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A Computational Method to #/ Control
Problem of Second-Order Linear
Systems Using Haar Wavelets

Mohammad K arimi* and Hamid Reza Karimi**

ABSTRACT

This paper presents a computational methodology to solve the problem of H_ control design for second-order
linear systems using Haar wavel ets. The main focus is on development of an H_ controller for the system under
consideration computationally that guaranteesboth the closed-loop stability and satisfiesadesired H_ performance.
TheHaar wavel et propertiesare utilized to find the approxi mate sol utions of trajectories and robust optimal control
by solving only al gebraic equationsinstead of solving the Riccati differential equation.

Index Terms: Second-order linear system, Haar wavelet; H_ control; computational method.

1. INTRODUCTION

Inrecent years, wavelet theory has obtained more attention from both mathematica and practical perspectives
[1]. It hasbeen applied in awide range of engineering disciplines such assignal processing, pattern recognition
and computational graphics. Recently, some of the attempts are made in solving surface integral equations,
improving the finite difference time domain method, solving linear differential equations and nonlinear
partial differential equations and modelling nonlinear semiconductor devices|[2, 3, 4, 6, 8, 9, 10, 11, 12]

Onthe other hand, as a special class of wavelets, orthogonal functionslike Haar wavelets (HWSs) [6, §],
Walsh functions [4], block pulse functions [12], Laguerre polynomials [7], Legendre polynomials [2],
Chebyshev functions [5] and Fourier series [13], often used to represent an arbitrary time functions, have
received considerable attention in dealing with various problems of dynamic systems. The main feature of
this method isto convert the problem described by differential equationsto the problem of solving asystem
of algebraic equations for the solution of problems, such as analysis of linear time-invariant, time-varying
systems, model reduction, optimal control and system identification. Thus, the solution, identification and
optimisation procedure are either greatly reduced or much simplified accordingly. The available sets of
orthogonal functions can be divided into three classes such as piecewise constant basis functions (PCBFs)
like HWSs, Walsh functions and block pulse functions; orthogonal polynomials like Laguerre, Legendre and
Chebyshev as well as sine-cosine functions in Fourier series [11].

In the present paper, a computational method is presented to the finite-time robust optimal control
problem of the second-order linear systems based on HWs. To this aim, the properties of HWs, Haar
wavelet integral operational matrix and Haar wavelet product operational matrix are given and are utilized
to provide a systematic computational framework to find the approximated robust optimal trajectory and
finite-time H_ control of the system with respect to an H_ performance by solving only the linear algebraic
eguations instead of solving the differential equations.
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The notations used throughout the paper are fairly standard. The matrices | , 0 and O__are the identity
matrix with dimension rxr and the zero matrices with dimensions rxr and rxs, respectively. The symbol ®
and tr(A) denote Kronecker product and trace of the matrix A, respectively. Also, operator vec(X) denotes
the vector obtained by putting matrix X into one column. Finally, given a signal x(t), ||x(t)||, denotes the L,

norm of x) : i.e., [¥@; = [x®)x@) dt
0

2. PROPERTIES OF HAAR WAVELETS

The oldest and most basic of the wavelet systems is named Haar wavelet that is a group of square waves
with magnitude of £1 inthe interval [0, 1) [3]. In other words, the HWs are defined on theinterval [0, 1) as

V@) =1, tel0, 1),

1 0, 3),
v, )= , for te[ 2) (1)
-1, for te[%, 1) ,

and v, (t) = y,(2't —k) fori>1and wewritei =2 + kfor j>0and 0 < k< 2. We can easily see that the

v (1) and y(t) are compactly supported, they give alocal description, at different scalesj, of the considered
function.

The finite series representation of any square integrable function y(t) in terms of an orthogonal basisin
m-1

theinterval [0,1), namely §(t), isgivenby J(t) =D aw,(t) =a"¥, (1) where a = [aa - a,,] ad
i=0

Y (t) = [1//0 (t) o (t) - 1//”H(t)]T for m = 2j and the Haar coefficientsa are determined to minimize the

mean integral square error € = i(y(t)—aT ¥n(t))? dt and are given by & = 2j{l))/(t) wi(t) dt,
The matrix H_ can be defined as
Hop = [¥(to) ¥t W (ts) | )
where / <t <} weget [J(t,) (t,) ... 9t ;)]=a" H,,

