noncompactness. Petryshyn and Fitzpatrick [34], extended the notion of measure of
noncompactness for subsets of a Hausdorff locally convex topological vector space.

At the present paper, we define FC-measure of noncompactness � and �F-condensing
multimaps in finite continuous spaces. Also, a well known Lemma of Mehta [31, 32], will be
extend for an FC-measure of noncompactness � and a �F-condensing multimap T. Then by
using this result some maximal element theorems in finite continuous spaces are given.
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2. PRELIMINARIES

A multimap T : X –� Y is a function from a set X into ��(Y ), the power set of Y; that is, a
function with the values T (x) � Y for all x � X and

T – ( y) = {x � X : y � T (x)}

is a fiber for any y � Y. Given A � X, set T (A) = 
x A�
� T (x).

Let �D� denote the set of all nonempty finite subsets of a set D and let �n be the n-simplex
with vertices e0, e1, ..., en, �J be the face of � n corresponding to J � �A� where A � �D�; for
example, if A = {a0, a1, ..., an} and J = {ai0, ai1, ..., aik}� A, then �J = co{ei0, ei1, ..., eik}.

Suppose X and Y are topological spaces. A subset A of X is said to be compactly open
(resp. closed) if for each nonempty compact subset K of X, A � K is open (resp. closed) in
K [8, 16]. The compact interior and the compact closure of A are defined as following

cint (A) = � {B � X, B � A and B is compactly open in X}

and

ccl (A) = � {B � X, A � B and B is compactly closed in X}

respectively.

Definition 2.1: [13, 17, 18, 37] Suppose X is a topological space. (X, {�N : N � �X�}) is
said to be finite continuous space (briefly, FC-space) if for each N = {x0, x1, ..., xn} � �X �,
where some elements in N may be same, there exists a continuous mapping �N : �n � X.
Also, suppose A and B are two subsets of X. B is said to be a finite continuous subspace of
X relative to A (briefly, an FC-subspace of X relative to A) if for each N = {x0, x1, ..., xn} � �X�
and for each {xi0, xi1, ..., xik} � A � N we have �N (�k) � B. If A = B, then B is called a finite
continuous subspace of X (briefly, an FC-subspace of X). It is easy to check that any
FC-subspace of (X, {�N : N � �X �}) is an FC-space too. For a subset A of an FC-space
(X, {�N : N � �X �}) the FC-hull of A is defined as following

FC (A) = � {B � X : A � B and B is FC-subspace of X},

also the closed FC-hull of A is defined as following

FC (A) = � {B � X : A � B and B is a closed FC-subspace of X}.

Example 2.2: Let X = (0, 1) � (2, 3) with the usual topology. For each N = {x0, ..., xn}

� �X �, define the mapping �N : �n � X by �N (�) = 1
3

n

i i
i o

x
�
��  for all � = (�0, ..., �n) � �n,

then, it is easy to check that �N is continuous and hence (X, {�N : N � �X �}) is an FC-space
without convexity structure.
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Proposition 2.3: [13] Suppose (Xi, {�Ni : Ni � �X i�})i � I is a family of FC-spaces. Then

(X, {�N : N � �X �}) is an FC-space, where X = 
i I�
�  Xi and �N = 

i I�
�  �Ni.

Proposition 2.4: [37] Suppose (Xi, {�Ni : Ni � �Xi�})i � I is a family of FC-spaces,

X = 
i I�
�  Xi and �N = 

i I�
�  �Ni. Also, suppose that Ai is an FC-subspace of Xi relative to Bi for

each i � I. Then A = 
i I�
�  Ai is an FC-subspace of X relative to B = 

i I�
�  Bi.

Proposition 2.5: [37] Suppose (X, {�N : N � �X �}) is an FC-space. Then 
i I�

 Ai is an

FC-subspace of X relative to 
i I�

 Bi, if Ai is an FC-subspace of X relative to Bi for each i � I.

Corollary 2.6: Suppose (X, {�N : N � �X �}) is an FC-space. If Ai is an FC-subspace of

X for each i � I, then 
i I�

 Ai is an FC-subspace of X too.

Proof: It is an immediate consequence of Proposition 2.5.

