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1. INTRODUCTION

Let  be an analytic self-map of the open unit disc ⅅ in the finite complex plane ₵ 
and  H(ⅅ) be the set of all complex valued analytic functions on ⅅ.  By ⅅ we
denote the boundary of ⅅ; and Hp (1 p < ) the classical Hardy space.
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 .  Then the weighted Hardy spaces H2() is the Banach space of all

analytic functions f on the open unit disk ⅅ defined by
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where ||.||H2 
is a norm on H2().

If   1, then H2() becomes the classical Hardy space H2(ⅅ) .

Also, H2()  is a Hilbert space w.r.t the inner product

<  ,  > = ∑ b . β2∞
=0

where f, g H2(). For a detailed discussion on H2() one can see [14].

Associated with j, the classical linear operator Cj H(ⅅ)  H(ⅅ) is defined by
f  f o and this operator is called the composition operator induced by self-map.
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j. Let D be the differentiation operator defined by Df = f’. It has been known that
the composition operator C is bounded on almost all spaces of analytic functions
for example see [1, 2, 3] and D is usually unbounded on spaces of analytic functions.
Recently, the above defined operators have received the attention of many
researchers see, for example [5, 7, 11, 12] and [17].

The product of composition operator C and differentiation operator D is written
as CD and DC which are defined as CD f = f’oand DCf = (f o)’respectively,
for function f analytic in the disc ⅅ.  In [5], Hibschweiles and Portony defined the
product CD and DC and studied the boundedness and compactness of these
operators between Bergman and Hardy spaces by using the Carleson-type measure,
where as in [12] the author studied the boundedness and compactness of CD and
DC between Hardy type spaces.

This paper is organised as follows. In the second section, we shall discuss the
boundedness of the operator  DCD on weighted Hardy spaces H2(). In the third
section, we shall study the compactness of the operator DCD on weighted Hardy
spaces H2() and in the final section, we shall give necessary and sufficient condition
for the operator DCD  to be the Hilbert-Schmidt operator on weighted Hardy
spaces H2().

2.   Boundedness of the operator DCD.
In this section, we shall characterize the boundedness of the Sandwich

composition operator DCD on the weighted Hardy spaces.

Theorem 2.1. Let ⅅ  ⅅ is an analytic self map of ⅅ and  {n : n  0}

be an orthogonal family. Then the Sandwich composition operator

DCD : H2()’! H2(â)is bounded iff

║ −2 .  ′║ 2(β) ≤  M.  β
( −1)

   for all n ϵ ℕ∪{0}. .

Proof:  First, suppose that an operator DCD: H2()  H2() is bounded.

Then there exist a +ve number M such that

║DCφD ║ 2(β) ≤  ║ ║ 2(β)  ⩝   H2(β). (2)

Let. f(z) =  Zn. Then  f H2
() and so from (2.1), we have

║n(n − 1) n−2. ′║ 2(β) ≤  ║ ║ = M. β
That is

║ n−2 . ′║ 2(β) ≤   M.  β
 ( −1)

  for all n ϵ ℕ∪{0}.
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Conversely, assume that

║ n−2 . ′║ 2(β) ≤ M.  β
 ( −1)

                          (2.2)

Then, we have to prove that DCD is bounded.

Let f  H2() such that f(z) = 
0
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This implies that

║ DCφD ║ 2(β)  M║  ║ 2(β)  ∀  ϵ H2(β) 

That is DC5ØßD is bounded.

3. Compactness of the operator DCD.
In this section, we study  the  boundedness of the operator DCD on the weighted

Hardy spaces H2(). For this we need the following Lemma.

Lemma 3.1 Let  is an analytic self-map of ⅅ. Then the Sandwich composition
operator DCD: H2()’ H2()is compact iff for every bounded sequence
converging uniformly on compact subsets of ⅅ, we have

║DCφD ║ 2(β) → 0 

Proof: The proof of this Lemma can be written by using the similar arguments
as in [2, P-128].

Theorem 3.2. Let :  ⅅ  ⅅ is an analytic self-map of ⅅ and {n : n   1} be

an orthogonal family. Then DCD : H2()  H2() is compact iff
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Proof: Let us suppose that DCD: H2()  H2() is compact and 
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converges uniformly to zero on compact subsets of E!, so by Lemma 3.1
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Define an operator Tk on H2 ()as
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Then Tk is a finite rank operator on H2().

Now for k   m

       ║(DCφD − ) ║ 2(β)
2

 =  ║ ∑ . ( − 1) n−2 . ′∞
= +1 ║ 2(β)

2

                                             =  2
2 2 2 2

( )1
[ ( 1)] | || . ' ||n

Hn k
n n 

 
  

  2 2 2
0
| | . .n nn
a


 

= 2 2 2
0
| | .n nn
a




= 2
2 2

( )
|| ||

H
f




This implies that
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║DCφD − ║ 2(β) 
<  ϵ  ∀ ≥  

and so the operator  DCD is compact.

4. NECESSARY AND SUFFICIENT CONDITION FOR THE OPERATOR
DCD TO BE HILBERT SCHMIDT OPERATOR ON H2().

Recall that a linear operator T on Hilbert space H is said to be Hilbert Schmidt

operator if 2
n0

|| Te ||
n




  for some orthonormal basis {en} of H.

Theorem 4.1. The operator DCD is a Hilbert Schmidt operator on H2(â) iff .

 ∑
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Proof: Since  β
: n ≥  0   is an orthonormal basis for H2(). The operator

DCD is Hilbert Schmidt operator
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       This complete the proof.
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