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Abstract: Let C, D be the composition and differentiation operators defined by
Cf  =  and Df = f respectively. In this paper, the boundedness and compactness
of the Sandwich composition operator DCD on the weighted Hardy spaces have
been characterized.
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1. INTRODUCTION

Let  be an analytic self-map of the open unit disc ⅅ in the finite complex plane ₵ 
and  H(ⅅ) be the set of all complex valued analytic functions on ⅅ.  By ⅅ we
denote the boundary of ⅅ; and Hp (1 p < ) the classical Hardy space.
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where ||.||H2 
is a norm on H2().

If   1, then H2() becomes the classical Hardy space H2(ⅅ) .

Also, H2()  is a Hilbert space w.r.t the inner product

<  ݂, ݃ > = ∑ ܽ݊ bത݊ . β݊
2∞

݊=0

where f, g H2(). For a detailed discussion on H2() one can see [14].

Associated with j, the classical linear operator Cj H(ⅅ)  H(ⅅ) is defined by
f  f o and this operator is called the composition operator induced by self-map.
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j. Let D be the differentiation operator defined by Df = f’. It has been known that
the composition operator C is bounded on almost all spaces of analytic functions
for example see [1, 2, 3] and D is usually unbounded on spaces of analytic functions.
Recently, the above defined operators have received the attention of many
researchers see, for example [5, 7, 11, 12] and [17].

The product of composition operator C and differentiation operator D is written
as CD and DC which are defined as CD f = f’oand DCf = (f o)’respectively,
for function f analytic in the disc ⅅ.  In [5], Hibschweiles and Portony defined the
product CD and DC and studied the boundedness and compactness of these
operators between Bergman and Hardy spaces by using the Carleson-type measure,
where as in [12] the author studied the boundedness and compactness of CD and
DC between Hardy type spaces.

This paper is organised as follows. In the second section, we shall discuss the
boundedness of the operator  DCD on weighted Hardy spaces H2(). In the third
section, we shall study the compactness of the operator DCD on weighted Hardy
spaces H2() and in the final section, we shall give necessary and sufficient condition
for the operator DCD  to be the Hilbert-Schmidt operator on weighted Hardy
spaces H2().

2.   Boundedness of the operator DCD.
In this section, we shall characterize the boundedness of the Sandwich

composition operator DCD on the weighted Hardy spaces.

Theorem 2.1. Let ⅅ  ⅅ is an analytic self map of ⅅ and  {n : n  0}

be an orthogonal family. Then the Sandwich composition operator

DCD : H2()’! H2(â)is bounded iff

≥ (β)2ܪ║′߮  . 2−݊߮║  M.  β݊
݊(݊−1)

   for all n ϵ ℕ∪{0}. .

Proof:  First, suppose that an operator DCD: H2()  H2() is bounded.

Then there exist a +ve number M such that

║DCφD݂║2ܪ(β) ≤ ⩝  (β)2ܪ║݂║ܯ   ݂߳ H2(β). (2)

Let. f(z) =  Zn. Then  f H2
() and so from (2.1), we have
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That is
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 ݊(݊−1)

  for all n ϵ ℕ∪{0}.
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Conversely, assume that
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                          (2.2)

Then, we have to prove that DCD is bounded.
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This implies that

║ DCφD݂║2ܪ(β)  M║݂ ║2ܪ(β)  ∀ ݂ ϵ H2(β) 

That is DC5ØßD is bounded.

3. Compactness of the operator DCD.
In this section, we study  the  boundedness of the operator DCD on the weighted

Hardy spaces H2(). For this we need the following Lemma.

Lemma 3.1 Let  is an analytic self-map of ⅅ. Then the Sandwich composition
operator DCD: H2()’ H2()is compact iff for every bounded sequence
converging uniformly on compact subsets of ⅅ, we have

║DCφD݂݊  0 → (β)2ܪ║

Proof: The proof of this Lemma can be written by using the similar arguments
as in [2, P-128].

Theorem 3.2. Let :  ⅅ  ⅅ is an analytic self-map of ⅅ and {n : n   1} be

an orthogonal family. Then DCD : H2()  H2() is compact iff
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║DCφD − ܶ݇  (β)2ܪ║
<  ϵ  ∀ ݇ ≥ ݉ 

and so the operator  DCD is compact.

4. NECESSARY AND SUFFICIENT CONDITION FOR THE OPERATOR
DCD TO BE HILBERT SCHMIDT OPERATOR ON H2().

Recall that a linear operator T on Hilbert space H is said to be Hilbert Schmidt

operator if 2
n0

|| Te ||
n




  for some orthonormal basis {en} of H.

Theorem 4.1. The operator DCD is a Hilbert Schmidt operator on H2(â) iff .
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       This complete the proof.
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