3. MAXIMAL ELEMENT THEOREMS

Kuratowski [23] introduced the set-measure of noncompactness � defined in a Banach
space by � (A) = + �, if A is unbounded and ��(A) = inf{� > 0 : A can be covered by a finite
number of sets with diameter less than �}, if A is bounded. Analogously, Gokhberg,
Goldenstein and Markus (see Lloyd [29], Ch. 6) introduced the ball-measure of
noncompactness � defined in a Banach space by � (A) = +�, if A is unbounded and � (A) =
inf {r > 0 : A can be covered by a finite number of balls with radius less than r}, if A is
bounded. Clearly, in both cases, the range is �+

���{+�} with the usual ordering. For � = �
or � = � the following statements satisfy,

(a) ��(A) = ��(c
—o(A)),

(b) ��(A) = 0 if and only if A is relatively compact,

(c) ��(A � B) = max {��(A), ��(B)}.

For another definitions and more details see [4] and [29] and references therein.
Petryshyn and Fitzpatrick [34], extended the notion of measure of noncompactness for
subsets of a Hausdorff locally convex topological vector space. In this section, measure of
noncompactness will be defined in a finite continuous space similar to Petryshyn and
Fitzpatrick by a suitable modifications. Also, an extended version of Mehta’s result is
given. Finally, by using these we obtain existence of maximal elements for condensing
multimaps defined on a noncompact subset of a finite continuous space.
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Definition 3.1: Suppose (X, {�N : N � �X �}) is an FC-space and C is a lattice with a
minimal element 0. A mapping � : � (X) � C is said to be FC-measure of noncompactness
if for all A, B � �(X),

(a) ��(A) = � (F
—

C
—

 (A)),

(b) ��(A) = 0 if and only if A is relatively compact,

(c) ��(A � B) = max {� (A), � (B)}.

Definition 3.2: Suppose (X, {�N : N � �X �}) is an FC-space, C is a lattice with a minimal
element 0 and � : � (X) � C is an FC-measure of noncompactness. A multimap T : Y � X –
� X is said to be �F-condensing if ��(M) � � (T (M)) implies that M is relatively compact for
each M � �(Y ).

Theorem 3.3: Suppose (Xi, {�Ni : Ni � �Xi�})i � I is a family of closed FC-spaces and �

is an FC-measure of noncompactness on X = 
i I�
�  Xi. Also, suppose that Ti : X –� Xi are

multimaps such that T = 
i I�
�  Ti is a �F-condensing multimap. Then there exists a nonempty

compact FC-subspace K of X in which T (K) � K.

Proof: Fix an arbitrary x � X. Set

� = {C � X : C is closed and FC-subspace of X, x � C, T (C) � C}.

� is nonempty, since X � �. Put K = 
�C F
�

 C, so x � K, therefore K is nonempty. For

each k � K, T (k) � C for all C � �, thus T (K) � C for all C � � which implies that T (K)
� K. Clearly K is closed and also Corollary 2.6 implies K is FC-subspace of X. Now, if K
is not compact, then it is not relatively compact. Since T is �F-condensing, so � (T (K)) < �
(K). Put H = F

—
C
—

 ({x} � T (K)), since {x} � T (K) � K and since K is closed, so one can
deduce that H � K. By the structure of H, T (H) � T (K) � H, so H � �. According to the
definition of

F, K H, consequently K = H. On the other hand

��(H) = ��(F
—

C
—

 ({x} � T (K)))

= � ({x} � T (K))

= max {��({x}), � (T (K))}

= max {0, � (T (K))}

= � (T (K))

< ��(K) = � (H),

which is a contradiction.
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Remark 3.4: The originate version of Theorem 3.3 goes back to Martin [30]. Also, an
adaptation of the argument of Martin for multimaps when I = {1} is due to Mehta [31] and
when I is an arbitrary index set, the result is due to Chebbi and Florenzano [4]. Finally, we
note that some applications of Mehta’s Lemma can be found in [3, 4, 26, 27] and [28].

Definition 3.5: [10] Suppose X is a nonempty set and Y is a topological space. A
multimap T : X –� Y is said to be transfer compactly open valued if for any x � X and for
each compact subset K of Y, y � T (x) � K implies that there is x0 � X for which
y � intK (T (x0) � K). In other words, if for every x � X, y � T (x), there exists a point x~ � X
for which y � c int T (x

~).