The integration of the vector ,,(t) can be approximated by

(j) Y (t) dt =P, ¥, (t) (€)

t 1t
where the matrix P =< ¥n(r) dz, ¥p(t) >=[ [ W, (r) dr W, (t) dt represents the integral operator
0 00

matrix for PCBFs on the interval [0,1) at the resolution m. For HWSs, the square matrix P_ satisfies the

following recursive formula [6]:
1 |2mP, —H,
p - — 2 2
™ om| H.t O (4)
2

INIE]
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L1 .
with P, =1 and H,,' - Hp diag (1) where the matrix H_ defined in (2) and also the vectorr is

m

r:=(J,J,2,2,4,4,4,4,---,(g),(g),m,(2))T

represented by for m > 2. For example, at resolution scale

(g) elements

j = 3, the matrices H, and P, are represented as

_'//o(to) wo(ty) '//o(t7)_ 11 1 1 1 1 1 1]
wi(to) wa(ty) y4(t7) 11 1 1 -1-1-1-1
wo(te) waol(ty) wo(t7) 11 -1-10 0 0 O
Hy = ws(to) wa(ty) ws(t7) _ c o0 0 0 1 1 -1 _1’
wa(to) wa(ty) w4(t7) 1-10 0 0 0 0 O
ws(to) ws(ty) ws(t7) c o0 1 -10 0 0 O
we(to) we(ty) we(t7) c o0 0 0 1 -10 O
_W?(to) wo(ty) V’?(t7)_ o0 06 0 0 0 1 -1
and
8,1 -4H, _oH,
4H 0 _H
1 1 1[16P, -H,
R=— -1 “1al mt
16 4H, 0 16{H4 0 }
i H' 0 ]
[32 -16 -8 -8 -4 -4 -4 -4
16 0 -8 8 -4 -4 4 4
4 4 O 0 -4 4 0 O
1/4 -4 0 0O O O -4 4
“64l1 1 2 0 0 0 O oOf
1 1 -2 0 0 O 0 O
1 -1 0 2 0O O 0 O
11 -1 0 -2 0 0 0 O]

for further information see [6].
In the study of time-varying systems, it is usually necessary to evaluate the product of two Haar

function vectors [6]. Let us defineR,,(t) = ‘Pm(t)‘PI(t) whereR (t) satisfies the following recursive
formula
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R (D) = (5)

2m

1 Ry (1) H, diag (¥, (1)
(Hy diag (W, (1)))"  diag(Hy" ¥, ()

with Ry (t) =y (t)w (t) and

.
AACER PACHACRSRAN O] RS HO

T
V0= Vs O Vo O s O]
Moreover, the following relation can be obtained based on the relation above:

R(t) ay, = 8,y (1) (6)
where &, = a, and

~

ay H, diag(a,)
" | diag(a,)H " diag(a; H,)

~

am
with

T
8, = [ao’ al""’aml} = an(t)

a, = [an; (®), anzul(t),---,awl(t)T.

3. ALGEBRAIC SOLUTION OF SYSTEM EQUATIONS

In this section, we study the problem of solving the second-order differential equations of the following
syseminterms of theinput control and exogenous disturbance usng HWs and develop appropriate dgebraic
eguations.

M X(t)+ CX(t)+ K x(t) = B, f(t)+Bydo(t), te[0T]
C, (1)

z(t) =| C, x(t) (7)
Cs f(1)

where x(t) e R" isthe state; f(t) e R is the control input; d.(t) R is the disturbance input which
belongsto L,[0, ) ;and z(t) e R™ ™ isthe controlled output with C, e R™*", C, e R™*" and C,isa
positive scalar.

In this paper, a state feedback controller is to be determined computationally such that the following
requirements are satisfied:
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(1) the closed-loop system is asymptotically stable;
(I1) under zero initial condition, the closed-loop system satisfies | z(t)|,, < 7| de(t)|, for any non-zero
d.(t) €[0, ©) wherey >0 isa prescribed scalar.
Based on HWs definition on the interval time [0, 1], we need to rescale the finite time interval |0, T |
into[ 0, 1] by considering t = T; o ; normalizing the system Eg. (7) with the time scale would be as follows

M X(o)+Cx(c)+ K x(c) = B; f(o)+ By da(o). (8)
Now by integrating the system above in an interval [0, o], we obtain

M (X(c) — X(0)) + T; C(x(c) - x(0)) + TZ K Tx(r) dr
0

o o 9
=T?B, [f(z) dr +TZ By [dq(z) dz. ®)
0 0

To avoid the differentiation of wavelets, we take again the integration of (9) in the interval [0, o] as
follows:

o oé of
M (x(c) = x(0))+ T; C[x(z) dz + T{ K [ [x(zr) dzdé=T7 B, [[ f(r) drds
0 00 00

) o I ‘ (]_O)
+Tf By [[de(7) dzd&+ [(M %(0) +T; C x(0)) d&.