Theorem 3.6: [13] Suppose (Xi, {�Ni : Ni � �Xi�})i � I is a family of FC-spaces and

X = 
i I�
�  Xi. Let Si : X –� Xi satisfying

(a) for each N = {x0, x1, ..., xn} � �X � and for each {xl0, xl1, ..., xlk} � N,

�N (�k) � 
0

int ( ( )
j

k

i i l
j

c S x�

�

� �
� �� �

� �
� Ø ,

(b) S–
i is transfer compactly open valued,

(c) I (x) = {i � I : Si (x) � Ø} is finite, for each x � X,

(d) there exists a compact subset K of X such that for each Ni � �Xi�, there exists a
nonempty compact FC-subspace LNi of Xi containing Ni such that for each x � X \ K,

there exists y � LN = 
i I�
�  LNi such that for each i � I (x), x � c int S–

i (yi).

Then there exists x– � K for which Si (x
– ) = Ø for each i � I.

Theorem 3.7: Suppose (Xi, {�Ni : Ni � �Xi�})i � I is a family of FC-spaces and X = 
i I�
�  Xi.

Let Si, Ti : X –� Xi satisfying

(a) Ti (x) is FC-subspace of Xi relative to Si (x) for each x � X,

(b) for each x � X, xi � Ti (x) and S–
i is transfer compactly open valued,

(c) I (x) = {i � I : Si (x) � Ø} is finite for each x � X,

(d) there exists a compact subset K of X and Ni � �Xi� and there exists a nonempty
compact FC-subspace LNi of Xi containing Ni such that for each x � X \ K, there

exists y � LN = 
i I�
�  LNi such that for each i � I (x), x � c int S

–
i (yi).

Then there exists x–  � K for which Si (x– ) = Ø for each i � I.
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Proof: We claim that, condition (a) and xi � Ti (x) imply that the condition (a) of
Theorem 3.6 holds. On the contrary, suppose there exists N = {x0, ..., xn} � �X� and
{xl0, ..., xlk} � N such that

�N(�k) � 
0

int ( ( )
j

k

i i l
j

c S x�

�

� �
� �� �

� �
� Ø .

Then there exists x̂ ���N (�k) in which x̂ � c int S
–
i (�i (xlj)) � S–

i (�i (xlj)) for all j = 0, ..., k.
Therefore, {�i (xlj) : j = 0, ..., k} � Si (x̂) for each i � I. Hence, for Ni = �i (N) we have
{�i (xlj) : j = 0, ..., k} � Ni � Si (x̂). Now, since Ti (x̂) is an FC-subspace of Xi relative to Si (x̂),

x̂i = �i (x̂) � �i(�N (�k)) = �Ni (�k) � Ti (x̂),

a contradiction. That there exists x– � K for which Si (x
–) = Ø for each i � I follows from

Theorem 3.6.

Remark 3.8: It should be noticed that

(a) Theorem 3.7 for Si = Ti reduces to Corollary 2.5 of Ding in [13] and hence it
generalizes and improves Theorem 4.1 in [27].

(b) When Xi is compact, then Theorem 3.7 holds without condition (d). Because, it is

sufficient to put LNi = Xi or K = 
i I�
� Xi, in condition (d) of this theorem.

Lemma 3.9: Suppose X is a topological space, Ti : X –� Xi are multimaps and T –
i is a

transfer compactly open valued multimap on Xi for each i � I. Also, suppose that there is a

subset A of X for which T (A) = 
i I�
� Ti (A) � A. Then (Ti | A)–

 : Ai –� A is transfer compactly

open valued on Ai, where Ai = �i (A).

Proof: From T (A) � A, we have Ti (A) � Ai, so Ti | A : A –� Ai is a multimap. Now, we
prove that (Ti | A)– is a transfer compactly open valued multimap on Ai. Consider ai � Ai

with (Ti | A)– (ai) � Ø. For each a � A with a � (Ti | A)– (ai), since T –
i is a transfer compactly

open valued multimap on Xi, there exists a~i � Xi in which a � c int T
–
i (a

~
i) � T –

i  (a
~

i). So,
a~i � Ti (a) = Ti | A (a) � Ai. We are done.

Lemma 3.10: Suppose (X, {�N : N � �X �}) is an FC-space and B is an FC-subspace of
X relative to A. Then each subset C of X containing B is FC-subspace of X relative to each
subset D of A.

Proof: It is straightforward.