00 0

By using the Haar wavelet expansion, we express the solution of Eq. (10), input force f(c) and the
disturbance d (o) in terms of HWs in the forms

X(o) =X ¥ (o), (12)
f(o)=F ¥,(o0), (12)
de(o-) = De \Pm(o-) ) (13)

where x ¢ ™M, F ¢ j>™ and D, e R>™denote the wavelet coefficients of x(o), f (o) and dg(o),
respectively. The initial conditions of x(0) and x(0) are also represented by x(0) = X, ¥,,(c) and
x(0) = X, ¥,,(c) , where the matrices { X, X} e R™™ are defined, respectively, as

XO = |:X(O) Onxl e OnXl (14)
(m-1)
)?0 = X(O) Onxl e OﬂXl ) (15)

(m-1)
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Therefore, using the wavelet expansions (11)-(13), the relation (10) becomes

o o g&
M (X = Xg)¥n(0) + Ty CX [ ¥, (2)de + T K X[ [P, (r)dzdé = TF B F[[ ¥, (r)dzds
0 00 00

) o¢ _ 7 (16)
+T7 By D [ [ ¥ (2)dzdé+ (M Xo + T;C X,) [ Wi(&) dé
00 0

Moreover, using the wavelet integral operational matrix P_in Eq. (4), we can rewrite Eq. (16) as
M(X = Xy)+T; CXP,+T?K XP2=T2B; FP2+T?B, D, P2 +(M X,+T;CX,) P, (17)

For calculating the matrix X, we apply the operator vec(.) to Eq. (17) and according to the property of
the Kronecker product, i.e. vec(ABC) = (CT ® A) vec(B), we have:

(1, ® M) (vec(X) —vec(X)) +T; (P ®C)vec(X)+T?# (P2T ® K)vec(X)
=TF (P2 ®B;)vec(F)+T7 (P2 ® By)vec(D,)
+T, (P} @ C)vec(X,) +(Py ® M)vec(X,).

(18)

Solving Eq. (18) for vec(X) leadsto
vec(X) = A,vec(F) +A, vec(D,) + A, vec(X,) + A, vec(X,) (19)

where the matrices{A,, A,} e R"™™ and{A, A,} e R"™"" are defined as

Ay =TE(T; (PL ®C)+TZ (P ®@K)+1,, M) (P2 ®B;)

A, =TT, (Pr ®C)+TZ (P ®K)+1,, M) (P2T @ B,)

A= (T; (P ®C)+TZ(PT ®@K)+1, M) (1, ®M +T, P, ®C) (20)
Ay =(T; (P ®C)+T# (P @K)+1,,® M) (Pl @ M).

Consequently, using the properties of the Kronecker product, the solution of system (8) is

(o) =(¥n(o)®1,) vec(X), (21)
and it is also clear that to find the approximated solution of the system, we have to calculate the inverse of

the matrix T, (P, ® C)+T#(P2T ® K)+1,,® M with dimension nmxnmonly once.

4. ROBUST OPTIMAL CONTROL DESIGN

The control objective is to find the approximated robust optimal control f(t) with an H_ performance such
f(t) guarantees desired L, gain performance. Next, we shall establish the H_ performance of the system (8)
under zero initial condition. To this end, we introduce

Ty

J Z%XT(Tf ) S x(T )+%XT(Tf )S, X(T¢) + % ,[ (ZT(t)Z(t)—J/zdf(t)) dt. (22)
0
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It is well known that a sufficient condition for achieving robust disturbance attenuation is that the
inequality J < O for every d(t) € L,[0, ) [14]. Therefore, we will establish conditions under which

Inf  Sup J(vec(F),vec(D,)) <0 (23)

vec(F) vec(Dg)

The Eq. (22) can berepresented as

XT3 ot oTnal O
(T, )J%J (@ x (t))C(X(t)