Lemma 3.11: Suppose (X, {�N : N � �X�}) is an FC-space, Y is an FC-subspace of X
and A, B � Y. Then B is an FC-subspace of X relative to A if and only if it is an FC-
subspace of Y relative to A.
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Proof: Let B is an FC-subspace of X relative to A. Suppose N = {x0, ..., xn} � �Y �, so
N � �X�. If {xi0, ..., xik} � N � A then �N (�k) � B. It implies that B is an FC-subspace of Y
relative to A. Conversely, suppose B is an FC-subspace of Y relative to A. For each N � �X�
we have N � A � �Y�. If {xi0, ..., xik} � N � A then �N (�k) � B; i.e., B is an FC-subspace of
X relative to A.

Theorem 3.12: Suppose (Xi, {�Ni : Ni � �Xi�})i � I is a family of closed FC-spaces and

X = 
i I�
�  Xi. Assume that � is an FC-measure of noncompactness on X and Si, Ti : X –� Xi are

multimaps satisfying

(a) FC (Si (x)) � Ti (x) for each x � X,

(b) for each x � X, xi � Ti (X ) and S–
i is transfer compactly open valued on Xi,

(c) I (x) = {i � I : Si (x) � Ø} is finite, for each x � X,

(d) T = 
i I�
�  Ti is �F-condensing.

Then there is x– � X for which Si (x
–) = Ø for each i � I.

Proof: By (d), T is �F-condensing and according to Theorem 3.3 there is a nonempty
compact FC-subspace K of X such that T (K) � K. Set Ki := �i (K), then each Ti | K : K –� Ki

is multimap. Condition (a) and Lemma 3.10 imply that Ti (x) is FC-subspace of Xi relative
to Si (x), for each x � X. Clearly, for each k � K, using Lemma 3.11 each Ti (k) is FC-subspace
of Ki relative to Si (k). Therefore, condition (a) of Theorem 3.7 satisfies for Ti | K and Si | K
instead of Ti and Si respectively. For each k � K, k � Ti | K (k) and from condition (a), Si (k)
� FC (Si (k)) � Ti (k) for each k � K, so Si (K) � K. Lemma 3.9 implies that (Si | K)– is
transfer compactly open valued on Ki, hence condition (b) of Theorem 3.7 is satisfies.
After all, since K is compact, part (b) of Remark 3.8 implies that the condition (d) of
Theorem 3.7 is not necessary. Finally, all conditions of Theorem 3.7 valid for Ti | K and
Si | K. Then there is x– � K for which Si (x

–) = Ø for each i � I.

Theorem 3.13: Suppose (Xi, {�Ni : Ni � �X i�})i � I is a family of closed FC-spaces and

X = 
i I�
�  Xi. Also suppose that � is an FC-measure of noncompactness on X and each Si : X –� Xi

is a multimap satisfying

(a) xi � FC (Si (x)) for each x � X,

(b) S–
i is transfer compactly open valued on Xi for each i � I,

(c) I (x) = {i � I : Si (x) � Ø} is finite for each x � X,

(d) S = 
i I�
�  Si is �F-condensing.

Then there is x– � X for which Si (x
–) = ; for each i � I.
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Proof: For each i � I, consider the multimap Ti defined by Ti (x) = FC (Si (x)) for
each x � X. Since S is �F-condensing, so there is a nonempty compact FC-subspace K of X
in which T (K) � K. Let Ki = �i (K), clearly, Ti | K and Si | K maps K to Ki; i.e., Ti | K, Si | K : K –� Ki

are well defined multimaps. It follows from (a) that ki � Ti |K (k) for all k � K and also
Lemma 3.9 implies that (Si | K)– is transfer compactly open valued multimap on K.

Therefore, all conditions of Theorem 3.7 satisfy for (Si | K, Ti | K) instead of (Si, Ti), so
there exists x– � X for which Si (x

–) = Ø for each i � I.

For the case that I is singleton we have the following direct result of Theorem 3.13.

Corollary 3.14: Suppose (X, {�N : N � �X�}) is an FC-space, � be an FC-measure of
noncompactness on X and S : X –� X is a multimap satisfying

(a) x � FC (S (x)), for each x � X,

(b) S– is transfer compactly open valued on X,

(d) S is �F-condensing.

Then there is x– � X for which S (x
–) = Ø.

Remark 3.15: Theorem 3.12 and Theorem 3.13 are extensions of Theorem 4.2 and
Theorem 4.3 in [27] respectively. Corollary 3.14 is a generalized version of Corollary 4.1
in [27] and since it generalizes Corollary 2 in [4], Theorem 2 in [25], Theorem 2.2 in [32]
and Theorem 3.1. in [36].
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