0

J=1("(T) X' (T ))5( J+C§ f2(t)—y2d?(1) dt (24)

where S = diagonal (S,S,) axd C = diagonal (C; C,,C1C,). Normalizing (24) with the time scale
_ T 1 - T =y X(l)
J=1KxO T X CD)S(Tfl)‘((l)

f

X(o)

1 ~ 25
SLTNO) T )] o [+C2 £2(0) - y?d2(0)) do. (29)
0 T “x(o)

Using the relation x(c) = X ¥,,(c) , where X :nxm denotes the wavelet coefficients of x(o) after
its expansion in terms of Haar wavelet basis functions, we read

X(o) X
|1 P X1 (26)

X
where Xaug = l:Tl )4 and

VeC (X gyq) = [vecT (X) T tvec’ (>?)]T . (27)

Moreover, the following relation is aready satisfied betweenvec (X) and vec(X)
vec (X) - vec(Xo) =(Pr ® 1) vec(X). (28)
Therefore, we have
3= 1(tr (Mg Xayg S Xag))

204 (4 (M, X0y € Xoug) +1r (C2 M FTF) = 21r (M, D], D)) (29)

1
where the matrices {M_, M }e®™™ are defined as Mm=[¥n(o)¥n(c)do and
0

M. =%, ()P (1), respectively.

Using the property of the Kronecker products, we can write (29) as
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J= %(V&T(xaug)nmlvec(xaug)"i'cg V&T(F)HmZ V&(F)_]/ZVECT(De)HmZ VeC(De)) (30)

where the matrices IT,, € R?™* 2™ 1, , e R™*™ are defined as I1,; =My ® S+"4 (M,, ®C) and
M,,="14M,, respectively.
It iseasy to show that the worst-case disturbance in Eq. (29) occurs when
vec' (Do) = P T,5 |AL T AL(PR @ 1,)| Ty VeC(Xag)i= 7 2 Mg VES(Xa):  (31)
By substituting Eq. (31) into Eqg. (30) we obtain

Inf  Sup J(vec(F),vec(D,)) = Inf J(vec(F),vec™(D,)). (32)

vec (F) vec(Dg) vec(F)

Minimizing the right-hand side of Eqg. (32) resultsin the algebraic relation between wavelet coefficients
of the robust optimal control and of the optimal state trajectories in the following closed form

vec(F) =-C3 AT, [AL TEAT(R® 1) | (M — 7 2117 T Tg ) VEC (Xayg)

=TTy vec(X,ug)- (33)
As aresult we have
Inf  Sup J(vec(F),vec(D,))
vec(F) vec(D)
<vec (Xgyg) (Mg + RIOT T p Ty — 72 T1T T1 T1g VEC (X gyg)- (349
Consequently, if there exists positive scalar y to the matrix inequality
My +CEIT T, Oy — 21T I,y <0 (35)

then inequality (23) is concluded.

Fromtherelations (28), (31) and (33) we obtain the robust optimal vectors of vec(X) andvec(F) after
some matrix calculations, respectively, in the following forms

I4m

Vee (X) = (I gm — (A, I +72A2Hmd)|:Tl(PT ®1,)" ) (A= (AL Ty + 772, T y)
¢ m

O4m _ (36)
X Tf—l(Pr;]l' ®1,)" ) vec(X,) + A4 vec(Xy)),
and
L | Lam
vec(F)= I {(lle(PT4® |4)71 ((|4m_(A1Hmf +772A2Hmd) T—l(PT4® |4)71 )71
*(Ag— (A, T ¢ + 7 2A, T )_ Oam )— o ) vec(X,)
3 1y TV 24md Tf—l(PmT ®|4)71 Tf—l(Pr;]l' ®|4)71 0 a

I4m

(lam— (A Ty +772A, Hm)l:Tl(PT ®1,)" ) tA, vec (X))} -

+ I4m
T (P ®1,)7"
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Finaly, the Haar wavelet-based robust optimal trajectories and robust optimal control are obtained
approximately from Eq. (21) and f (t) = W, (t) vec(F), respectively.

5. CONCLUSION

This paper investigated a computational methodology to solvethe problem of H_ control design for second-
order linear systems using Haar wavelets. The main focus was on development of an H_ controller for the
system under consideration computationally that guarantees both the closed-loop stability and satisfies a
desired H_ performance. The Haar wavelet properties were utilized to find the approximate solutions of
trajectories and robust optimal control by solving only algebraic equations instead of solving the Riccati
differential equation.
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